Astronomers Scan 800 Pulsars to See If Any of Them Have Planets

Lich (PSR B1257+12) is a pulsar 2,300 ly away in the constellation of Virgo - 20 km in diameter, formed 2 billion years ago by two white dwarfs merging with each other - Has three known planets, named Draugr, Poltergeist and Phobetor - Both the first extrasolar planets and the first pulsar planets to be discovered - Draugr is the lowest-mass planet yet discovered by any observational technique (twice the mass of Earth's moon.) Image Credit: By Pablo Carlos Budassi - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=94333766

Astronomers discovered the first exoplanets in 1992. They found a pair of them orbiting the pulsar PSR B1257+12 about 2300 light-years from the Sun. Two years later they discovered the third planet in the system.

Now a team of astronomers are trying to duplicate that feat by searching 800 known pulsars for exoplanets.

Continue reading “Astronomers Scan 800 Pulsars to See If Any of Them Have Planets”

How to Search for Life as we Don’t Know it

Artist's concept of Earth-like exoplanets, which (according to new research) need to strike the careful balance between water and landmass. Credit: NASA

The fields of extrasolar planet studies and astrobiology have come a long way in recent years. To date, astronomers have confirmed the existence of 4,935 exoplanets in 3,706 star systems, with another 8,709 candidates awaiting confirmation. With so many planets to study, next-generation instruments, and improved data analysis, the focus is transitioning from discovery to characterization. With the James Webb Space Telescope now deployed, these fields are about to advance much farther!

In particular, scientists anticipate that the characterization of planetary atmospheres may lead to the discovery of “biosignatures” – signs we associate with life and biological processes. The challenge will be how to recognize signatures that don’t conform to “life as we know it.” In a recent study, researchers from the School of Earth and Space Exploration (SESE) at Arizona State University (ASU) investigate possible tools for searching for life “as we don’t know it.”

Continue reading “How to Search for Life as we Don’t Know it”

An Exoplanet is Definitely Orbiting Two Stars

Artist's impression of Kepler-16b, the first planet known to definitively orbit two stars - what's called a circumbinary planet. The planet, which can be seen in the foreground, was discovered by NASA's Kepler mission. Credit: NASA/JPL-Caltech/T. Pyle

Remember that iconic scene in Star Wars, where a young Skywalker steps out onto the surface of Tatooine and watches the setting of two suns? As it turns out, this may be what it is like for lifeforms on the exoplanet known as Kepler-16, a rocky planet that orbits in a binary star system. Originally discovered by NASA’s Kepler mission, an international team of astronomers recently confirmed that this planet orbits two stars at once – what is known as a circumbinary planet.

Continue reading “An Exoplanet is Definitely Orbiting Two Stars”

A THIRD Planet Found Orbiting Nearby Proxima Centauri

This artist’s impression shows Proxima d, a planet candidate recently found orbiting the red dwarf star Proxima Centauri, the closest star to the Solar System. The planet is believed to be rocky and to have a mass about a quarter that of Earth. Two other planets known to orbit Proxima Centauri are visible in the image too: Proxima b, a planet with about the same mass as Earth that orbits the star every 11 days and is within the habitable zone, and candidate Proxima c, which is on a longer five-year orbit around the star.

In August of 2016, astronomers with the European Southern Observatory (ESO) announced that they had discovered an exoplanet orbiting in neighboring Proxima Centauri. Based on Radial Velocity measurements (aka. Doppler Photometry), the discovery team estimated that the planet was roughly the same size and mass as Earth and orbited with Proxima Centauri’s Circumsolar Habitable Zone (HZ). In 2020, this planet was confirmed by follow-up observations.

In that same year, a second exoplanet (Proxima c) roughly seven times the mass of Earth (a Super-Earth or mini-Neptune) was confirmed. As if that wasn’t enough, an international team of astronomers with the ESO recently announced that they detected a third exoplanet around Proxima Centauri – Proxima d! This Mars-sized planet orbits about halfway between its host star and Proxima b and is one of the lightest exoplanets ever discovered.

Continue reading “A THIRD Planet Found Orbiting Nearby Proxima Centauri”

Astronomers Measure the Layers of an Exoplanet's Atmosphere

An artist's conception of the hot Jupiter WASP-79b. (Image credit: NASA)

The number of planets discovered beyond our Solar System has grown exponentially in the past twenty years, with 4,919 confirmed exoplanets (and another 8,493 awaiting confirmation)! Combined with improved instruments and data analysis, the field of study is entering into an exciting new phase. In short, the focus is shifting from discovery to characterization, where astronomers can place greater constraints on potential habitability.

In particular, the characterization of exoplanet atmospheres will allow astronomers to determine their chemical makeup and whether they have the right characteristics to support life. In a new study led by the University of Lund, an international team of researchers characterized the atmosphere of one of the most extreme exoplanets yet discovered. This included discerning what could be several distinct layers that have particular characteristics.

Continue reading “Astronomers Measure the Layers of an Exoplanet's Atmosphere”

A Moon Might Have Been Found Orbiting an Exoplanet

An artist's illustration of the Kepler 1625 system. The star in the distance is called Kepler 1625. The gas giant is Kepler 1625B, and the exomoon orbiting it is unnamed. The moon is about as big as Neptune, but is a gas moon. Image: NASA, ESA, and L. Hustak (STScI)
An artist's illustration of the Kepler 1625 system. The star in the distance is called Kepler 1625. The gas giant is Kepler 1625B, and the exomoon orbiting it is unnamed. The moon is about as big as Neptune, but is a gas moon. Image: NASA, ESA, and L. Hustak (STScI)

In the past three decades, the field of extrasolar planet studies has advanced by leaps and bounds. To date, 4,903 extrasolar planets have been confirmed in 3,677 planetary systems, with another 8,414 candidates awaiting confirmation. The diverse nature of these planets, ranging from Super-Jupiters and Super-Earths to Mini-Neptunes and Water Worlds, has raised many questions about the nature of planet formation and evolution. A rather important question is the role and commonality of natural satellites, aka. “exomoons.”

