Musk Says Maiden Falcon Heavy to Launch in November, Acknowledges High Risk and Releases New Animation

SpaceX Falcon Heavy rocket poised for launch from the Kennedy Space Center in Florida in this artists concept. Credit: SpaceX
SpaceX Falcon Heavy rocket poised for launch from the Kennedy Space Center in Florida in this artists concept. Credit: SpaceX

Before the year is out, the long awaited debut launch of the triple barreled Falcon Heavy rocket may at last be in sight says SpaceX CEO and founder Elon Musk, as he forthrightly acknowledges it comes with high risk and released a stunning launch and landing animation earlier today, Aug. 4.

After years of painstaking development and delays, the inaugural blastoff of the SpaceX Falcon Heavy is currently slated for November 2017 from NASA’s Kennedy Space Center in Florida, according to Musk.

“Falcon Heavy maiden launch this November,” SpaceX CEO and billionaire founder Elon Musk tweeted last week.

“Lot that can go wrong in the November launch …,” Musk said today on Instagram, downplaying the chances of complete success.

And to whet the appetites of space enthusiasts worldwide, just today Musk also published a one minute long draft animation illustrating the Falcon Heavy triple booster launch and how the individual landings of the trio of first stage booster cores will take place – nearly simultaneously.

https://www.instagram.com/p/BXXiVWFgphb/

Video Caption: SpaceX Falcon Heavy launch from KSC pad 39A pad and first stage booster landings. Credit: SpaceX

“Side booster rockets return to Cape Canaveral,” explains Musk on twitter. “Center lands on droneship.”

The two side boosters will be recycled from prior Falcon 9 launches and make precision guided propulsive, upright ground soft landings back at Cape Canaveral Air Force Station, Florida. Each booster is outfitted with a quartet of grid fins and landing legs. The center core is newly built and heavily modified.

“Sides run high thrust, center is lower thrust until sides separate & fly back. Center then throttles up, keeps burning & lands on droneship. If we’re lucky!” Musk elaborated.

The center booster will touch down on an ocean going droneship prepositioned in the Atlantic Ocean some 400 miles (600 km) off of Florida’s east coast.

To date SpaceX first stages from KSC launches have touched down either on land at Landing Zone-1 (LZ-1) at the Cape or at sea on the “Of Course I Still Love You” droneship barge (OCISLY).

The launch of the extremely complicated Falcon Heavy booster with 27 first stage Merlin 1D engines also comes associated with a huge risk – and he hopes that it at least rises far enough off the ground to minimize the chances of damage to the historic pad 39A at the Kennedy Space Center.

“There’s a lot of risk associated with Falcon Heavy, a real good chance that that vehicle does not make it to orbit,” Musk said recently while speaking at the International Space Station Research and Development Conference in Washington, D.C. on July 19.

“I want to make sure to set expectations accordingly. I hope it makes it far enough beyond the pad so that it does not cause pad damage. I would consider even that a win, to be honest.”

Musk originally proposed the Falcon Heavy in 2011 and targeted a maiden mission in 2013.

Whenever it does launch, the Falcon Heavy will become the world’s most powerful rocket.

“I think Falcon Heavy is going to be a great vehicle,” Musk stated. “There’s just so much that’s really impossible to test on the ground, and we’ll do our best.

“Falcon Heavy requires the simultaneous ignition of 27 orbit-class engines. There’s a lot that can go wrong there.”

Designing and building Falcon Heavy has proven to be far more difficult than Musk ever imagined, and the center booster had to be significantly redesigned.

“It actually ended up being way harder to do Falcon Heavy than we thought,” Musk explained.

“At first it sounds real easy! You just stick two first stages on as strap-on boosters. How hard can that be?” But then everything changes. All the loads change, aerodynamics totally change. You’ve tripled the vibration and acoustics. You sort of break the qualification levels on so much of the hardware.”

“The amount of load you’re putting through that center core is crazy because you’ve got two super-powerful boosters also shoving that center core. So we had to redesign the whole center core airframe,” Musk added. “It’s not like the Falcon 9 – because it’s got to take so much load. Then you’ve got separation systems.”

Due to the high risk, there will be no payload from a paying customer housed inside the nose cone atop the center core. Only a dummy payload will be installed on the maiden mission.

