KENNEDY SPACE CENTER, FL – A SpaceX Falcon 9 rocket and Dragon cargo ship loaded with critical supplies for the International Space Station (ISS) were destroyed by a catastrophic explosion starting approximately 148 seconds after a successful blastoff today, June 28, from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 10:21 a.m. EDT.
“Eastern Range confirms the Falcon 9 and Dragon vehicle broke up,” according to the USAF Eastern Range, 45th Space Wing as the vehicle was in flight and the first stage was firing.
The failure was immediately obvious to all of us watching the launch live on site from the Kennedy Space Center press site when the rocket disappeared into a expanding white cloud that was totally abnormal. See my launch and explosion photos herein.
“At this point, it’s not clear to the launch team exactly what happened,” NASA Launch Commentator George Diller reported on the live NASA TV broadcast.
It was the third launch failure of a cargo delivery run to the space station in the past half year -including both American and Russian rockets.
The Falcon 9 stopped ascending and broke apart and an abnormal vapor streak formed ahead of the rockets planned ascent path to orbit.
Within moments falling debris was visible in eyewitness photos from multiple angles.
“Falcon 9 experienced a problem shortly before first stage shutdown. Will provide more info as soon as we review the data,” tweeted SpaceX CEO Elon Musk soon after the explosion.
The pressurized section of the Dragon was packed with over 4,000 pounds of research experiments, spare parts, gear, high pressure supply gases, food, water and clothing for the astronaut and cosmonaut crews comprising Expeditions 44 and 45 on the ISS.
Details to follow
Watch for Ken’s continuing onsite coverage of the CRS-7 launch from the Kennedy Space Center and Cape Canaveral Air Force Station.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
Learn more about SpaceX, Boeing, Space Taxis, Europa, Rosetta, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:
Jun 28: “SpaceX launch, Orion, Commercial crew, Curiosity explores Mars, Antares and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings
SpaceX Falcon 9 and Dragon are due to blastoff on June 28, 2015 from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 10:21 a.m. EDT on the CRS-7 mission to the International Space Station. Photo of last SpaceX launch to ISS in April 2015. Credit: Ken Kremer/kenkremer.com
Story updated[/caption]
KENNEDY SPACE CENTER, FL – With launch less than a day away for SpaceX’s seventh commercial resupply mission carrying a two ton payload of critical science and cargo for the future buildup of human spaceflight to the International Space Station (ISS) on Sunday, June 28, “everything is looking great” and all systems are GO, Hans Koenigsmann, SpaceX VP of mission assurance announced at a media briefing for reporters at the Kennedy Space Center.
The weather outlook along the Florida Space Coast is fantastic as U.S. Air Force 45th Weather Squadron forecasters are predicting a 90 percent chance of favorable conditions for lift off of the SpaceX Falcon 9 rocket and Dragon spacecraft, slated for 10:21 a.m. EDT, Sunday, June 28, from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.
The Falcon 9 first stage is outfitted with four landing legs and grid fins to enable the landing attempt, which is a secondary objective of SpaceX. Cargo delivery to the station is the overriding primary objective and the entire reason for the CRS-7 mission.
If you are free this weekend and all continues to go well, this could well be your chance to be an eyewitness to a magnificent space launch in sunny Florida – and see a flight that signifies significant progress towards restoring America’s ability to once again launch our astronauts on American rockets from American soil.
NASA Television plans live launch coverage starting at 9 a.m EDT on June 28:
You can watch the launch live on NASA TV here: http://www.nasa.gov/nasatv
SpaceX also plans live launch coverage: www.spacex.com/webcast
The launch window is instantaneous, meaning that the rocket must liftoff at the precisely appointed time. Any delays like on Monday due to weather or technical factors will force a scrub.
The mission is critical for NASA in more ways than one, in addition to the science cargo, the SpaceX Dragon spaceship is loaded with the first of two International Docking Adapters (IDA’s), pictured below, that will be connected to the space station to provide a place for Commercial Crew spacecraft carrying astronauts to dock to the orbiting laboratory as soon as 2017.
The approximately 30 inch thick and ring shaped IDA is loaded in the unpressurized truck section at the rear of the Dragon.
The pressurized section of the Dragon is packed with over 4,000 pounds of research experiments, spare parts, gear, high pressure supply gases, food, water and clothing for the astronaut and cosmonaut crews comprising Expeditions 44 and 45.
These include critical materials for the science and research investigations for the first ever one-year crew to serve aboard the ISS – comprising NASA astronaut Scott Kelly and Russian cosmonaut Mikhail Kornienko.
The science payloads will offer new insight to combustion in microgravity, perform the first space-based observations of meteors entering Earth’s atmosphere, continue solving potential crew health risks and make new strides toward being able to grow food in space, says NASA.
Some three dozen student science experiments are also flying aboard. The cargo also includes the METEOR camera.
Both IDA’s were built by Boeing. They will enable docking by the new space taxis being built by Boeing and Space X – the CST-100 and crew Dragon respectively, to carry our crews to the ISS and end our sole source reliance on the Russian Soyuz capsule.
IDA 1 will be attached to the forward port on the Harmony node, where the space shuttles used to dock.
If Dragon launches on Sunday as planned, it will reach the space station after a two day pursuit on Tuesday, June 30.
