Wild and Crazy Multi-Planetary System Surprises Astronomers

Epsilon Andromedae. Illustration Credit: NASA, ESA, and A. Feild (STScI) Science Credit: NASA, ESA, and B. McArthur, University of Texas at Austin, McDonald Observatory.

[/caption]

Astronomers are finding that not only are there a wide range of different extrasolar planets, but there are different types of planetary systems, as well. “We’re not in Kansas anymore as far as solar systems go,” said Barbara McDonald from the University of Texas’ McDonald Observatory, at the American Astronomical Society meeting in Miami, Florida today. “The exciting thing is, we found another multi-planet system that is not at all like our own.”

A close look at the Upsilon Andromedae system with the Hubble Space Telescope, the Hobby-Eberly Telescope and other ground-based telescopes shows a whacky system where planets are out of tilt and have highly inclined orbits. The astronomers also found another planet, and also another star – this is likely a binary star system.

Even with Pluto’s inclined orbit, our solar system looks like an ocean of calm compared to Upsilon Andromedae.

Comparison of solar systems. Credit: HubbleSite

McDonald said these surprising findings will impact theories of how multi-planet systems evolve, and it shows that some violent events can happen to disrupt planets’ orbits after a planetary system forms.

“The findings mean that future studies of exoplanetary systems will be more complicated,” she said. “Astronomers can no longer assume all planets orbit their parent star in a single plane.” says Barbara McArthur of The University of Texas at Austin’s McDonald Observatory.

Similar to our Sun in its properties, Upsilon Andromedae lies about 44 light-years away. It’s a little younger, more massive, and brighter than the Sun. For just over a decade, astronomers have known that three Jupiter-type planets orbit the yellow-white star Upsilon Andromedae.

But after over a thousand combined observations, McDonald and her team uncovered hints that a fourth planet, e, orbits the star much farther out. They were also able to determine the exact masses of two of the three previously known planets, Upsilon Andromedae c and d. Much more startling, though, is that not all planets orbit this star in the same plane. The orbits of planets c and d are inclined by 30 degrees with respect to each other. This research marks the first time that the “mutual inclination” of two planets orbiting another star has been measured.

“Most probably Upsilon Andromedae had the same formation process as our own solar system, although there could have been differences in the late formation that seeded this divergent evolution,” McArthur said. “The premise of planetary evolution so far has been that planetary systems form in the disk and remain relatively co-planar, like our own system, but now we have measured a significant angle between these planets that indicates this isn’t always the case.”

Until now the conventional wisdom has been that a big cloud of gas collapses down to form a star, and planets are a natural byproduct of leftover material that forms a disk. In our solar system, there’s a fossil of that creation event because all of the eight major planets orbit in nearly the same plane. The outermost dwarf planets like Pluto are in inclined orbits, but these have been modified by Neptune’s gravity and are not embedded deep inside the Sun’s gravitational field.

So what knocked the Upsilon Andromedae system around?

“Possibilities include interactions occurring from the inward migration of planets, the ejection of other planets from the system through planet-planet scattering, or disruption from the parent star’s binary companion star, Upsilon Andromedae B,” McArthur said.

Or, the companion star – a red dwarf less massive and much dimmer than the Sun — could be the culprit. is.

“We don’t have any idea what its orbit is,” said team member Fritz Benedict. “It could be very eccentric. Maybe it comes in very close every once in a while. It may take 10,000 years.” Such a close pass by the secondary star could gravitationally perturb the orbits of the planets.”

The two different types of data combined in this research were astrometry from the Hubble Space Telescope and radial velocity from ground-based telescopes.

Astrometry is the measurement of the positions and motions of celestial bodies. McArthur’s group used one of the Fine Guidance Sensors (FGSs) on the Hubble telescope for the task. The FGSs are so precise that they can measure the width of a quarter in Denver from the vantage point of Miami. It was this precision that was used to trace the star’s motion on the sky caused by its surrounding — and unseen — planets.