However future Falcon Heavy missions have been manifested with commercial and science payloads.

Musk also hopes to launch a pair of paying private astronauts on a trip around the Moon and back as soon as 2018 while journeying inside a Crew Dragon spacecraft with the Falcon Heavy – similar to what his company is developing for NASA for commercial ferry missions to low Earth orbit (LEO) and the International Space Station (ISS).

Falcon Heavy will blast off with about twice the thrust of the Delta IV Heavy, currently the worlds most powerful rocket. The United Launch Alliance (ULA) Delta IV Heavy (D4H) has been the world’s mightiest rocket since the retirement of NASA’s Space Shuttles in 2011.

The Falcon Heavy sports about 2/3 the liftoff thrust of NASA’s Saturn V manned moon landing rockets – last launched in the 1970s.

SpaceX Falcon 9 blasts off with Intelsat 35e – 4th next gen ‘Epic’ TV and mobile broadband comsat for Intelsat – on July 5, 2017 at 7:38 p.m. EDT from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

The Falcon Heavy is comprised of three Falcon 9 cores. The Delta IV Heavy is comprised of three Delta Common Core Boosters.

The combined trio of Falcon 9 cores will generate about 5.1 million pounds of liftoff thrust upon ignition from Launch Complex 39A at the Kennedy Space Center in Florida.

“With the ability to lift into orbit over 54 metric tons (119,000 lb)–a mass equivalent to a 737 jetliner loaded with passengers, crew, luggage and fuel–Falcon Heavy can lift more than twice the payload of the next closest operational vehicle, the Delta IV Heavy, at one-third the cost,” according to the SpaceX website.

“The nice thing is when you fully optimize it, it’s about two-and-a-half times the payload capability of a Falcon 9,” Musk notes. “It’s well over 100,000 pounds to LEO of payload capability, 50 tons. It can even get up a little higher than that if optimized.”

ULA Delta 4 Heavy rocket delivers NROL-37 spy satellite to orbit on June 11, 2016 from Space Launch Complex-37 on Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

The two stage Falcon Heavy stands more than 229.6 feet (70 meters) tall and is 39.9 feet wide (12.2 meters).

It weighs more than 3.1 million pounds (1.4 million kilograms).

Like the Falcon 9 it will be fueled with liquid oxygen and RP-1 kerosene propellants.

The thunder, power and roar of over 5 million pounds of liftoff thrust from the Falcon Heavy’s 27 engines is absolutely certain to be a thrilling, earth-shaking space spectacular !! Thus placing it in a class of its own unlike any US launch since NASA’s Saturn V and Space Shuttles rocketed to the high frontier from the same pad.

“I encourage people to come down to the Cape to see the first Falcon Heavy mission,” Musk said. “It’s guaranteed to be exciting.”

But before the Falcon Heavy can actually be rolled up to launch position at pad 39A, SpaceX must first complete repairs and refurbishment to nearby pad 40.

That Cape pad was heavily damaged nearly a year ago during a catastrophic launch pad explosion that took place in Sept. 2016 during a routine prelaunch fueling and static fire engine test of a Falcon 9 rocket with the Amos-6 commercial comsat payload bolted on top.

Pad 40 must achieve operational launch status again before SpaceX can commit to the Falcon Heavy launches at Pad 39A. Workers will also need to finish construction work at pad 39A to support the Heavy launches.

SpaceX Falcon 9 booster deploys quartet of landing legs moments before precision propulsive ground touchdown at Landing Zone 1 on Canaveral Air Force Station barely nine minutes after liftoff from Launch Complex 39A on 3 June 2017 from the Kennedy Space Center in Florida on the Dragon CRS-11 resupply mission to the International Space Station for NASA. Credit: Ken Kremer/Kenkremer.com

To date SpaceX has successfully demonstrated the recovery of thirteen boosters by land and sea.

Furthermore SpaceX engineers have advanced to the next step and successfully recycled, reflown and relaunched two ‘flight-proven first stages this year in March and June of 2017 from the Kennedy Space Center in Florida involving the SES-10 and BulgariaSat-1 launches respectively.

SpaceX CEO and Chief Designer Elon Musk and SES CTO Martin Halliwell exuberantly shake hands of congratulation following the successful delivery of SES-10 TV comsat to orbit using the first reflown and flight proven booster in world history at the March 30, 2017 post launch media briefing at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

The next SpaceX Falcon 9 launch is slated for Aug. 13 on the NASA contracted CRS-12 resupply mission to the ISS.