NASA’s Scott Kelly of NASA will use the station’s Canadarm2 robotic arm to reach out and capture Dragon at about 7 a.m. He will be assisted by Station commander Gennady Padalka of the Russian Federal Space Agency (Roscosmos) as they operate the 57 foot long arm from the station’s cupola.
NASA TV coverage of rendezvous and grapple of Dragon will begin at 5:30 a.m. on Tuesday. Coverage of Dragon’s installation to the Earth-facing port of the Harmony module will begin at 8:30 a.m.
The ship will remain berthed at the ISS for about five weeks.
Watch for Ken’s continuing onsite coverage of the CRS-7 launch from the Kennedy Space Center and Cape Canaveral Air Force Station.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
Learn more about SpaceX, Boeing, Space Taxis, Europa, Rosetta, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:
Jun 27-28: “SpaceX launch, Orion, Commercial crew, Curiosity explores Mars, Antares and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings
NASA’s Commercial Crew Program (CCP) office gave the first commercial crew rotation mission award to the Boeing Company to launch its CST-100 astronaut crew capsule to the ISS by late 2017, so long as the company satisfactorily meets all of NASA’s human spaceflight certification milestones.
Thus begins the history making new era of commercial human spaceflight.
“This occasion will go in the books of Boeing’s nearly 100 years of aerospace and more than 50 years of space flight history,” said John Elbon, vice president and general manager of Boeing’s Space Exploration division, in a statement.
“We look forward to ushering in a new era in human space exploration.”
Boeing was awarded a $4.2 Billion contract in September 2014 by NASA Administrator Charles Bolden to complete development and manufacture of the CST-100 ‘space taxi’ under the agency’s Commercial Crew Transportation Capability (CCtCap) program and NASA’s Launch America initiative.
“Final development and certification are top priority for NASA and our commercial providers, but having an eye on the future is equally important to the commercial crew and station programs,” said Kathy Lueders, manager of NASA’s Commercial Crew Program.
“Our strategy will result in safe, reliable and cost-effective crew missions.”
The CST-100 will be carried to low Earth orbit atop a manrated United Launch AllianceAtlas V rocket launching from Cape Canaveral Air Force Station, Florida.
Boeing will first conduct a pair of unmanned and manned orbital CST-100 test flights earlier in 2017 in April and July, prior to the operational commercial crew rotation mission to confirm that their capsule is ready and able and met all certification milestone requirements set by NASA.
“Orders under the CCtCap contracts are made two to three years prior to the missions to provide time for each company to manufacture and assemble the launch vehicle and spacecraft. In addition, each company must successfully complete the certification process before NASA will give the final approval for flight,” says NASA.
Boeing got the mission order from NASA because they have “successfully demonstrated to NASA that the Commercial Crew Transportation System has reached design maturity appropriate to proceed to assembly, integration and test activities.”
Boeing recently completed the fourth milestone in the CCtCap phase dubbed the delta integrated critical design review.
Read my earlier exclusive, in depth one-on-one interviews with Chris Ferguson – America’s last shuttle commander and who now leads Boeings CST-100 program; here and here.
The commercial crew program is designed to return human spaceflight launches to the United States and end our sole source reliance on Russia and the Soyuz capsule.
NASA will order a commercial mission from SpaceX sometime later this year. At a later date NASA will decide which company will fly the first commercial crew rotation mission to the ISS.
Both the CST-100 and Crew Dragon will typically carry a crew of four or five NASA or NASA-sponsored crew members, along with some 220 pounds of pressurized cargo. Each will also be capable of carrying up to seven crew members depending on how the capsule is configured.
The spacecraft will be capable to remaining docked at the station for up to 210 days and serve as an emergency lifeboat during that time.
The NASA CCtCAP contracts call for a minimum of two and a maximum potential of six missions from each provider.
The station crew will also be enlarged to seven people that will enable a doubling of research time.
“Commercial Crew launches are critical to the International Space Station Program because it ensures multiple ways of getting crews to orbit,” said Julie Robinson, International Space Station chief scientist.
“It also will give us crew return capability so we can increase the crew to seven, letting us complete a backlog of hands-on critical research that has been building up due to heavy demand for the National Laboratory.”
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
SpaceX Falcon 9 is now certified for USAF launches. SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com
Story updated[/caption]
The U.S. Air Force announced Tuesday that they have certified SpaceX to launch the nations critical and highly valuable national security satellites on the firms Falcon 9 rocket, thereby breaking the decade old launch monopoly held by launch competitor United Launch Alliance (ULA). ULA is a joint venture owned by aerospace giants Boeing and Lockheed Martin.
The Air Force’s goal in approving the SpaceX Falcon 9 booster is aimed at drastically cutting the high cost of access to space by introducing competition in the awarding of military mission launch contacts. The prior contract involved a sole source $11 Billion “block buy” bid for 36 rocket cores from ULA in December 2013 which was legally challenged by SpaceX in April 2014, but eventually settled by SpaceX in an agreement with the USAF earlier this year.
Lieutenant General Samuel Greaves, Commander of the Air Force Space and Missile Systems Center (SMC), announced the long awaited decision on Tuesday, May 26.