Radial velocity makes measurements of the star’s motion on the sky toward and away from Earth. These measurements were made over a period of 14 years using ground-based telescopes, including two at McDonald Observatory and others at Lick, Haute-Provence, and Whipple Observatories. The radial velocity provides a long baseline of foundation observations, which enabled the shorter duration, but more precise and complete, Hubble observations to better define the orbital motions.

The fact that the team determined the orbital inclinations of planets c and d allowed them to calculate the exact masses of the two planets. The new information told us that our view as to which planet is heavier has to be changed. Previous minimum masses for the planets given by radial velocity studies put the minimum mass for planet c at 2 Jupiters and for planet d at 4 Jupiters. The new, exact masses, found by astrometry are 14 Jupiters for planet c and 10 Jupiters for planet d.

“The Hubble data show that radial velocity isn’t the whole story,” Benedict said. “The fact that the planets actually flipped in mass was really cute.”

The fourth planet is so far out, that its signal does not reveal the curvature of its orbit.

The 14 years of radial velocity information compiled by the team uncovered hints that a fourth, long-period planet may orbit beyond the three now known. There are only hints about that planet because it’s so far out that the signal it creates does not yet reveal the curvature of an orbit. Another missing piece of the puzzle is the inclination of the innermost planet, b, which would require precision astrometry 1,000 times greater than Hubble’s, a goal attainable by a future space mission optimized for interferometry.

Sources: HubbleSite, AAS Press conference

Hubble Confirms Star is Devouring Hot Exoplanet

Artist's concept of the exoplanet WASP-12b -- a hot Jupiter being devoured by its parent star. Artwork Credit: NASA, ESA, and G. Bacon (STScI)
Artist's concept of the exoplanet WASP-12b -- a hot Jupiter being devoured by its parent star. Artwork Credit: NASA, ESA, and G. Bacon (STScI)

[/caption]

We all like a hot meal, but this is really bizarre. Back in February, Jean wrote an article about WASP-12b, the hottest known planet in the Milky Way that is being ripped to shreds by its parent star. Shu-lin Li of the Department of Astronomy at the Peking University, Beijing, predicted that the star’s gravity would distort the planet’s surface and make the interior of the planet so hot that the atmosphere would expand out and co-mingle with the star. Shu-lin calculated the planet would one day be completely consumed. Now the Hubble Space Telescope has confirmed this prediction, and astronomers estimate the planet may only have another 10 million years left before it is completely devoured.

Using the Cosmic Origins Spectrograph (COS), and its sensitive ultraviolet instruments, astronomers saw that the star and the planet’s atmosphere share elements, passing them back and forth. “We see a huge cloud of material around the planet, which is escaping and will be captured by the star. We have identified chemical elements never before seen on planets outside our own solar system,” says team leader Carole Haswell of The Open University in Great Britain.

This effect of matter exchange between two stellar objects is commonly seen in close binary star systems, but this is the first time it has been seen so clearly for a planet.

The planet, called WASP-12b, is so close to its sunlike star that it completes an orbit in 1.1 days, and is heated to nearly 1,540 C (2,800 F) and stretched into a football shape by enormous tidal forces. The atmosphere has ballooned to nearly three times Jupiter’s radius and is spilling material onto the star. The planet is 40 percent more massive than Jupiter.

WASP-12 is a yellow dwarf star located approximately 600 light-years away in the winter constellation Auriga.

Haswell and her science team’s results were published in the May 10, 2010 issue of The Astrophysical Journal Letters.

Science Paper by: L Fossati et al.

Original article on Universe Today by Jean Tate
Original paper by Shu-Lin

Source: HubbleSite

Could An Amateur Astronomer Snap a Picture of an Exoplanet?

HR8799b, c, and d (Credit: NASA/JPL-Caltech/Palomar Observatory)

[/caption]
Using their backyard telescope, today? No; however, this image of three exoplanets required just 1.5 meters (diameter; 60 inches) of a telescope mirror, not vastly larger than the biggest backyard ‘scope.

These particular exoplanets orbit the star HR 8799, and have been imaged directly before, by one of the 10-meter (33-foot) Keck telescopes and the 8.0-meter (26-foot) Gemini North Observatory, both on Mauna Kea in Hawaii; they are among the first to be so imaged, as reported by Universe Today in November 2008 First Image of Another Multi-Planet Solar System.