Watch for Ken’s onsite space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

SpaceX Falcon 9 Booster leaning atop OCISLY droneship upon which it landed after 23 June launch from KSC floats into Port Canaveral, FL, on 29 June 2017, hauled by tugboat as seen from Jetty Park Pier. Credit: Ken Kremer/kenkremer.com
Blastoff of 2nd flight-proven SpaceX Falcon 9 with 1st geostationary communications for Bulgaria at 3:10 p.m. EDT on June 23, 2017, carrying BulgariaSat-1 to orbit from Launch Complex 39A at NASA’s Kennedy Space Center in Florida- as seen from the crawlerway. Credit: Ken Kremer/kenkremer.com

SpaceX Dragon Returns Science Cargo to Earth, Falcon 9 Delivers Massive ‘Epic’ Intelsat Comsat to Orbit – Photo/Video Galley

SpaceX Falcon 9 blasts off with Intelsat 35e - 4th next gen ‘Epic’ TV and mobile broadband comsat for Intelsat - on July 5, 2017 at 7:38 p.m. EDT from Launch Complex 39A at NASA's Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 blasts off with Intelsat 35e – 4th next gen ‘Epic’ TV and mobile broadband comsat for Intelsat – on July 5, 2017 at 7:38 p.m. EDT from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – July has begun with SpaceX maintaining a blistering pace of blasting rockets and spaceships flying to space and returning to Earth for a host of multipronged missions furthering NASA science both on the International Space Station (ISS) and beyond, commercial space endeavors in the US and overseas and fulfilling billionaire founder Elon Musk’s dreams of creating reusable rocketry to slash launch costs and advance humanity’s push to the stars.

On July 2, SpaceX conducted the first launch attempt of the Intelsat 35e telecomsat that ultimately culminated with a spectacularly successful launch on the third try on July 5 at dusk that lit up the Florida Space Coast skies.

A Falcon 9 roared off SpaceX’s seaside launch pad 39A at NASA’s Kennedy Space Center in Florida precisely on time at 7:38 p.m. EDT, or 2338 UTC July 5 carrying the massive Intelsat 35e communications satellite for commercial high speed broadband provider Intelsat.

SpaceX Falcon 9 launch of with ‘Epic’ comsat for Intelsat at 7:38 p.m. EDT on July 5, 2017 from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Julian Leek

Check out the expanding gallery of eyepopping photos and videos from several space journalist colleagues and friends and myself – for views you won’t see elsewhere.

Click back as the gallery grows !

SpaceX Falcon 9 streaks to geostationary orbit after blast off with advanced Intelsat 35e ‘Epic’ TV and mobile broadband comsat for Intelsat – on July 5, 2017 at 7:38 p.m. EDT from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

On July 3, the first reflown SpaceX Dragon cargo freighter returned to Earth with a splashdown in the Pacific Ocean after a month-long stay at the International Space Station.

SpaceX contracted ships recovered Dragon from the ocean and hauled it onto deck for return to Port and handover of the science experiments to NASA and teams of research investigators.

SpaceX Dragon returned to Earth July 3, 2017 with a splashdown in the Pacific Ocean after a month-long stay at the International Space Station, completing the first re-flight mission of a commercial spacecraft to and from the orbiting laboratory. Credit: SpaceX

The Dragon CRS-11 spacecraft completed the first re-flight mission of a commercial spacecraft to and from the orbiting laboratory.

The gumdrop shaped Dragon spacecrft brought back more than 4,100 pounds of cargo and research samples gathered by members of the stations multinational crews.

Meanwhile, the doubly ‘flight-proven’ SpaceX Falcon 9 booster from the BulgariaSat-1 launch that propulsoively soft landed upright and intact on the sea going OCISLY drone ship hundreds of mile (km) offshore in the Atlantic Ocean sailed back into Port Canaveral.

After berthing in port, technicians removed its quartet of landing legs and lowered it horizontally for transport back to KSC for refurbishment operations.