The certification milestone came after a grueling two year review process in which the Air Force invested more than $60 million and 150 people to thoroughly review all aspects of the Falcon 9 booster. The review was based on three successful flights by the Falcon 9 v1.1 which first launched in late 2013.
The purpose of certification is to assure that qualified launch providers could meet the challenge of safely, securely and reliably lofting expensive U.S. national security military missions to space and into their intended orbits with full mission capability that are critical for maintaining national defense.
“The SpaceX and SMC teams have worked hard to achieve certification,” said Greaves, Commander of the Air Force Space and Missile Systems Center (SMC) and Air Force Program Executive Officer for Space, in a statement.
“And we’re also maintaining our spaceflight worthiness process supporting the National Security Space missions. Our intent is to promote the viability of multiple EELV-class launch providers as soon as feasible.”
And the competitive launch races “for award of qualified national security space launch missions” between SpaceX and ULA start very soon, within the next month says the USAF.
In June, the Air Force will issue a Request for Proposal (RFP) for GPS III launch services. ULA has three GPS launches in its manifest for 2015.
Of course SpaceX was overjoyed on hearing the certification news.
“This is an important step toward bringing competition to National Security Space launch, said Elon Musk, SpaceX CEO and Lead Designer.
‘We thank the Air Force for its confidence in us and look forward to serving it well.”
Until today, ULA has held a launch monopoly over military missions since the company was founded in 2006. ULA also launches many NASA science missions, but very few commercial satellites.
Thus the U.S. military and NASA provide the core of ULA’s business and the source of much of its income and profits.
“This is a very important milestone for the Air Force and the Department of Defense,” said Secretary of the Air Force Deborah Lee James, in a statement.
“SpaceX’s emergence as a viable commercial launch provider provides the opportunity to compete launch services for the first time in almost a decade. Ultimately, leveraging of the commercial space market drives down cost to the American taxpayer and improves our military’s resiliency.”
Other military spacecraft in the future could involve vehicles such as the X-37B space plane which recently launched on an Atlas V, as well as weather satellites, signals intelligence and missile warning satellites and a range of top secret missions for the National Reconnaissance Office (NRO) that have been routinely launched by ULA with a 100% success rate to date.
ULA’s stable of launchers includes the Atlas V and Delta IV families of vehicles. ULA is phasing out the Delta IV due to its high costs. Only the Delta IV Heavy will remain in service as required to launch the very heaviest satellites that cannot be accommodated by less powerful rockets.
ULA is also replacing the Atlas V with the partly reusable new Vulcan rocket, that will be phased in starting in 2019 using American-made engines from either Blue Origin or Aerojet Rocketdyne.
The Atlas V uses Russian made RD-180 engines, who’s use has become highly contentious since the deadly crisis in Ukraine erupted in 2014.
The ensuing threats of RD-180 engine embargoes and imposition of sanctions and counter sanctions imposed by the US and Russia have thus placed US national security at risk by being dependent on a rocket with foreign made engines whose future supply chain was uncertain.
U.S. Senator John McCain (R-AZ), Chairman of the Senate Armed Services Committee, has been highly critical of the ULA dependence on the Russian RD-180 engines and issued this statement in response to the Air Force announcement.
“The certification of SpaceX as a provider for defense space launch contracts is a win for competition, said McCain.
“Over the last 15 years, as sole-source contracts were awarded, the cost of EELV was quickly becoming unjustifiably high. I am hopeful that this and other new competition will help to bring down launch costs and end our reliance on Russian rocket engines that subsidizes Vladimir Putin and his cronies.”
Overall the Air Force “invested more than $60 million and 150 people in the certification effort which encompassed 125 certification criteria, including more than 2,800 discreet tasks, 3 certification flight demonstrations, verifying 160 payload interface requirements, 21 major subsystem reviews and 700 audits in order to establish the technical baseline from which the Air Force will make future flight worthiness determinations for launch.”
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
Release of SpaceX-6 Dragon on May 21, 2015 from the International Space Station for Pacific Ocean splashdown later in the day. Credit: NASA/Terry Virts Story updated with further details and photos[/caption]
SpaceX Dragons seem to be flying nearly everywhere these days, coming and going at a record pace to the delight and relief of NASA, researchers and the space faring crews serving aboard the International Space Station (ISS). As one Dragon returned to Earth from space today, May 21, another Dragon prepares to soar soon to space.
The commercial SpaceX-6 cargo Dragon successfully splashed down in the Pacific Ocean at 12:42 p.m. EDT (1642 GMT) today, Thursday, about 155 miles southwest of Long Beach, California, some five hours after it was released from the grip of the stations robotic arm this morning at 7:04 a.m. EDT by the Expedition 43 crew as the craft were flying some 250 miles (400 km) above Australia.
The ocean splashdown marked the conclusion to the company’s sixth cargo resupply mission to the ISS under a commercial contract with NASA. Overall this was the seventh trip by a Dragon spacecraft to the station since the inaugural flight in 2012.
Following the launch failure and uncontrolled destructive plummet back to Earth of the Russian Progress 59 cargo freighter earlier this month, the station and its six person international crews are more dependent than ever on the SpaceX commercial supply train to orbit to keep it running and humming with productive science.