So how did Gene Serabyn and colleagues manage the trick of taking the image above, using just a 1.5-meter-diameter (4.9-foot) portion of the famous Palomar 200-inch (5.1 meter) Hale telescope’s mirror?

Infrared observations of a multi-exoplanet star system HR 8799 (Keck Observatory)


They did it by working in the near infrared, and by combining two techniques – adaptive optics and a coronagraph – to minimize the glare from the star and reveal the dim glow of the much fainter planets.

“Our technique could be used on larger ground-based telescopes to image planets that are much closer to their stars, or it could be used on small space telescopes to find possible Earth-like worlds near bright stars,” said Gene Serabyn, who is an astrophysicist at JPL and visiting associate in physics at the California Institute of Technology in Pasadena.

The three planets, called HR8799b, c and d, are thought to be gas giants similar to Jupiter, but more massive. They orbit their host star at roughly 24, 38 and 68 times the distance between our Earth and the Sun, respectively (Jupiter resides at about five times the Earth-Sun distance). It’s possible that rocky worlds like Earth circle closer to the planets’ homestar, but with current technology, they would be impossible to see under the star’s glare.

The star HR 8799 is a bit more massive than our sun, and much younger, at about 60 million years, compared to our sun’s approximately 4.6 billion years. It is 120 light-years away in the constellation Pegasus. This star’s planetary system is still active, with bodies crashing together and kicking up dust, as recently detected by NASA’s Spitzer Space Telescope. Like a fresh-baked pie out of the oven, the planets are still warm from their formation and emit enough infrared radiation for telescopes to detect.

To take a picture of HR 8799’s planets, Serabyn and his colleagues first used a method called adaptive optics to reduce the amount of atmospheric blurring, or to take away the “twinkle” of the star. For these observations, technique was optimized by using only a small fraction of the telescope was used. Once the twinkle was removed, the light from the star itself was blocked using the team’s coronograph, an instrument that selectively masks out the star. A novel “vortex coronagraph,” invented by team member Dimitri Mawet of JPL, was used for this step. The final result was an image showing the light of three planets.

While adaptive optics is in use on only a few amateurs’ telescopes (and a relatively simple kind at that), the technology will likely become widely available to amateurs in the next few years. However, vortex coronagraphs may take a bit longer.

“The trick is to suppress the starlight without suppressing the planet light,” said Serabyn.

The technique can be used to image the space lying just a few arcseconds from a star. This is as close to the star as that achieved by Gemini and Keck – telescopes that are about five and seven times larger, respectively.

Keeping telescopes small is critical for space missions. “This is the kind of technology that could let us image other Earths,” said Wesley Traub, the chief scientist for NASA’s Exoplanet Exploration Program at JPL. “We are on our way toward getting a picture of another pale blue dot in space.”

Sources: JPL, Nature, Astrophysics Journal (preprint is arXiv:0912.2287)

Dropping a Bomb About Exoplanets

A gallery of six exoplanets that have retrograde orbits (artist concepts). ESO/A. C. Cameron

[/caption]
Not all exoplanets are created equal, and new discoveries about the orbits of newly found extra solar planets could challenge the current theories of planet formation. The discoveries also suggest that systems with exoplanets of the type known as hot Jupiters are unlikely to contain Earth-like planets. “This is a real bomb we are dropping into the field of exoplanets,” said Amaury Triaud, a PhD student at the Geneva Observatory who led an observational campaign from several observatories.

Six exoplanets out of twenty-seven were found to be orbiting in the opposite direction to the rotation of their host star — the exact reverse of what is seen in our own Solar System. The team announced the discovery of nine new planets orbiting other stars, and combined their results with earlier observations. Besides the surprising abundance of retrograde orbits, the astronomers also found that more than half of all the so-called “hot Jupiters” in their survey have orbits that are misaligned with the rotation axis of their parent stars.