SpaceX Falcon 9 booster from BulgariaSat-1 craned from OCISLY droneship to ground based platform on Port Canaveral, FL. Credit: Ken Kremer/kenkremer.com

Watch these launch videos:

Video Caption: Falcon 9 launch of the fourth Intelsat EpicNG high throughput satellite built by Boeing on July 5, 2017 from pad 39A at NASA’s Kennedy Space Center in Florida. Credit: Jeff Seibert

Video Caption: Time lapse of SpaceX launch of the Intelsat 35e satellite on a legless Falcon 9 rocket from Pad 39A on July 5, 2017 at NASA’s Kennedy Space Center in Florida. Credit: Jeff Seibert

The first stage was not recovered for this launch because the massive 6800 kg (13000 lb) Intelsat 35e comsat requires every drop of fuel to get to the desired orbit.

SpaceX Falcon 9 accelerates downrange to Africa and beyond streaking to geostationary orbit after liftoff blast off carrying massive Intelsat 35e ‘Epic’ TV and mobile broadband comsat for Intelsat – on July 5, 2017 at 7:38 p.m. EDT from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

Intelsat 35e marks the tenth SpaceX launch of 2017 – establishing a new single year launch record for SpaceX.

The recent BulgariaSat-1 and Iridium-2 missions counted as the eighth and ninth SpaceX launches of 2017.

Including those last two ocean platform landings, SpaceX has now successfully recovered 13 boosters; 5 by land and 8 by sea, over the past 18 months.

Watch for Ken’s onsite Intelsat 35e and space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

SpaceX Falcon 9 blasts off with Intelsat 35e – 4th next gen ‘Epic’ TV and mobile broadband comsat for Intelsat – on July 5, 2017 at 7:38 p.m. EDT from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 blasts off with Intelsat 35e – 4th next gen ‘Epic’ comsat for Intelsat – on July 5, 2017 at 7:37 p.m. EDT from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com
Credit: Ken Kremer/kenkremer.com
Launch of expendable SpaceX Falcon 9 with 4th next gen ‘Epic’ DTH comsat for Intelsat at 7:37 p.m. EDT on July 5, 2017 from Launch Complex 39A at NASA’s Kennedy Space Center in Florida – as seen from the countdown clock. Credit: Ken Kremer/kenkremer.com
Expendable SpaceX Falcon 9 is seen rising to launch position in this up close view of payload fairing encapsulating Intelsat 35e comsat and is now erected to launch position and poised for liftoff on July 5, 2017 at Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

SpaceX Falcon 9 Dazzles Delivering ‘Epic’ Intelsat DTH TV Comsat to Orbit for America’s

SpaceX Falcon 9 blasts off with Intelsat 35e - 4th next gen ‘Epic’ comsat for Intelsat - on July 5, 2017 at 7:37 p.m. EDT from Launch Complex 39A at NASA's Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 blasts off with Intelsat 35e – 4th next gen ‘Epic’ comsat for Intelsat – on July 5, 2017 at 7:37 p.m. EDT from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – The third time proved to be the charm as SpaceX kept up a torrid 2017 launch pace and successfully ignited another Falcon 9 rocket late Wednesday, July 5, from the Florida Space Coast and delivered a powerful and heavy weight commercial TV satellite to orbit that will serve “tens of millions of customers globally,” Intelsat VP for Sales Kurt Riegel, told Universe Today at NASA’s Kennedy Space Center press site.

The SpaceX Falcon 9 put on a dazzling near dusk display as it roared off historic launch pad 39A on SpaceX’s tenth launch of 2017 Wednesday evening into brilliant blue skies with scarcely a cloud to be seen and delightfully summer weather conditions.

Blastoff of the Falcon 9 carrying the Intelsat 35e communications satellite for commercial high speed broadband provider Intelsat occurred right on time at dinnertime July 5 at 7:38 p.m. EDT, or 2338 UTC from SpaceX’s seaside Launch Complex 39A on NASA’s Kennedy Space Center in Florida.

The thunderous blastoff wowed hordes of spectators gathered along space coast beaches and causeways and local residential neighborhoods from came across the globe to witness and the launch spectacle and many of whom will be users of and benefit from the services offered by Intelsat 35e.

“Tens of millions of customers will be served and be touched by Intelsat 35e,” Intelsat VP for Sales & Marketing Kurt Riegel, told Universe Today in an exclusive interview beside the iconic countdown clock at NASA’s Kennedy Space Center Florida press site.