Working from a robotics work station in the domed cupola, NASA astronaut Scott Kelly released the Dragon CRS-6 spacecraft from the grappling snares of the 57.7-foot-long (17-meter-long) Canadian-built robotic arm with help from fellow NASA astronaut Terry Virts. Kelly is a member of the first 1 Year ISS mission crew, along with Russian cosmonaut Mikhail Kornienko.
The capsule then performed an intricate series of three departure burns and maneuvers to move beyond the imaginary 656-foot (200-meter) “keep out sphere” around the station and begin its five and a half hour long trip back to Earth.
The station crew had packed Dragon with almost 3,100 pounds of NASA cargo from the International Space Station. The including research samples pertaining to a host of experiments on how spaceflight and microgravity affect the aging process and bone health as well as no longer need items and trash to reduce station clutter.
“Spaceflight-induced health changes, such as decreases in muscle and bone mass, are a major challenge facing our astronauts,” said Julie Robinson, NASA’s chief scientist for the International Space Station Program Office at NASA’s Johnson Space Center in Houston, in a statement.
“We investigate solutions on the station not only to keep astronauts healthy as the agency considers longer space exploration missions but also to help those on Earth who have limited activity as a result of aging or illness.”
The Dragon was retrieved from the ocean by recovery boats following the parachute assisted splashdown. It will be transported to Long Beach, California for removal and return of the NASA cargo. The capsule itself will be shipped to SpaceX’s test facility in McGregor, Texas, for processing to remove cargo and inspection of its performance.
“The returning Space Aging study, for example, examines the effects of spaceflight on the aging of roundworms, widely used as a model for larger organisms,” noted NASA in a statement.
“By growing millimeter-long roundworms on the space station, researchers can observe physiological changes that may affect the rate at which organisms age. This can be applied to changes observed in astronauts, as well, particularly in developing countermeasures before long-duration missions.”
Dragon departed after having spent a record setting stay of 33 days berthed to the station at an Earth facing port on the Harmony node.
Dragon is also the only current US means for sending cargo to the station after the loss of the Orbital Sciences Cygnus craft in the Antares rocket explosion last October.
The SpaceX CRS-6 Dragon successfully blasted off atop a Falcon 9 booster from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT (2010:41 GMT) on the CRS-6 (Commercial Resupply Services-6) mission.
The resupply vessel had arrived three days later on April 17 and was successfully snared by the Expedition 43 Flight Engineer Samantha Cristoforetti of the European Space Agency, the first female Italian astronaut.
Dragon launched on April 14 with more than 4,300 pounds of supplies, science experiments, and technology demonstrations, including critical materials to support about 40 of more than 250 science and research investigations during the station’s Expeditions 43 and 44.
An Espresso machine was also aboard and delivered to enhance station morale during the daily grind some 250 miles above Earth.
Among the research investigations were a fresh batch of 20 rodents for the Rodent Research Habitat, and experiments on osteoporosis to counteract bone deterioration in microgravity, astronaut vision loss, protein crystal growth, and synthetic muscle for prosthetics and robotics.
CRS-6 marks the company’s sixth operational resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the station during a dozen Dragon cargo spacecraft flights through 2016 under NASA’s original Commercial Resupply Services (CRS) contract.
Following the complete success of the SpaceX Dragon CRS-6 mission, NASA just announced that the next SpaceX Dragon is currently slated to launch on June 26 at 11:09 a.m. EDT.
The Dragon will carry critical US equipment enabling docking by the SpaceX Crew Dragon and Boeing CST-100 astronaut transporters.
Read Ken’s earlier onsite coverage of the CRS-6 launch from the Kennedy Space Center and Cape Canaveral Air Force Station.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
Soaring on the power of an octet of SuperDrago engines, SpaceX successfully completed a critical rapid fire life-saving test of their Dragon crew capsules pad abort emergency escape system that would ignite in a split second to save the astronauts lives in the unlikely event of a failure of the Falcon 9 booster rocket at the Cape Canaveral launch pad.
The uncrewed SpaceX Crew Dragon roared swiftly skywards upon ignition of the test vehicle’s integrated SuperDraco engines at 9 a.m EDT this morning, Wednesday, May 6, for the mile high test conducted from the SpaceX Falcon 9 launch pad from a specially built platform at Space Launch Complex 40 (SLC-40) at Cape Canaveral Air Force Station, Florida.
A human-sized crash test dummy was seated inside for the test exercise which ended safely with a parachute assisted Atlantic Ocean splashdown after less than two minutes. There were no astronauts aboard.
The SuperDraco engines fired for approximately six seconds and accelerated the crew Dragon “from 0 to 100 mph in 1.2 seconds. It reached a top speed of about 345 mph,” said SpaceX CEO Elon Musk in a post test briefing.
“This bodes quite well for the future of the program. I don’t want to jinx it, but this is really quite a good indication for the future of Dragon.” said Elon Musk.
“We hope to launch the first crews to the ISS within about two years, plus or minus six months.”
The side mounted escape engines mark a revolutionary change from the traditional top mounted launch escape system used previously in the Mercury, Apollo, Soyuz and Orion human spaceflight capsules. The space shuttle had no escape system beyond ejections seats used on the first four flights.
Dragon was mounted atop the finned trunk section for the test. The entire Dragon/trunk assembly was about 20 feet (5 meters) tall.
