Ocean Worlds With Hydrogen-Rich Atmospheres Could be the Perfect Spots for Life

Artist's impression of the surface of a hycean world. Hycean worlds are still hypothetical, and have large oceans and thick hydrogen-rich atmospheres that trap heat. They could be habitable even if they're outside the traditional habitable zone. Credit: University of Cambridge

The search for planets beyond our Solar System (extrasolar planets) has grown by leaps and bounds in the past decade. A total of 4,514 exoplanets have been confirmed in 3,346 planetary systems, with another 7,721 candidates awaiting confirmation. At present, astrobiologists are largely focused on the “low hanging fruit” approach of looking for exoplanets that are similar in size, mass, and atmospheric composition to Earth (aka. “Earth-like.”)

However, astrobiologists are also interested in finding examples of “exotic life,” the kind that emerged under conditions that are not “Earth-like.” For example, a team of astronomers from the University of Cambridge recently conducted a study that showed how life could emerge on ocean-covered planets with hydrogen-rich atmospheres (aka. “Hycean” planets). These findings could have significant implications for exoplanet studies and the field of astrobiology.

Continue reading “Ocean Worlds With Hydrogen-Rich Atmospheres Could be the Perfect Spots for Life”

We’ll Have to Wait About 3,000 Years for a Reply From Intelligent Civilizations

Artist’s impression of CSIRO’s Australian SKA Pathfinder (ASKAP) radio telescope finding a fast radio burst and determining its precise location. The KECK, VLT and Gemini South optical telescopes joined ASKAP with follow-up observations to image the host galaxy. Credit: CSIRO/Dr Andrew Howells

As a field, the Search for Extraterrestrial Intelligence suffers from some rather significant constraints. Aside from the uncertainty involved (e.g., is there life beyond Earth we can actually communicate with?), there are the limitations imposed by technology and the very nature of space and time. For instance, scientists are forced to contend with the possibility that by the time a message is received by an intelligent species, the civilization that sent it will be long dead.

Harvard astronomers Amir Siraj and Abraham Loeb tackle this very question in a new study that recently appeared online. Taking their cue from the Copernican Principle, which states that humanity and Earth are representative of the norm (and not an outlier), they calculated that if any transmissions from Earth were heard by an extraterrestrial technological civilization (ETC), it would take about 3000 years to get a reply.

Continue reading “We’ll Have to Wait About 3,000 Years for a Reply From Intelligent Civilizations”

There are Probably Many More Earth-Sized Worlds Than Previously Believed

This illustration depicts a planet partially hidden in the glare of its host star and a nearby companion star. After examining a number of binary stars, astronomers have concluded that Earth-sized planets in many two-star systems might be going unnoticed by transit searches, which look for changes in the light from a star when a planet passes in front of it. The light from the second star makes it more difficult to detect the changes in the host star’s light when the planet passes in front of it. Credit: International Gemini Observatory/NOIRLab/NSF/AURA/J. da Silva (Spaceengine)

In the past decade, the discovery of extrasolar planets has accelerated immensely. To date, 4,424 exoplanets have been confirmed in 3,280 star systems, with another 7,453 awaiting confirmation. So far, most of these planets have been gas giants, with about 66% being similar to Jupiter or Neptune, while another 30% have been giant rocky planets (aka. “Super-Earths). Only a small fraction of confirmed exoplanets (less than 4%) have been similar in size to Earth.

However, according to new research by astronomers working at NASA Ames Research Center, it is possible that Earth-sized exoplanets are more common than previously thought. As they indicated in a recent study, there could be twice as many rocky exoplanets in binary systems that are obscured by the glare of their parent stars. These findings could have drastic implications in the search for potentially habitable worlds since roughly half of all stars are binary systems.

Continue reading “There are Probably Many More Earth-Sized Worlds Than Previously Believed”

To Take the Best Direct Images of Exoplanets With Space Telescopes, we’re Going to Want Starshades

Between 2021 and 2024, the James Webb (JWST) and Nancy Grace Roman (RST) space telescopes will be launched to space. As the successors to multiple observatories (like Hubble, Kepler, Spitzer, and others), these missions will carry out some of the most ambitious astronomical surveys ever mounted. This will range from the discovery and characterization of extrasolar planets to investigating the mysteries of Dark Matter and Dark Energy.

In addition to advanced imaging capabilities and high sensitivity, both instruments also carry coronagraphs – instruments that suppress obscuring starlight so exoplanets can be detected and observed directly. According to a selection of papers recently published by the Journal of Astronomical Telescopes, Instruments, and Systems (JATIS), we’re going to need more of these instruments if we truly want to really study exoplanets in detail.

Continue reading “To Take the Best Direct Images of Exoplanets With Space Telescopes, we’re Going to Want Starshades”

Most Exoplanets won’t Receive Enough Radiation to Support an Earth-Like Biosphere

Earth as seen by the JUNO spacecraft in 2013. Credit: NASA/JPL-Caltech/SwRI/MSSS/Kevin M. Gill.

To date, astronomers have confirmed the existence of 4,422 extrasolar planets in 3,280 star systems, with an additional 7,445 candidates awaiting confirmation. Of these, only a small fraction (165) have been terrestrial (aka. rocky) in nature and comparable in size to Earth – i.e., not “Super-Earths.” And even less have been found that are orbiting within their parent star’s circumsolar habitable zone (HZ).