Launch of expendable SpaceX Falcon 9 with 4th next gen ‘Epic’ DTH comsat for Intelsat at 7:37 p.m. EDT on July 5, 2017 from Launch Complex 39A at NASA’s Kennedy Space Center in Florida – as seen from the countdown clock. Credit: Ken Kremer/kenkremer.com

Wednesday’s liftoff finally took place safely after back to back last moment scrubs on Sunday and Monday (July 2/3) kept Falcon 9 from igniting its engine for the delayed journey to orbit.

Elon Musk told the SpaceX launch and engineering team to stand down over the 4th of July holiday and instead thoroughly investigate the root cause of the pait of launch aborts.

The near scrubs resulted from insidious anomaly not detected after the initial launch abort on Sunday, July 2.

SpaceX Falcon 9 launch of with ‘Epic’ comsat for Intelsat at 7:38 p.m. EDT on July 5, 2017 from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Julian Leek

Intelsat 35e will be utilized by copious public, government and commercial clients throughout the Americas, Europe and Africa.

The 23 story tall Falcon 9 lofted Intelsat’s commercial Epic 35e next-generation high throughput satellite to geostationary transfer orbit.

It separated from the Falcon 9 upper stage as planned about a half hour after liftoff.

“The Intelsat 35e satellite separated from the rocket’s upper stage 32 minutes after launch, at 8:10 pm EDT, and signal acquisition has been confirmed,” Intelsat announced post launch..

“This was the SpaceX’s first satellite launch contracted by Intelsat,” Ken Lee, Intelsat’s senior vice president of space systems, told Universe Today in a prelaunch interview on Sunday.

“Intelsat 35e is the fourth in the series of our ‘Epic’ satellites. It will provide the most advanced digital services ever and a global footprint.”

SpaceX Falcon 9 blasts off with Intelsat 35e – 4th next gen ‘Epic’ TV and mobile broadband comsat for Intelsat – on July 5, 2017 at 7:38 p.m. EDT from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

SpaceX has now safely and successfully demonstrated an amazing launch pace with 3 rockets propelled aloft in the span of just 12 days from both US coasts. Had Intelsat 35e been launched on Sunday, July 3, it would have established and even faster record pace of 3 launches in just 9 days.

“The successful launch of Intelsat 35e is a major milestone in our business plan for 2017, furthering the footprint and resilience of our Intelsat EpicNG infrastructure,” said Stephen Spengler, Chief Executive Officer, Intelsat, in a statement.

“With each Intelsat EpicNG launch, we advance our vision of creating a global, high performance for our customers that will unlock new growth opportunities in applications including mobility, wireless infrastructure and private data networks. As we further our innovations with respect to ground infrastructure and managed service offerings, like IntelsatOne Flex, we are transforming the role of satellite in the telecommunications landscape.”

Launch of expendable SpaceX Falcon 9 with 4th next gen ‘Epic’ DTH comsat for Intelsat at 7:38 p.m. EDT on July 5, 2017 from Launch Complex 39A at NASA’s Kennedy Space Center in Florida – as seen from the KSC press site. Credit: Ken Kremer/kenkremer.com

The geostationary comsat will provide high performance services in the C- And Ku-bands to customers in North and South America, the Caribbean, as well as the continents of Europe and Africa.

The Ku band service includes a customized high power beam for direct-to-home television (DTH) and data communications services in the Caribbean as well as mobility services in Europe and Africa

The first stage was not recovered for this launch because the massive 6800 kg (13000 lb) Intelsat 35e comsat requires every drop of fuel to get to the desired orbit.

Intelsat 35e marks the tenth SpaceX launch of 2017 – establishing a new single year launch record for SpaceX.

The recent BulgariaSat-1 and Iridium-2 missions counted as the eighth and ninth SpaceX launches of 2017.

Including those last two ocean platform landings, SpaceX has now successfully recovered 13 boosters; 5 by land and 8 by sea, over the past 18 months.