Hot Jupiters are planets orbiting other stars that have masses similar to or greater than Jupiter, but which orbit their parent stars much more closely.

Planets are thought to form in the disc of gas and dust encircling a young star, and since this proto-planetary disc rotates in the same direction as the star itself, it was expected that planets that form from the disc would all orbit in more or less the same plane, and that they would move along their orbits in the same direction as the star’s rotation.

“The new results really challenge the conventional wisdom that planets should always orbit in the same direction as their stars spin,” said Andrew Cameron of the University of St Andrews, who presented the new results at the RAS National Astronomy Meeting (NAM2010) in Glasgow, Scotland this week.

Artist’s impression of an exoplanet in a retrograde orbit. Credit: ESO

At this writing, 454 planets have been found orbiting other stars, and in the 15 years since the first hot Jupiters were discovered, astronomers have been puzzled by their origin. The cores of giant planets are thought to form from a mix of rock and ice particles found only in the cold outer reaches of planetary systems. Hot Jupiters must therefore form far from their star and subsequently migrate inwards to orbits much closer to the parent star. Many astronomers believed this was due to gravitational interactions with the disc of dust from which they formed. This scenario takes place over a few million years and results in an orbit aligned with the rotation axis of the parent star. It would also allow Earth-like rocky planets to form subsequently, but unfortunately it cannot account for the new observations.

To account for the new retrograde exoplanets an alternative migration theory suggests that the proximity of hot Jupiters to their stars is not due to interactions with the dust disc at all, but to a slower evolution process involving a gravitational tug-of-war with more distant planetary or stellar companions over hundreds of millions of years. After these disturbances have bounced a giant exoplanet into a tilted and elongated orbit it would suffer tidal friction, losing energy every time it swung close to the star. It would eventually become parked in a near circular, but randomly tilted, orbit close to the star. “A dramatic side-effect of this process is that it would wipe out any other smaller Earth-like planet in these systems,” says Didier Queloz of Geneva Observatory.

The observatories for this survey included the Wide Angle Search for Planets (WASP), the HARPS spectrograph on the 3.6-metre ESO telescope at the La Silla observatory in Chile, and the Swiss Euler telescope, also at La Silla. Data from other telescopes to confirm the discoveries.

Source: ESO

Mystery Object Found Orbiting Brown Dwarf

This Hubble Space Telescope image of young brown dwarf 2M J044144 show it has a companion object at the 8 o'clock position that is estimated to be 5-10 times the mass of Jupiter.Credit: NASA, ESA, and K. Todorov and K. Luhman (Penn State University)

[/caption]

Big planet or companion brown dwarf? Using the Hubble Space Telescope and the Gemini Observatory, astronomers have discovered an unusual object orbiting a brown dwarf, and its discovery could fuel additional debate about what exactly constitutes a planet. The object circles a nearby brown dwarf in the Taurus star-forming region with an orbit approximately 3.6 billion kilometers (2.25 billion miles) out, about the same as Saturn from our sun. The astronomers say it is the right size for a planet, but they believe the object formed in less than 1 million years — the approximate age of the brown dwarf — and much faster than the predicted time it takes to build planets according to conventional theories.

Kamen Todorov of Penn State University and his team conducted a survey of 32 young brown dwarfs in the Taurus region.

The object orbits the brown dwarf 2M J044144 and is about 5-10 times the mass of Jupiter. Brown dwarfs are objects that typically are tens of times the mass of Jupiter and are too small to sustain nuclear fusion to shine as stars do.

Artist's conception of the binary system 2M J044144. Science Credit: NASA, ESA, and K. Todorov and K. Luman (Penn State University) Artwork Credit: Gemini Observatory, courtesy of L. Cook

While there has been a lot of discussion in the context of the Pluto debate over how small an object can be and still be called a planet, this new observation addresses the question at the other end of the size spectrum: How small can an object be and still be a brown dwarf rather than a planet? This new companion is within the range of masses observed for planets around stars, but again, the astronomers aren’t sure if it is a planet or a companion brown dwarf star.

The answer is strongly connected to the mechanism by which the companion most likely formed.