In the coming years, this is likely to change when next-generation instruments (like James Webb) are able to observe smaller planets that orbit closer to their stars (which is where Earth-like planets are more likely to reside). However, according to a new study by researchers from the University of Napoli and the Italian National Institute of Astrophysics (INAF), Earth-like biospheres may be very rare for exoplanets.

Continue reading “Most Exoplanets won’t Receive Enough Radiation to Support an Earth-Like Biosphere”

A New Technique for “Seeing” Exoplanet Surfaces Based on the Content of their Atmospheres

This artist’s impression shows the planet K2-18b, it’s host star and an accompanying planet in this system. K2-18b is now the only super-Earth exoplanet known to host both water and temperatures that could support life. UCL researchers used archive data from 2016 and 2017 captured by the NASA/ESA Hubble Space Telescope and developed open-source algorithms to analyse the starlight filtered through K2-18b’s atmosphere. The results revealed the molecular signature of water vapour, also indicating the presence of hydrogen and helium in the planet’s atmosphere.

In November of 2021, the James Webb Space Telescope (JWST) will make its long-awaited journey to space. This next-generation observatory will observe the cosmos using its advanced infrared suite and reveal many never-before-seen things. By 2024, it will be joined the Nancy Grace Roman Space Telescope (RST), the successor to the Hubble mission that will have 100 times Hubble’s field of view and faster observing time.

These instruments will make huge contributions to many fields of research, not the least of which is the discovery and characterization of extrasolar planets. But even with their advanced optics and capabilities, these missions will not be able to examine the surfaces of exoplanets in any detail. However, a team of the UC Santa Cruz (UCSC) and the Space Science Institute (SSI) have developed the next best thing: a tool for detecting an exoplanet surface without directly seeing it.

Continue reading “A New Technique for “Seeing” Exoplanet Surfaces Based on the Content of their Atmospheres”

If Astronomers see Isoprene in the Atmosphere of an Alien World, There’s a Good Chance There’s Life There

Artists’s impression of the rocky super-Earth HD 85512 b. Credit: ESO/M. Kornmesser

It is no exaggeration to say that the study of extrasolar planets has exploded in recent decades. To date, 4,375 exoplanets have been confirmed in 3,247 systems, with another 5,856 candidates awaiting confirmation. In recent years, exoplanet studies have started to transition from the process of discovery to one of characterization. This process is expected to accelerate once next-generation telescopes become operational.

As a result, astrobiologists are working to create comprehensive lists of potential “biosignatures,” which refers to chemical compounds and processes that are associated with life (oxygen, carbon dioxide, water, etc.) But according to new research by a team from the Massachusetts Institute of Technology (MIT), another potential biosignature we should be on the lookout for is a hydrocarbon called isoprene (C5H8).

Continue reading “If Astronomers see Isoprene in the Atmosphere of an Alien World, There’s a Good Chance There’s Life There”

Gliese 486b is a Hellish World With Temperatures Above 700 Kelvin

Credit and ©: MPIA/RenderArea

In the past two and a half decades, astronomers have confirmed the existence of thousands of exoplanets. In recent years, thanks to improvements in instrumentation and methodology, the process has slowly been shifting from the process of discovery to that of characterization. In particular, astronomers are hoping to obtain spectra from exoplanet atmospheres that would indicate their chemical composition.

This is no easy task since direct imaging is very difficult, and the only other method is to conduct observations during transits. However, astronomers of the CARMENES consortium recently reported the discovery of a hot rocky super-Earth orbiting the nearby red dwarf star. While being extremely hot, this planet has retained part of its original atmosphere, which makes it uniquely suited for observations using next-generation telescopes.

Continue reading “Gliese 486b is a Hellish World With Temperatures Above 700 Kelvin”

How Would Rain be Different on an Alien World?

Artist’s impression of a sunset seen from the surface of an Earth-like exoplanet. Credit: ESO/L. Calçada

On Titan, Saturn’s largest moon, it rains on a regular basis. As with Earth, these rains are the result of liquid evaporating on the surface, condensing in the skies, and falling back to the surface as precipitation. On Earth, this is known as the hydrological (or water) cycle, which is an indispensable part of our climate. In Titan’s case, the same steps are all there, but it is methane that is being exchanged and not water.

In recent years, scientists have found evidence of similar patterns involving exoplanets, with everything from molten metal to lava rain! This raises the question of just how exotic the rains may be on alien worlds. Recently, a team of researchers from Havard University conducted a study where they researched how rain would differ in a diverse array of extrasolar planetary environments.

Continue reading “How Would Rain be Different on an Alien World?”

Just Some of the Planets That TESS Has Found Nearby

Credit: NASA

Ever since NASA’s Kepler Space Telescope was launched in 2009, there has an explosion in the study of the extrasolar planets. With the retirement of Kepler in 2018, it has fallen to missions like the Transiting Exoplanet Survey Satellite (TESS) to pick up where its predecessor left off. Using observations from TESS, an international team of astronomers recently discovered three exoplanets orbiting a young Sun-like star named TOI 451.

Continue reading “Just Some of the Planets That TESS Has Found Nearby”