A Moon Might Have Been Found Orbiting an Exoplanet

An artist's illustration of the Kepler 1625 system. The star in the distance is called Kepler 1625. The gas giant is Kepler 1625B, and the exomoon orbiting it is unnamed. The moon is about as big as Neptune, but is a gas moon. Image: NASA, ESA, and L. Hustak (STScI)
An artist's illustration of the Kepler 1625 system. The star in the distance is called Kepler 1625. The gas giant is Kepler 1625B, and the exomoon orbiting it is unnamed. The moon is about as big as Neptune, but is a gas moon. Image: NASA, ESA, and L. Hustak (STScI)

In the past three decades, the field of extrasolar planet studies has advanced by leaps and bounds. To date, 4,903 extrasolar planets have been confirmed in 3,677 planetary systems, with another 8,414 candidates awaiting confirmation. The diverse nature of these planets, ranging from Super-Jupiters and Super-Earths to Mini-Neptunes and Water Worlds, has raised many questions about the nature of planet formation and evolution. A rather important question is the role and commonality of natural satellites, aka. “exomoons.”

Given the number of moons in the Solar System, it is entirely reasonable to assume that moons are ubiquitous in our galaxy. Unfortunately, despite thousands of know exoplanets, there are still no confirmed exomoons available for study. But thanks to Columbia University’s Professor David Kipping and an international team of astronomers, that may have changed. In a recent NASA-supported study, Kipping and his colleagues report on the possible discovery of an exomoon they found while examining data from the Kepler Space Telescope.

Continue reading “A Moon Might Have Been Found Orbiting an Exoplanet”

Exoplanet Found With a Highly Eccentric Orbit

An artist's rendering of TOI-1231 b, a Neptune-like planet about 90 light years away from Earth. Credit: NASA/JPL-Caltech

The study of extrasolar planets has revealed some interesting things in recent decades. Not only have astronomers discovered entirely new types of planets – Super Jupiters, Hot Jupiters, Super-Earths, Mini-Neptunes, etc. – it has also revealed new things about solar system architecture and planetary dynamics. For example, astronomers have seen multiple systems of planets where the orbits of the planets did not conform to our Solar System.

According to a new study led by the University of Bern, an international team of researchers recently observed a Mini-Neptune (TOI-2257 b) orbiting a red dwarf star located about 188.5 light-years from Earth. What was interesting about this find was how the small ice giant had such an eccentric orbit, which is almost twice as long as it is wide! This is almost two and a half times as eccentric as Mercury, making TOI-2257 b the most eccentric planet ever discovered!

Continue reading “Exoplanet Found With a Highly Eccentric Orbit”

Astronomers Find 70 Planets Without Stars Floating Free in the Milky Way

This artist’s impression shows an example of a rogue planet with the Rho Ophiuchi cloud complex visible in the background. Rogue planets have masses comparable to those of the planets in our Solar System but do not orbit a star, instead roaming freely on their own. Image Credit: ESO/M. Kornmesser/S. Guisard

The field of extrasolar planet studies continues to reveal some truly amazing things about our Universe. After decades of having just a handful of exoplanets available for study, astronomers are now working with a total of 4,884 confirmed exoplanets and another 8,288 awaiting confirmation. This number is expected to increase exponentially in the coming years as next-generation missions like the James Webb Space Telescope (JWST), Euclid, PLATO, and the Nancy Grace Roman Space Telescope (RST) reveal tens of thousands more.

In addition to learning a great deal about the types of exoplanets that are out there and what kind of stars are known to give rise to them, astronomers have also made another startling discovery. There is no shortage of exoplanets in our galaxy that don’t have a parent star. Using telescopes from around the world, a team of astronomers recently discovered 70 additional free-floating planets (FFPs), the largest sample of “Rogue Planets” discovered to date, and nearly doubling the number of FFPs available for study.

Continue reading “Astronomers Find 70 Planets Without Stars Floating Free in the Milky Way”

Would Mars be More Habitable if it Orbited a Red Dwarf?

Artist’s rendering of an exoplanet system experiencing atmospheric escape in connection with its host star. Credit: MACH Center / Aurore Simonnet

Thanks to the explosion in discoveries made in the last decade, the study of extrasolar planets have entered a new phase. With 4,884 confirmed discoveries in 3,659 systems (and another 7,958 candidates awaiting confirmation), scientists are shifting their focus from discovery to characterization. This means examining known exoplanets more closely to determine if they possess the necessary conditions for life, as well as “biomarkers” that could indicate the presence of life.

A key consideration is how the type of star may impact a planet’s chances of developing the right conditions for habitability. Consider red dwarf stars, the most common stellar class in the Universe and a great place to find “Earth-like,” rocky planets. According to a new study by an international team of scientists, a lifeless planet in our own backyard (Mars) might have evolved differently had it orbited a red dwarf instead of the Sun.

Continue reading “Would Mars be More Habitable if it Orbited a Red Dwarf?”

Maybe There’s No Way to Tell if Habitable Planets Orbit Proxima Centauri… Yet!

This artist’s impression shows the planet Proxima b orbiting the red dwarf star Proxima Centauri, the closest star to the Solar System. The double star Alpha Centauri AB also appears in the image between the planet and Proxima itself. Proxima b is a little more massive than the Earth and orbits in the habitable zone around Proxima Centauri, where the temperature is suitable for liquid water to exist on its surface. Credit: ESO/M. Kornmesser

Our closest stellar neighbor is Proxima Centauri, an M-type (red dwarf) star located over 4.24 light-years away (part of the Alpha Centauri trinary system). In 2016, the astronomical community was astounded to learn that an Earth-like planet orbited within this star’s circumsolar habitable zone (HZ). In addition to being the closest exoplanet to Earth, Proxima b was also considered the most promising place to look for extraterrestrial life for a time.