The Hubble new release offers these three possible scenarios for how the object may have formed:

Dust in a circumstellar disk slowly agglomerates to form a rocky planet 10 times larger than Earth, which then accumulates a large gaseous envelope; a lump of gas in the disk quickly collapses to form an object the size of a gas giant planet; or, rather than forming in a disk, a companion forms directly from the collapse of the vast cloud of gas and dust in the same manner as a star (or brown dwarf).

If the last scenario is correct, then this discovery demonstrates that planetary-mass bodies can be made through the same mechanism that builds stars. This is the likely solution because the companion is too young to have formed by the first scenario, which is very slow. The second mechanism occurs rapidly, but the disk around the central brown dwarf probably did not contain enough material to make an object with a mass of 5-10 Jupiter masses.

“The most interesting implication of this result is that it shows that the process that makes binary stars extends all the way down to planetary masses. So it appears that nature is able to make planetary-mass companions through two very different mechanisms,” said team member Kevin Luhman of the Center for Exoplanets and Habitable Worlds at Penn State University.

If the mystery companion formed through cloud collapse and fragmentation, as stellar binary systems do, then it is not a planet by definition because planets build up inside disks.

The mass of the companion is estimated by comparing its brightness to the luminosities predicted by theoretical evolutionary models for objects at various masses for an age of 1 million years.

Further supporting evidence comes from the presence of a very nearby binary system that contains a small red star and a brown dwarf. Luhman thinks that all four objects may have formed in the same cloud collapse, making this in actuality a quadruple system.

“The configuration closely resembles quadruple star systems, suggesting that all of its components formed like stars,” he said.

The team’s research is being published in an upcoming issue of The Astrophysical Journal.

The team’s paper: Discovery of a Planetary-Mass Companion to a Brown Dwarf in Taurus

Source: HubbleSite

Finally, a “Normal” Exoplanet

Artist’s impression of Corot-9b. Credit: ESO/L. Calçada

[/caption]

Chalk up another exoplanet discovery for the CoRoT satellite. But this planet, while a gas giant, could have temperatures cool enough to host liquid water. Corot-9b orbits a sun-like star at a distance similar to Mercury – one of the largest orbits of any extrasolar planet yet found, and may have an interior that closely resembles Jupiter and Saturn. “This is a normal, temperate exoplanet just like dozens we already know, but this is the first whose properties we can study in depth,” said Claire Moutou, who is part of the international team of 60 astronomers that made the discovery. “It is bound to become a Rosetta stone in exoplanet research.”

Corot-9b (unofficial nickname Carrot Nimby) regularly passes in front of its star, located 1,500 light-years away from Earth towards the constellation of Serpens (the Snake), allowing astronomers to view the planet for 8 hours at a time. The transits occur every 95 days.

“Our analysis has provided more information on Corot-9b than for other exoplanets of the same type,” says co-author Didier Queloz. “It may open up a new field of research to understand the atmospheres of moderate- and low-temperature planets, and in particular a completely new window in our understanding of low-temperature chemistry.”

The star Corot-9b orbits is slightly cooler than our sun, so the astronomer estimate that Corot-9b’s temperature could lie somewhere between -23°C and 157°C.

Corot-9b has a radius around 1.05 times that of Jupiter but only 84% of the mass. This leads to a density of 0.90 g/cc, or 68% that of Jupiter.

More than 400 exoplanets have been discovered so far, 70 of them through the transit method. Astronomers say Corot-9b is special in that its distance from its host star is about ten times larger than that of any planet previously discovered by this method. And unlike all such exoplanets, the planet has a temperate climate. The temperature of its gaseous surface is expected to be between 160 degrees and minus twenty degrees Celsius, with minimal variations between day and night. The exact value depends on the possible presence of a layer of highly reflective clouds.

“Like our own giant planets, Jupiter and Saturn, the planet is mostly made of hydrogen and helium,” said team member Tristan Guillot, “and it may contain up to 20 Earth masses of other elements, including water and rock at high temperatures and pressures.”