Given the number of moons in the Solar System, it is entirely reasonable to assume that moons are ubiquitous in our galaxy. Unfortunately, despite thousands of know exoplanets, there are still no confirmed exomoons available for study. But thanks to Columbia University’s Professor David Kipping and an international team of astronomers, that may have changed. In a recent NASA-supported study, Kipping and his colleagues report on the possible discovery of an exomoon they found while examining data from the Kepler Space Telescope.

Continue reading “A Moon Might Have Been Found Orbiting an Exoplanet”

Exoplanet Found With a Highly Eccentric Orbit

An artist's rendering of TOI-1231 b, a Neptune-like planet about 90 light years away from Earth. Credit: NASA/JPL-Caltech

The study of extrasolar planets has revealed some interesting things in recent decades. Not only have astronomers discovered entirely new types of planets – Super Jupiters, Hot Jupiters, Super-Earths, Mini-Neptunes, etc. – it has also revealed new things about solar system architecture and planetary dynamics. For example, astronomers have seen multiple systems of planets where the orbits of the planets did not conform to our Solar System.

According to a new study led by the University of Bern, an international team of researchers recently observed a Mini-Neptune (TOI-2257 b) orbiting a red dwarf star located about 188.5 light-years from Earth. What was interesting about this find was how the small ice giant had such an eccentric orbit, which is almost twice as long as it is wide! This is almost two and a half times as eccentric as Mercury, making TOI-2257 b the most eccentric planet ever discovered!

Continue reading “Exoplanet Found With a Highly Eccentric Orbit”

Astronomers Find 70 Planets Without Stars Floating Free in the Milky Way

This artist’s impression shows an example of a rogue planet with the Rho Ophiuchi cloud complex visible in the background. Rogue planets have masses comparable to those of the planets in our Solar System but do not orbit a star, instead roaming freely on their own. Image Credit: ESO/M. Kornmesser/S. Guisard

The field of extrasolar planet studies continues to reveal some truly amazing things about our Universe. After decades of having just a handful of exoplanets available for study, astronomers are now working with a total of 4,884 confirmed exoplanets and another 8,288 awaiting confirmation. This number is expected to increase exponentially in the coming years as next-generation missions like the James Webb Space Telescope (JWST), Euclid, PLATO, and the Nancy Grace Roman Space Telescope (RST) reveal tens of thousands more.

In addition to learning a great deal about the types of exoplanets that are out there and what kind of stars are known to give rise to them, astronomers have also made another startling discovery. There is no shortage of exoplanets in our galaxy that don’t have a parent star. Using telescopes from around the world, a team of astronomers recently discovered 70 additional free-floating planets (FFPs), the largest sample of “Rogue Planets” discovered to date, and nearly doubling the number of FFPs available for study.

Continue reading “Astronomers Find 70 Planets Without Stars Floating Free in the Milky Way”

Would Mars be More Habitable if it Orbited a Red Dwarf?

Artist’s rendering of an exoplanet system experiencing atmospheric escape in connection with its host star. Credit: MACH Center / Aurore Simonnet

Thanks to the explosion in discoveries made in the last decade, the study of extrasolar planets have entered a new phase. With 4,884 confirmed discoveries in 3,659 systems (and another 7,958 candidates awaiting confirmation), scientists are shifting their focus from discovery to characterization. This means examining known exoplanets more closely to determine if they possess the necessary conditions for life, as well as “biomarkers” that could indicate the presence of life.

A key consideration is how the type of star may impact a planet’s chances of developing the right conditions for habitability. Consider red dwarf stars, the most common stellar class in the Universe and a great place to find “Earth-like,” rocky planets. According to a new study by an international team of scientists, a lifeless planet in our own backyard (Mars) might have evolved differently had it orbited a red dwarf instead of the Sun.

Continue reading “Would Mars be More Habitable if it Orbited a Red Dwarf?”

Maybe There’s No Way to Tell if Habitable Planets Orbit Proxima Centauri… Yet!

This artist’s impression shows the planet Proxima b orbiting the red dwarf star Proxima Centauri, the closest star to the Solar System. The double star Alpha Centauri AB also appears in the image between the planet and Proxima itself. Proxima b is a little more massive than the Earth and orbits in the habitable zone around Proxima Centauri, where the temperature is suitable for liquid water to exist on its surface. Credit: ESO/M. Kornmesser

Our closest stellar neighbor is Proxima Centauri, an M-type (red dwarf) star located over 4.24 light-years away (part of the Alpha Centauri trinary system). In 2016, the astronomical community was astounded to learn that an Earth-like planet orbited within this star’s circumsolar habitable zone (HZ). In addition to being the closest exoplanet to Earth, Proxima b was also considered the most promising place to look for extraterrestrial life for a time.

Unfortunately, the scientific community has been divided on whether or not life could even be possible on this planet. All of these studies indicate that this question cannot be answered until astronomers characterize Proxima b’s atmosphere, ideally by observing it as it passes in front (aka. transited) of its host star. But in a new NASA-supported study, a team led by astrophysicists at the University of Chicago determined that this is an unlikely possibility.

Continue reading “Maybe There’s No Way to Tell if Habitable Planets Orbit Proxima Centauri… Yet!”