The test is a critical milestone towards the timely development of the human rated Dragon that NASA is counting on to restore the US capability to launch astronauts from US soil abroad US rockets to the International Space Station (ISS) as early as 2017.
“This is a critical step toward ensuring crew safety for government and commercial endeavors in low-Earth orbit,” said Kathy Lueders, manager of NASA’s Commercial Crew Program.
“Congratulations to SpaceX on what appears to have been a successful test on the company’s road toward achieving NASA certification of the Crew Dragon spacecraft for missions to and from the International Space Station.”
Here is a video of the Pad Abort Test:
Video caption: Powered by its SuperDraco engines, the uncrewed SpaceX Crew Dragon flies through its paces in the Pad Abort Test from Cape Canaveral Air Force Station in Florida. Credit: NASA
After all the monomethylhydrazine and nitrogen tetroxide hypergolic propellants were consumed, Dragon soared as planned to an altitude of about 1500 meters (.93 mi) above the launch pad. At about T+21 seconds the trunk was jettisoned and the spacecraft began a slow rotation with its heat shield pointed toward the ground again as it arced out eastwards over the ocean.
The drogue chutes and trio of red and white main parachutes deployed as planned for a picturesque Dragon splashdown in the Atlantic Ocean about a mile offshore of its Cape Canaveral launch pad. The capsule was retrieved from the ocean by waiting recovery boats.
Today’s pad abort demonstration tested the ability of the set of eight SuperDraco engines integrated directly into the side walls of the crew Dragon to ignite simultaneously and pull the vehicle away from the launch pad in a split second – in a simulated emergency to save the astronauts lives in the event of a real emergency.
Therefore the Pad Abort Test did not include an actual Falcon 9 booster since it was focused on a checkout of the capsule’s escape capability.
The SuperDraco engines are located in four jet packs built into the capsule around the base. Each engine produces about 15,000 pounds of thrust pounds of axial thrust, for a combined total thrust of about 120,000 pounds in under one second, to propel the astronauts safely away.
The entire test lasted less than two minutes.
The test was webcast live on NASA TV: http://www.nasa.gov/nasatv
The crew Dragon is outfitted with 270 sensors to measure a wide range of vehicle, engine, acceleration and abort test parameters.
The pad abort test was accomplished under SpaceX’s Commercial Crew Integrated Capability (CCiCap) agreement with NASA, that will eventually lead to certification of the Dragon for crewed missions to low Earth orbit and the ISS.
A second Dragon flight test follows later in the year, perhaps in the summer. It will launch from a SpaceX pad at Vandenberg Air Force Base in California and involves simulating an in flight emergency abort scenario during ascent at high altitude at maximum aerodynamic pressure (Max-Q) at about T plus 1 minute, to save astronauts lives.
The pusher abort thrusters would propel the capsule and crew safely away from a failing Falcon 9 booster for a parachute assisted splashdown into the ocean.
“This is what SpaceX was basically founded for, human spaceflight,” said Hans Koenigsmann, vice president of Mission Assurance with SpaceX, at a prelaunch briefing.
“The pad abort is going to show that we’ve developed a revolutionary system for the safety of the astronauts, and this test is going to show how it works. It’s our first big test on the Crew Dragon.”
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
The test flight – called the Pad Abort Test – is slated for the early morning hours of Wednesday, May 6, if all goes well. The key facts and a timeline of the test events are outlined herein.
The test vehicle will reach roughly a mile in altitude (5000 feet, 1500 meters) and last only about 90 seconds in duration from beginning to end.
It constitutes a crucial first test of the crew capsule escape system that will save astronauts lives in a split second in the unlikely event of a catastrophic launch pad failure with the Falcon 9 rocket.
The May 6 pad abort test will be performed from the SpaceX Falcon 9 launch pad from a platform at Space Launch Complex 40 (SLC-40) at Cape Canaveral Air Force Station, Florida. The test will not include an actual Falcon 9 booster.
SpaceX has just released new images showing the Dragon crew capsule and trunk section being moved to the launch pad and being positioned atop the launch mount on SLC-40. See above and below. Together the Dragon assembly stands about 20 feet (5 meters) tall.
A test dummy is seated inside. And SpaceX now says the dummy is not named “Buster” despite an earlier announcement from the company.
“Buster the Dummy already works for a great show you may have heard of called MythBusters. Our dummy prefers to remain anonymous for the time being,” SpaceX said today.
So, only time will tell if that particular mission fact will ever be revealed.
The test window opens at 7 a.m. EDT May 6 and extends until 2:30 p.m. EDT into the afternoon.
The webcast will start about 20 minutes prior to the opening of the window. NASA will also provide periodic updates about the test at their online Commercial Crew Blog.
The current weather forecast predicts a 70% GO for favorable weather conditions during the lengthy test window.
Since the Pad Abort Test is specifically designed to be a development test, in order to learn crucial things about the performance of the escape system, it doesn’t have to be perfect to be valuable.
And delays due to technical issues are a very significant possibility.
“No matter what happens on test day, SpaceX is going to learn a lot,” said Jon Cowart, NASA’s partner manager for SpaceX at a May 1 media briefing at the Kennedy Space Center press site. “One test is worth a thousand good analyses.”