This team’s findings were published in this week’s edition of the journal Nature. (“A transiting giant planet with a temperature between 250 K and 430 K”), by H. J. Deeg et al.”)

Sources: ESO, EurekAlert

ESA’s Tough Choice: Dark Matter, Sun Close Flyby, Exoplanets (Pick Two)

Thales Alenia Space and EADS Astrium concepts for Euclid (ESA)


Key questions relevant to fundamental physics and cosmology, namely the nature of the mysterious dark energy and dark matter (Euclid); the frequency of exoplanets around other stars, including Earth-analogs (PLATO); take the closest look at our Sun yet possible, approaching to just 62 solar radii (Solar Orbiter) … but only two! What would be your picks?

These three mission concepts have been chosen by the European Space Agency’s Science Programme Committee (SPC) as candidates for two medium-class missions to be launched no earlier than 2017. They now enter the definition phase, the next step required before the final decision is taken as to which missions are implemented.

These three missions are the finalists from 52 proposals that were either made or carried forward in 2007. They were whittled down to just six mission proposals in 2008 and sent for industrial assessment. Now that the reports from those studies are in, the missions have been pared down again. “It was a very difficult selection process. All the missions contained very strong science cases,” says Lennart Nordh, Swedish National Space Board and chair of the SPC.

And the tough decisions are not yet over. Only two missions out of three of them: Euclid, PLATO and Solar Orbiter, can be selected for the M-class launch slots. All three missions present challenges that will have to be resolved at the definition phase. A specific challenge, of which the SPC was conscious, is the ability of these missions to fit within the available budget. The final decision about which missions to implement will be taken after the definition activities are completed, which is foreseen to be in mid-2011.
[/caption]
Euclid is an ESA mission to map the geometry of the dark Universe. The mission would investigate the distance-redshift relationship and the evolution of cosmic structures. It would achieve this by measuring shapes and redshifts of galaxies and clusters of galaxies out to redshifts ~2, or equivalently to a look-back time of 10 billion years. It would therefore cover the entire period over which dark energy played a significant role in accelerating the expansion.

By approaching as close as 62 solar radii, Solar Orbiter would view the solar atmosphere with high spatial resolution and combine this with measurements made in-situ. Over the extended mission periods Solar Orbiter would deliver images and data that would cover the polar regions and the side of the Sun not visible from Earth. Solar Orbiter would coordinate its scientific mission with NASA’s Solar Probe Plus within the joint HELEX program (Heliophysics Explorers) to maximize their combined science return.

Thales Alenis Space concept, from assessment phase (ESA)

PLATO (PLAnetary Transit and Oscillations of stars) would discover and characterize a large number of close-by exoplanetary systems, with a precision in the determination of mass and radius of 1%.

In addition, the SPC has decided to consider at its next meeting in June, whether to also select a European contribution to the SPICA mission.

SPICA would be an infrared space telescope led by the Japanese Space Agency JAXA. It would provide ‘missing-link’ infrared coverage in the region of the spectrum between that seen by the ESA-NASA Webb telescope and the ground-based ALMA telescope. SPICA would focus on the conditions for planet formation and distant young galaxies.

“These missions continue the European commitment to world-class space science,” says David Southwood, ESA Director of Science and Robotic Exploration, “They demonstrate that ESA’s Cosmic Vision programme is still clearly focused on addressing the most important space science.”

Source: ESA chooses three scientific missions for further study

Astronomers Find Youngest Exoplanet Yet

Artist's impression of BD+20 1790b, the youngest exoplanet yet discovered. Credit: M. Hernon Obispo

[/caption]

Overcoming interference from a very active young sun-like star, a group of astronomers were able to find what they determined is the youngest exoplanet yet discovered. BD+20 1790b is 35 million years old (Earth is about 100 times older at 4.5 billion years) and is located about 83 light years away from our planet. Previously, the youngest known exoplanet was about 100 million years old. Studying this planet will help our understanding of planetary evolution.

While this new-found planet is young, it is a whopper, at six times the mass of Jupiter. It orbits a young active star at a distance closer than Mercury orbits the Sun.