Unfortunately, the scientific community has been divided on whether or not life could even be possible on this planet. All of these studies indicate that this question cannot be answered until astronomers characterize Proxima b’s atmosphere, ideally by observing it as it passes in front (aka. transited) of its host star. But in a new NASA-supported study, a team led by astrophysicists at the University of Chicago determined that this is an unlikely possibility.

Continue reading “Maybe There’s No Way to Tell if Habitable Planets Orbit Proxima Centauri… Yet!”

Astronomers Measure the Atmosphere on a Planet Hundreds of Light-Years Away

An artist's conception of the hot Jupiter WASP-79b. (Image credit: NASA)

The field of extrasolar planet research has advanced by leaps and bounds over the past fifteen years. To date, astronomers have relied on space-based and ground-based telescopes to confirm the existence of 4,566 exoplanets in 3,385 systems, with another 7,913 candidates awaiting confirmation. More importantly, in the past few years, the focus of exoplanet studies has slowly shifted from the process of discovery towards characterization.

In particular, astronomers are making great strides when it comes to the characterization of exoplanet atmospheres. Using the Gemini South Telescope (GST) in Chile, an international team led by Arizona State University (ASU) was able to characterize the atmosphere of a “hot Jupiter” located 340 light-years away. This makes them the first team to directly measure the chemical composition of a distant exoplanet’s atmosphere, a significant milestone in the hunt for habitable planets beyond our Solar System.

Continue reading “Astronomers Measure the Atmosphere on a Planet Hundreds of Light-Years Away”

Rocky Planets Might Need to be the Right age to Support Life

Artist’s impression of a Super-Earth orbiting a Sun-like star. Credit: ESO

Extrasolar planets are being discovered at a rapid rate, with 4,531 planets in 3,363 systems (with another 7,798 candidates awaiting confirmation). Of these, 166 have been identified as rocky planets (aka. “Earth-like”), while another 1,389 have been rocky planets that are several times the size of Earth (“Super-Earths). As more and more discoveries are made, the focus is shifting from the discovery process towards characterization.

In order to place tighter constraints on whether any of these exoplanets are habitable, astronomers and astrobiologists are looking for ways to detect biomarkers and other signs of biological processes. According to a new study, astronomers and astrobiologists should look for indications of a carbon-silicate cycle. On Earth, this cycle ensures that our climate remains stable for eons and could be the key to finding life on other planets.

Continue reading “Rocky Planets Might Need to be the Right age to Support Life”

A Technique to Find Oceans on Other Worlds

Artist’s impression of a sunset seen from the surface of an Earth-like exoplanet. Credit: ESO/L. Calçada

You could say that the study of extrasolar planets is in a phase of transition of late. To date, 4,525 exoplanets have been confirmed in 3,357 systems, with another 7,761 candidates awaiting confirmation. As a result, exoplanet studies have been moving away from the discovery process and towards characterization, where follow-up observations of exoplanets are conducted to learn more about their atmospheres and environments.

In the process, exoplanet researchers hope to see if any of these planets possess the necessary ingredients for life as we know it. Recently, a pair of researchers from Northern Arizona University, with support from the NASA Astrobiology Institute’s Virtual Planetary Laboratory (VPL), developed a technique for finding oceans on exoplanets. The ability to find water on other planets, a key ingredient in life on Earth, will go a long way towards finding extraterrestrial life.

Continue reading “A Technique to Find Oceans on Other Worlds”

Astronomers Look at Super-Earths That had Their Atmospheres Stripped Away by Their Stars

Figure 1: Artist’s conceptual image showing the sizes of the planets observed in this study. The radius of TOI-1634 is 1.5 times larger than Earth’s radius and TOI-1685 is 1.8 times larger. The planets would appear red, due to the light from the red dwarf stars they orbit. (Credit: Astrobiology Center, NINS)

As the planets of our Solar System demonstrate, understanding the solar dynamics of a system is a crucial aspect of determining habitability. Because of its protective magnetic field, Earth has maintained a fluffy atmosphere for billions of years, ensuring a stable climate for life to evolve. In contrast, other rocky planets that orbit our Sun are either airless, have super-dense (Venus), or have very thin atmospheres (Mars) due to their interactions with the Sun.

In recent years, astronomers have been on the lookout for this same process when studying extrasolar planets. For instance, an international team of astronomers led by the National Astronomical Observatory of Japan (NAOJ) recently conducted follow-up observations of two Super-Earths that orbit very closely to their respective stars. These planets, which have no thick primordial atmospheres, represent a chance to investigate the evolution of atmospheres on hot rocky planets.

Continue reading “Astronomers Look at Super-Earths That had Their Atmospheres Stripped Away by Their Stars”

Astronomers Detect Clouds on an Exoplanet, and Even Measure Their Altitude

Credit:

The search for planets beyond our Solar System has grown immensely during the past few decades. To date, 4,521 extrasolar planets have been confirmed in 3,353 systems, with an additional 7,761 candidates awaiting confirmation. With so many distant worlds available for study (and improved instruments and methods), the process of exoplanet studies has been slowly transitioning away from discovery towards characterization.

For example, a team of international scientists recently showed how combining data from multiple observatories allowed them to reveal the structure and composition of an exoplanet’s upper atmosphere. The exoplanet in question is WASP-127b, a “hot Saturn” that orbits a Sun-like star located about 525 light-years away. These findings preview how astronomers will characterize exoplanet atmospheres and determine if they are conducive to life as we know it.

Continue reading “Astronomers Detect Clouds on an Exoplanet, and Even Measure Their Altitude”