The test is critical for the timely development of the human rated Dragon that NASA is counting on to restore the US capability to launch astronauts from US soil abroad US rockets to the International Space Station (ISS) as early as 2017.
Here’s a graphic illustrating the May 6 SpaceX Pad Abort Test trajectory and sequence of planned events.
The Crew Dragon will accelerate to nearly 100 mph in barely one second. The test will last less than two minutes and the ship will travel over one mile in the first 20 seconds alone.
The pad abort demonstration will test the ability of a set of eight SuperDraco engines built into the side walls of the crew Dragon to pull the vehicle away from the launch pad in a split second in a simulated emergency to save the astronauts lives in the event of a real emergency.
The SuperDraco engines are located in four jet packs around the base. Each engine produces about 15,000 pounds of thrust pounds of axial thrust, for a combined total thrust of about 120,000 pounds, to carry astronauts to safety.
The eight SuperDraco’s will propel Dragon nearly 100 meters (328 ft) in 2 seconds, and more than half a kilometer (1/3 mi) in just over 5 seconds.
SpaceX likens the test to “an ejection seat for a fighter pilot, but instead of ejecting the pilot out of the spacecraft, the entire spacecraft is “ejected” away from the launch vehicle.”
Here’s a timeline of events from SpaceX:
T-0: The eight SuperDracos ignite simultaneously and reach maximum thrust, propelling the spacecraft off the pad.
T+.5s: After half a second of vertical flight, Crew Dragon pitches toward the ocean and continues its controlled burn. The SuperDraco engines throttle to control the trajectory based on real-time measurements from the vehicle’s sensors.
T+5s: The abort burn is terminated once all propellant is consumed and Dragon coasts for just over 15 seconds to its highest point about 1500 meters (.93 mi) above the launch pad.
T+21s: The trunk is jettisoned and the spacecraft begins a slow rotation with its heat shield pointed toward the ground again.
T+25s: Small parachutes, called drogues, are deployed first during a 4-6 second window following trunk separation.
T+35s: Once the drogue parachutes stabilize the vehicle, three main parachutes deploy and further slow the spacecraft before splashdown.
T+107s: Dragon splashes down in the Atlantic Ocean about 2200 meters (1.4 mi) downrange of the launch pad.
“This is what SpaceX was basically founded for, human spaceflight,” said Hans Koenigsmann, vice president of Mission Assurance with SpaceX.
“The pad abort is going to show that we’ve developed a revolutionary system for the safety of the astronauts, and this test is going to show how it works. It’s our first big test on the Crew Dragon.”
The pusher abort thrusters would propel the capsule and crew safely away from a failing Falcon 9 booster for a parachute assisted splashdown into the Ocean.
Koenigsmann notes that the SpaceX abort system provides for emergency escape all the way to orbit, unlike any prior escape system such as the conventional launch abort systems (LAS) mounted on top of the capsule.
The next Falcon 9 launch is slated for mid-June carrying the CRS-7 Dragon cargo ship on a resupply mission for NASA to the ISS. On April 14, a flawless Falcon 9 launch boosted the SpaceX CRS-6 Dragon to the ISS.
There was no attempt to soft land the Falcon 9 first stage during the most recent launch on April 27. Due to the heavy weight of the TurkmenÄlem52E/MonacoSat satellite there was not enough residual fuel for a landing attempt on SpaceX’s ocean going barge.
The next landing attempt is set for the CRS-7 mission.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
SpaceX and NASA are just days away from a crucial test of a crew capsule escape system that will save astronauts lives in the unlikely event of a launch failure with the Falcon 9 rocket.
Buster the Dummy is already strapped into his seat aboard the SpaceX Crew Dragon test vehicle for what is called the Pad Abort Test, that is currently slated for Wednesday, May 6.
The test is critical for the timely development of the human rated Dragon that NASA is counting on to restore the US capability to launch astronauts from US soil abroad US rockets to the International Space Station (ISS) as early as 2017.
Boeing was also selected by NASA to build the CST-100 spaceship to provide a second, independent crew space taxi capability to the ISS during 2017.
The May 6 pad abort test will be performed from the SpaceX Falcon 9 launch pad from a platform at Space Launch Complex 40 (SLC-40) at Cape Canaveral Air Force Station, Florida. The test will not include an actual Falcon 9 booster.
The SpaceX Dragon and trunk together stand about 20 feet tall and are positioned atop the launch mount at SLC-40 for what is clearly labeled as a development test to learn how the Dragon, engines and abort system perform.
Buster will soar along inside the Dragon that will be rapidly propelled to nearly a mile high height solely under the power of eight SpaceX SuperDraco engines.
The trunk will then separate, parachutes will be deployed and the capsule will splashdown about a mile offshore from Florida in the Atlantic Ocean, said Hans Koenigsmann, vice president of Mission Assurance at SpaceX during a May 1, 2015 press briefing on the pad abort test at the Kennedy Space Center, Florida.
The entire test will take about a minute and a half and recovery teams will retrieve Dragon from the ocean and bring it back on shore for detailed analysis.
The test will be broadcast live on NASA TV. The test window opens at 7 a.m. EDT May 6 and extends until 2:30 p.m. EDT. The webcast will start about 20 minutes prior to the opening of the window. NASA will also provide periodic updates about the test at their online Commercial Crew Blog.