Most planet-search surveys tend to target much older stars, with ages in excess of a billion years. Young stars usually have intense magnetic fields that generate solar flares and sunspots, which can mimic the presence of a planetary companion and so can make extremely difficult to disentangle the signals of planets and activity.

BD+201790 is a very active star, and astronomers announced last year that it could possibly have a companion. An international collaboration of astronomers, led by Dr. Maria Cruz Gálvez-Ortiz and Dr. John Barnes were able to “weed out” the data to determine the planet was actually there.

“The planet was detected by searching for very small variations in the velocity of the host star, caused by the gravitational tug of the planet as it orbits – the so-called “Doppler wobble technique,” said Gálvez-Ortiz. “Overcoming the interference caused by the activity was a major challenge for the team, but with enough data from an array of large telescopes the planet’s signature was revealed.”

The team has been observing the star for the last five years at different telescopes, including the Observatorio de Calar Alto (Almería, Spain) and the Observatorio del Roque de los Muchachos (La Palma, Spain).

Source: Alpha Galileo

If the Earth is Rare, We May Not Hear from ET

Earth - Moon System
Image Credit: NASA

[/caption]
If civilization-forming intelligent life is rare in our Milky Way galaxy, chances are we won’t hear from ET before the Sun goes red giant, in about five billion years’ time; however, if we do hear from ET before then, we’ll have lots of nice chats before the Earth is sterilized.

That’s the conclusion from a recent study of Ward and Brownlee’s Rare Earth hypothesis by Duncan Forgan and Ken Rice, in which they made a toy galaxy, simulating the real one we live in, and ran it 30 times. In their toy galaxy, intelligent life formed on Earth-like planets only, just as it does in the Rare Earth hypothesis.

While the Forgan and Rice simulations are still limited and somewhat unrealistic, they give a better handle on SETI’s chances for success than either the Drake equation or Fermi’s “Where are they?”

“The Drake equation itself does suffer from some key weaknesses: it relies strongly on mean estimations of variables such as the star formation rate; it is unable to incorporate the effects of the physico-chemical history of the galaxy, or the time-dependence of its terms,” Forgan says, “Indeed, it is criticized for its polarizing effect on “contact optimists” and “contact pessimists”, who ascribe very different values to the parameters, and return values of the number of galactic civilizations who can communicate with Earth between a hundred-thousandth and a million (!)”

Building on the work of Vukotic and Cirkovic, Forgan developed a Monte Carlo-based simulation of our galaxy; as inputs, he used the best estimates of actual astrophysical parameters such as the star formation rate, initial mass function, a star’s time spent on the main sequence, likelihood of death from the skies, etc. For several key inputs however, “the model goes beyond relatively well-constrained parameters, and becomes hypothesis,” Forgan explains, “In essence, the method generates a Galaxy of a billion stars, each with their own stellar properties (mass, luminosity, location in the Galaxy, etc.) randomly selected from observed statistical distributions. Planetary systems are then generated for these stars in a similar manner, and life is allowed to evolve in these planets according to some hypothesis of origin. The end result is a mock Galaxy which is statistically representative of the Milky Way. To quantify random sampling errors, this process is repeated many times: this allows an estimation of the sample mean and sample standard deviation of the output variables obtained.”

Forgan simulated the Rare Earth hypothesis by allowing animal life – the only kind of life from which intelligent civilizations can arise – to form only if homeworld’s mass is between a half and two Earths, if homesun’s mass is between a half and 1.5 times our Sun’s, homeworld has at least one moon (for tides and axial stability), and if homesun has at least one planet of mass at least ten times that of Earth, in an outer orbit (to cut down on death from the skies due to asteroids and comets).

The good news for SETI is that a galaxy like ours should host hundreds of intelligent civilizations (though, somewhat surprisingly, there is no galactic goldilocks zone); the bad news is that during the time such a civilization could communicate with an ET – between when it becomes technologically advanced enough and when it is wiped out by homesun going red giant – there are, in most simulations, no other such civilizations (or if there are, they are too far away) … we, or ET, would be alone.