Expendable SpaceX Falcon 9 is seen rising to launch position in this up close view of payload fairing encapsulating Intelsat 35e comsat and is now erected to launch position and poised for liftoff on July 5, 2017 at Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s onsite Intelsat 35e and space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Intelsat reps Kurt Riegel, Sr VP Intelsat Sales (c), and Diane VanBeber, VP Intelsat investor relations (l), speak to Ken Kremer/Universe Today (r) about Intelsat35e launch on SpaceX Falcon 9 beside the countdown clock at the Kennedy Space Center Press Site in Florida. Credit: Ken Kremer/kenkremer.com
Never used SpaceX Falcon 9 is seen rising to launch position and now stands erect and poised for liftoff Intelsat 35e on July 3, 2017 at Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com
Artists concept of Intelsat 35e in geostationary Earth orbit. Credit: Intelsat
SpaceX Falcon 9 is poised for liftoff with Intelsat 35e – 4th next gen ‘Epic’ comsat on July 5, 2017 at Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

SpaceX Targeting 3rd launch in 10 Days with ‘Epic’ Intelsat Comsat on July 5 – Watch Live

Never used SpaceX Falcon 9 is seen rising to launch position and now stands erect and poised for liftoff Intelsat 35e on July 3, 2017 at Launch Complex 39A at NASA's Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com
Never used SpaceX Falcon 9 is seen rising to launch position and now stands erect and poised for Intelsat 35e liftoff on July 5, 2017 at Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – Spectacular 4th of July fireworks are coming tonight, July 3,[reset to July5] to the Florida Space Coast courtesy of SpaceX and Intelsat with the planned near dusk launch of the commercial Epic 35e next-generation high throughput satellite to geostationary orbit for copious customers in the Americas, Europe and Africa. UPDATE: After a 2nd abort launch is now NET July 5.

JULY 5 UPDATE: GO for launch attempt tonight at 7:37 PM. Weather looks good at this time.

“SpaceX, confirms that we are ‘Go’ for a launch tonight, 5 July, at approximately 23:37:00 UTC (7:37pm EDT), GO INTELSAT 35E!!” Intelsat announced.

If all goes well, SpaceX will have demonstrated an amazing launch pace with 3 rockets propelled aloft in the span of just 10 days from both US coasts.

Originally slated for Sunday evening, July 2, the launch was automatically aborted by the computer control systems literally in the final moments before the scheduled liftoff due to a guidance issue, and under picture perfect weather conditions – which would have resulted in 3 launches in 9 days.

Following the 24 hour scrub turnaround, blastoff of the Intelsat 35e communications satellite for commercial broadband provider Intelsat is now slated for dinnertime early Monday evening, July 3 at 7:37 p.m. EDT, or 2337 UTC from SpaceX’s seaside Launch Complex 39A on NASA’s Kennedy Space Center in Florida.

Up close view of payload fairing encapsulating Intelsat 35e comsat launching atop expendable SpaceX Falcon 9 booster at Launch Complex 39A at NASA’s Kennedy Space Center in Florida. This booster is not equipped with grid fins or landing legs. Credit: Ken Kremer/kenkremer.com

The first stage will not be recovered for this launch because the massive 6800 kg Intelsat 35e comsat requires every drop of fuel to get to the desired orbit.

“There will be no return of the booster for this mission, “ Ken Lee, Intelsat’s senior vice president of space systems, told Universe Today in a prelaunch interview on Sunday.

“We [Intelsat] need all the fuel to get to orbit.”

By using all available fuel on board the Falcon 9, Intelsat 35e will be delivered to a higher orbit.

“This will enable us to use less fuel for orbit raising maneuvers and make more available for station keeping maneuvers,” Lee told me.

“We hope this will potentially extend the satellites lifetime by 1 or 2 years.”

“Intelsat 35e is the fourth in the series of our ‘Epic’ satellites. It will provide the most advanced digital services ever and a global footprint.”

You can watch the launch live on a SpaceX dedicated webcast starting about 15 minutes prior to the opening of the launch window at 7:37 p.m. EDT, or 2337 UTC

Watch the SpaceX broadcast live at: SpaceX.com/webcast

The never before used Falcon 9’s launch window extends for nearly an hour – 58 minutes – until 8:35 p.m. EDT, July 5, or 0035 UTC

Expendable SpaceX Falcon 9 is seen rising to launch position and is now erected to launch position and poised for liftoff with Intelsat 35e on July 5, 2017 at Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

“Our whole team had to activate quickly to get Intelsat 35e into this window and ready for launch. The good news is we partnered with SpaceX and Boeing, the satellite builder,” said Kurt Riegel Sr VP Intelsat Sales & Markenting, in an interview with Universe Today at the countdown clock at the KSC Press Site.