The test is designed to simulate an emergency escape abort scenario from the test stand at the launch pad in the unlikely case of booster failing at liftoff or other scenario that would threaten astronauts inside the spacecraft.
The pad abort demonstration will test the ability of a set of eight SuperDraco engines built into the side walls of the crew Dragon to pull the vehicle away from the launch pad in a split second in a simulated emergency to save the astronauts lives in the event of a real emergency.
The SuperDraco engines are located in four jet packs around the base. Each engine produces about 15,000 pounds of thrust pounds of axial thrust, for a combined total thrust of about 120,000 pounds, to carry astronauts to safety, according to Koenigsmann.
“This is what SpaceX was basically founded for, human spaceflight,” said Hans Koenigsmann, vice president of Mission Assurance with SpaceX.
“The pad abort is going to show that we’ve developed a revolutionary system for the safety of the astronauts, and this test is going to show how it works. It’s our first big test on the Crew Dragon.”
SpaceX and NASA hope to refurbish and reuse the same Dragon capsule for another abort test at high altitude later this year. The timing of the in flight abort test hinges on the outcome of the pad abort test.
“No matter what happens on test day, SpaceX is going to learn a lot,” said Jon Cowart, NASA’s partner manager for SpaceX. “One test is worth a thousand good analyses.”
Beside Buster the dummy, who is human-sized, the Dragon is outfitted with 270 sensors to measure a wide range of vehicle, engine, acceleration and abort test parameters.
“There’s a lot of instrumentation on this flight – a lot,” Koenigsmann said. “Temperature sensors on the outside, acoustic sensors, microphones. This is basically a flying instrumentation deck. At the end of the day, that’s the point of tests, to get lots of data.”
Buster will be accelerated to a force of about 4 to 4½ times the force of Earth’s gravity, noted Koenigsmann.
The pad abort test is being done under SpaceX’s Commercial Crew Integrated Capability (CCiCap) agreement with NASA that will eventually lead to certification of the Dragon for crewed missions to low Earth orbit and the ISS.
“The point is to gather data – you don’t have to have a flawless test to be successful,” Cowart said.
The second Dragon flight test follows later in the year, perhaps in the summer. It will launch from a SpaceX pad at Vandenberg Air Force Base in California and involves simulating an in flight emergency abort scenario during ascent at high altitude at maximum aerodynamic pressure (Max-Q) at about T plus 1 minute, to save astronauts lives.
The pusher abort thrusters would propel the capsule and crew safely away from a failing Falcon 9 booster for a parachute assisted splashdown into the Ocean.
Koenigsmann notes that the SpaceX abort system provides for emergency escape all the way to orbit, unlike any prior escape system such as the conventional launch abort systems (LAS) mounted on top of the capsule.
“Whatever happens to Falcon 9, you will be able to pull out the astronauts and land them safely on this crew Dragon,” said Koenigsmann. “In my opinion, this will make it the safest vehicle that you can possibly fly.”
The SpaceX Dragon V2 and Boeing CST-100 vehicles were selected by NASA last fall for further funding under the auspices of the agency’s Commercial Crew Program (CCP), as the worlds privately developed spaceships to ferry astronauts back and forth to the International Space Station (ISS).
Both SpaceX and Boeing plan to launch the first manned test flights to the ISS with their respective transports in 2017.
During the Sept. 16, 2014 news briefing at the Kennedy Space Center, NASA Administrator Charles Bolden announced that contracts worth a total of $6.8 Billion were awarded to SpaceX to build the manned Dragon V2 and to Boeing to build the manned CST-100.
The next Falcon 9 launch is slated for mid-June carrying the CRS-7 Dragon cargo ship on a resupply mission for NASA to the ISS. On April 14, a flawless Falcon 9 launch boosted the SpaceX CRS-6 Dragon to the ISS.
There was no attempt to soft land the Falcon 9 first stage during the most recent launch on April 27. Due to the heavy weight of the TurkmenÄlem52E/MonacoSat satellite there was not enough residual fuel for a landing attempt on SpaceX’s ocean going barge.
The next landing attempt is set for the CRS-7 mission.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
SpaceX set a new internal record pace for time between blastoffs of their workhorse Falcon 9 rocket with Monday’s spectacular dusky liftoff of Turkmenistan’s first satellite into heavily overcast skies that has cleared the path ahead for a busy manifest of critical flights starting with a critical pad abort test for NASA just a week from today.
After a 49 minute delay due to grim weather conditions, weather officials finally found a “window in the clouds” that permitted the Falcon 9 to launch on Monday, April 27, 2015 at 7:03pm EDT (2303 GMT).
The launch took place just 13 days after successfully launching the SpaceX Dragon CRS-6 resupply freighter to the International Space Station (ISS) for NASA on April 14.
Overall this launch marked Falcon 9’s fifth launch in four months and second in 13 days, besting SpaceX’s previous turnaround record by one day.
But it was touch and go all afternoon, when two weather rules related to cloudy conditions violated the launch commit criteria and forced a no go from the originally planned 6:14 liftoff time.
The situation was not at all promising when the weather officer announced “NO GO” during the prelaunch poll that resulted in a recycle to the T minus 20 minute mark with seemingly little prospect of a launch. Then all of a sudden, conditions improved and the count was resumed and “wet off without a hitch” said SpaceX.