But it’s not all bad news; if we are not alone, then once contact is established, we will have many phone calls with ET.

To be sure, this is but a work-in-progress. “Numerical modeling of this type is generally a shadow of the entity it attempts to model, in this case the Milky Way and its constituent stars, planets and other objects,” Forgan and Rice say; several improvements are already being worked on.

Sources: “A numerical testbed for hypotheses of extraterrestrial life and intelligence” (Forgan D., 2009, International Journal of Astrobiology, 8, 121), and “Numerical Testing of The Rare Earth Hypothesis using Monte Carlo Realisation Techniques” (arXiv:1001:1680); this too will be published in IJA, likely in April.

New Technique to Find Earth-like Exoplanets

The Artists impression of HD 189733b, graph and image of the telescope Credit: NASA

[/caption]

Another technique has been added to the exo-planet hunters’ toolkit, and it doesn’t require huge ground-based telescopes or space-based observatories. A group of astronomers developed the new technique by using a relatively small Earth-based infrared telescope to identify an organic molecule in the atmosphere of a Jupiter-sized planet nearly 63 light-years away. This new ground-based technique will enable the study of atmospheres of planets outside our Solar System, accelerating our search for Earth-like planets with life-related molecules.

On Aug. 11, 2007, Mark Swain from JPL and his team turned the NASA Infrared Telescope Facility – a 3-meter telescope on the summit of Mauna Kea, Hawaii, — to the hot, Jupiter-size planet HD 189733b in the constellation Vulpecula. Every 2.2 days, the planet orbits a K-type main sequence star slightly cooler and smaller than our Sun. HD189733b had already yielded breakthrough advances in exoplanet science, including detections of water vapor, methane and carbon dioxide using space telescopes.

Using a novel calibration method to remove systematic observation errors caused by instability of Earth’s atmosphere, they obtained a measurement revealing details of the HD189733b’s atmospheric composition and conditions, an unprecedented achievement from an Earth-based observatory.

They detected carbon dioxide and methane in the exo-planet’s atmosphere of HD 189733b with the SpeX spectrograph, which splits light into its components to reveal the distinctive spectral signatures of different chemicals. Their key work was development of the novel calibration method to remove systematic observation errors caused by the variability of Earth’s atmosphere and instability due to the movement of the telescope system as it tracks its target.

his scheme explains how the spectrum of the planet is isolated. First the spectrum of both, the planet and ist central star is registered; then, when the planet is hidden beyond the star, one obtains the spectrum of the star alone. If one subtracts the second from the first, one obtains the spectrum of the planet alone.

It took the researchers more than two years to develop their method so that it could be applied to spectroscopic observations with the 3 meter telescope, enabling the identification of specific molecules such as methane and carbon dioxide.

“As a consequence of this work, we now have the exciting prospect that other suitably equipped yet relatively small ground-based telescopes should be capable of characterizing exoplanets,” said John Rayner, the NASA Infrared Telescope Facility support scientist who built the SpeX spectrograph. “On some days we can’t even see the Sun with the telescope, and the fact that on other days we can now obtain a spectrum of an exoplanet 63 light-years away is astonishing.”

During their observations, the team found unexpected bright infrared emission from methane that stands out on the day side of HD198733b. This could indicate some kind of activity in the planet’s atmosphere which could be related to the effect of ultraviolet radiation from the planet’s parent star hitting the planet’s upper atmosphere, but more detailed study is needed.

“An immediate goal for using this technique is to more fully characterize the atmosphere of this and other exoplanets, including detection of organic and possibly prebiotic molecules” like those that preceded the evolution of life on Earth, said Swain. “We’re ready to undertake that task.” Some early targets will be the super-Earths. Used in synergy with observations from NASA’s Hubble, Spitzer and the future James Webb Space Telescope, the new technique “will give us an absolutely brilliant way to characterize super-Earths,” Swain said.

Their work is reported today in the Feb. 3, 2010 edition of Nature.

For a great FAQ about using spectrum to study exoplanets, see this page by the Max Planck Institute for Astronomy.

Sources: Max Planck Institute for Astronomy, STFC