There was barely a week to turn around the Falcon 9 rocket and launch pad sinevc the blastoff of BulgariaSat-1.

“Boeing got everything accomplished on time and not give an inch on our test schedule or our quality which is so important to us.”

Monday’s [now Wednesday July] weather forecast is currently 70% GO for favorable conditions at launch time.

The weather odds have changed dramatically all week – trending more favorable.

The concern is for the Cumulus Cumulus Cloud Rule according to Air Force meteorologists with the 45th Space Wing at Patrick Air Force Base.

Monday’s abort took place 10 seconds before liftoff but was called at T-Zero by the SpaceX launch director. A problem was detected with the GNC system, which stands for guidance, navigation and control.

“We had a vehicle abort criteria violated at T-minus 10 seconds, a GNC criteria,” the launch director announced on the SpaceX webcast soon after the abort was called.

“We’re still looking into what that is at this time.

He then announced a scrub for the day.

“We’re not going to be able to get a recycle in today without going past the end of the window, so we’re officially scrubbed,” he stated on the webcast.

“Go ahead and put a 24-hour recycle into work.”

SpaceX Falcon 9 is poised for liftoff with Intelsat 35e – 4th next gen ‘Epic’ comsat on July 5, 2017 at Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

The brand new 29 story tall SpaceX Falcon 9 will deliver Intelsat 35e to a Geostationary Transfer Orbit (GTO).

The geostationary comsat will provide high performance services in the C- And Ku-bands to customers in North and South America, the Caribbean, as well as the continents of Europe and Africa.

Artists concept of Intelsat 35e in geostationary Earth orbit. Credit: Intelsat

The Ku band service includes a customized high power beam for direct-to-home television (DTH) and data communications services in the Caribbean as well as mobility services in Europe and Africa.

Hordes of spectators lined local area beaches and causeways north and south of the launch pad in anticipation of Sunday’s launch.

Many are expected to return given the promising weather forecast and July 4th holiday weekend.

The 229-foot-tall (70-meter) Falcon 9/Intelsat 353e rocket was raised erect Sunday morning, July 2 and is poised for liftoff and undergoing final prelaunch preparations.

The first and second stages will again be fueled with liquid oxygen and RP-1 propellants starting about one hour before liftoff.

Intelsat 35e marks the tenth SpaceX launch of 2017 – establishing a new single year launch record for SpaceX.

Blastoff of 2nd flight-proven SpaceX Falcon 9 with 1st geostationary communications for Bulgaria at 3:10 p.m. EDT on June 23, 2017, carrying BulgariaSat-1 to orbit from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

The recent BulgariaSat-1 and Iridium-2 missions counted as the eighth and ninth SpaceX launches of 2017.

SpaceX conducts successful static hot fire test of Falcon 9 booster atop Launch Complex 39A at the Kennedy Space Center on 29 June 2017 as seen from Banana River lagoon, Titusville, FL. The Falcon 9 is slated to launch Intelsat 35e on July 3, 2017. Credit: Ken Kremer/Kenkremer.com
SpaceX conducts successful static hot fire test of Falcon 9 booster atop Launch Complex 39A at the Kennedy Space Center on 29 June 2017 as seen from Banana River lagoon, Titusville, FL. The Falcon 9 is slated to launch Intelsat 35e on July 3, 2017. Credit: Ken Kremer/Kenkremer.com

Including those last two ocean platform landings, SpaceX has now successfully recovered 13 boosters; 5 by land and 8 by sea, over the past 18 months.

Watch for Ken’s onsite Intelsat 35e and space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

What a magnificent space sight to behold ! Cruise Ships and Recycled Rockets float side by side in Port Canaveral after recycled SpaceX Falcon 9 1st stage from BulgariaSat-1 launch from KSC on 23 June floats into port atop droneship on 29 June 2017. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 Booster leaning atop OCISLY droneship upon which it landed after 23 June launch from KSC floats into Port Canaveral, FL, on 29 June 2017, hauled by tugboat as seen from Jetty Park Pier. Credit: Ken Kremer/kenkremer.com