The 224 foot tall SpaceX Falcon 9 launched on a commercial mission for Thales Alenia Space carrying the first ever communications satellite for the nation of Turkmenistan.
The TurkmenÄlem52E/MonacoSat satellite was built by Thales Alenia Space.
The 14 story Falcon 9 first stage is powered by 9 Merlin 1D engines that generate about 1.3 million pounds of thrust.
The Falcon 9’s first and second stages separated three minutes after launch. The second stage fired for six minutes for its first burn to reach the initial parking orbit. It then reignited twenty-six minutes into flight, to completed a one-minute burn.
The launch delivered the 10,375-pound (4500 kg) TurkmenÄlem52E/MonacoSat satellite to a geosynchronous transfer orbit. The satellite was deployed as planned approximately 32 minutes after liftoff.
Launches are never easy, as exemplified by a post launch tweet from SpaceX CEO Elon Musk after the satellite was deployed from the second stage.
‘Rocket launch good, satellite in geo transfer orbit. Still so damn intense. Looking fwd to it feeling normal one day,” tweeted Musk.
Despite the launch of Turkmenistan’s first communications satellite, the country is conducting a war on satellite dishes to receive the signals according to Human Rights Watch.
“Authorities in Turkmenistan are forcing residents to dismantle privately owned satellite dishes,” Human Rights Watch said in a statement on April 24. “A move that unjustifiably interferes with the right to receive and impart information and ideas, this serves to further isolate people in Turkmenistan, one of the most closed and repressive countries in the world, from independent sources of news and information.”
Just 1 week from today on May 5, SpaceX plans a pad abort test for NASA that is critical for the timely development of the human rated Dragon that NASA is counting on to restore the US capability to launch astronauts from US soil to the space station.
The next Falcon 9 launch is slated for mid-June carrying the CRS-7 Dragon cargo ship on a NASA mission to the ISS.
There was no attempt to soft land the Falcon 9 first stage during the April 27 launch. Due to the heavy weight of the TurkmenÄlem52E/MonacoSat satellite there was not enough residual fuel for a landing attempt on SpaceX’s ocean going barge.
The next landing attempt is set for the CRS-7 mission.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
KENNEDY SPACE CENTER, FL – Following the flawless blastoff of the SpaceX Falcon 9 booster and Dragon cargo ship on Tuesday, April 14, the resupply vessel arrived at the International Space Station today, April 17, and was successful snared by the outposts resident ‘Star Trek’ crewmate, Expedition 43 Flight Engineer Samantha Cristoforetti of the European Space Agency, donning her futuristic outfit from the famed TV show near and dear to space fans throughout the known galaxy!
Cristoforetti grappled the SpaceX Dragon freighter with the station’s robotic arm at 6:55 a.m. EDT, with the able assistance of fellow crewmate and Expedition 43 Commander Terry Virts of NASA.
Dragon is hauling critical supplies to the six astronauts and cosmonauts serving aboard, that now includes the first ever ‘One-Year Mission’ crew comprising NASA’s Scott Kelly and Russia’s Mikhail Kornienko.
Cristoforetti and Virts were manipulating the 57.7-foot-long (17-meter-long) Canadian-built robotic arm while working inside the stations seven windowed domed Cupola, that reminds many of Darth Vader’s lair in ‘Star Wars’ lore.
The SpaceX Dragon blasted off atop a Falcon 9 booster from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT (2010:41 GMT) on the CRS-6 (Commercial Resupply Services-6) mission bound for the space station.
The Dragon cargo spacecraft was berthed to the Earth facing port of Harmony module of the International Space Station at 9:29 a.m. EDT.
The entire multihour grappling and berthing operations were carried live on NASA TV, for much of the morning and everything went smoothly.
The crew plans to open the hatch between Dragon and the station on Saturday.
Overall CRS-6 is the sixth SpaceX commercial resupply services mission and the seventh trip by a Dragon spacecraft to the station since 2012.
Dragon is loaded with more than 4,300 pounds of supplies, science experiments, and technology demonstrations, including critical materials to support about 40 of more than 250 science and research investigations during the station’s Expeditions 43 and 44.
Among the research investigations are a fresh batch of 20 rodents for the Rodent Research Habitat, and experiments on osteoporosis to counteract bone deterioration in microgravity, astronaut vision loss, protein crystal growth, and synthetic muscle for prosthetics and robotics.
An Espresso machine is also aboard to enhance station morale during the daily grind some 250 miles above Earth.
Following the April 14 launch, SpaceX made a nearly successful soft landing of the first stage on an ocean floating platform in the Atlantic Ocean. Read my story – here.
Read Ken’s earlier onsite coverage of the CRS-6 launch from the Kennedy Space Center and Cape Canaveral Air Force Station.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
Learn more about SpaceX, Mars rovers, Orion, Antares, MMS, NASA missions and more at Ken’s upcoming outreach events:
Apr 18/19: “Curiosity explores Mars” and “NASA Human Spaceflight programs” – NEAF (NorthEast Astronomy Forum), 9 AM to 5 PM, Suffern, NY, Rockland Community College and Rockland Astronomy Club