SpaceX Ramps Up; Reused SpaceX BulgariaSat-1 Booster Arrives in Port as Next Falcon 9 Test Fires for July 2 Intelsat Launch – Gallery

What a magnificent space sight to behold ! Cruise Ships and Recycled Rockets float side by side in Port Canaveral after recycled SpaceX Falcon 9 1st stage from BulgariaSat-1 launch from KSC on 23 June floats into port atop droneship on 29 June 2017. Credit: Ken Kremer/kenkremer.com
What a magnificent space sight to behold ! Cruise Ships and Recycled Rockets float side by side in Port Canaveral after recycled SpaceX Falcon 9 1st stage from BulgariaSat-1 launch from KSC on 23 June floats into port atop droneship on 29 June 2017. Credit: Ken Kremer/kenkremer.com

PORT CANAVERAL/KENNEDY SPACE CENTER, FL – The launch cadence at Elon Musk’s SpaceX is truly ramping up with Falcon 9 boosters rapidly coming and going in all directions from ground to space as the firm audaciously sets its sight on a third commercial payload orbital launch on July 2 in the span of just 9 days from its East and West Coast launch bases.

It was a magnificent sight to behold !! Seeing commercial passenger carrying cruise ships and commercial recycled rockets that will one day carry paying passenger to space, floating side by side in the busy channel of narrow Port Canaveral, basking in the suns glow from the sunshine state.

The doubly ‘flight-proven’ SpaceX Falcon 9 booster portends a promising future for spaceflight that Elon Musk hopes and plans will drastically slash the high cost of rocket launches and institute economic savings that would eventually lead to his dream of a ‘City on Mars!’ – sooner rather than later.

SpaceX Falcon 9 Booster leaning atop OCISLY droneship upon which it landed after 23 June launch from KSC floats into Port Canaveral, FL, on 29 June 2017, hauled by tugboat as seen from Jetty Park Pier. Credit: Ken Kremer/kenkremer.com

Thursday, June 29, serves as a perfect example of how SpaceX is rocking the space industry worldwide.

First, the reused first stage Falcon 9 booster from last Friday’s (June 23) SpaceX launch of the BulgariaSat-1 HD television broadcast satellite floated magnificently into Port Canaveral early Thursday morning atop the diminutive oceangoing droneship upon which it safely touched down upright on a quartet of landing legs some eight minutes after launch.

SpaceX Falcon 9 Booster leaning atop OCISLY droneship upon which it landed after 23 June launch from KSC floats into Port Canaveral, FL, on 29 June 2017, hauled by tugboat as seen from Jetty Park Pier. Credit: Ken Kremer/kenkremer.com

Second, SpaceX engineers then successfully conducted a late in the day static hot fire test of the Falcon 9 first stage engines and core that will power the next launch of the Intelsat 35e commercial comsat to orbit this Sunday, July 2.

So the day was just chock full of nonstop SpaceX rocketry action seeing a full day of rocket activities from dawn to dusk.

SpaceX Falcon 9 Booster and Canaveral Lighthouse together- Twice used SpaceX Falcon 9 which launched BulgariaSat-1 into orbit from KSC on 23 June floats into Port Canaveral with Cape Canaveral LIghthouse seen between landing legs in the distance as OCISLY drone ship crew on which she landed are working on deck on June 29, 2017. Credit: Ken Kremer/kenkremer.com

Thursday’s nonstop Space Coast action spanning from the north at the Kennedy Space Center and further south to Cape Canaveral Air Force Station and Port Canaveral was the culmination of space launch flow events that actually began days, weeks and months earlier.

The 156 foot- tall Falcon 9 booster had successfully landed on the tiny rectangular shaped “Of Course I Still Love You” or OCISLY droneship less than nine minutes after liftoff on Friday, June 23 on the BulgariaSat-1 flight.

That mission began with the picture perfect liftoff of the BulgariaSat-1 communications satellite for East European commercial broadband provider BulgariaSat at 3:10 p.m. EDT, or 19:10 UTC, June 23, with ignition of all nine of the ‘flight-proven’ Falcon 9 first stage engines on SpaceX’s seaside Launch Complex 39A at NASA’s Kennedy Space Center in Florida.

BulgariaSat is an affiliate of Bulsatcom, Bulgaria’s largest digital television provider.

The 15 story tall first stage touched down with a slight tilt of roughly eight degrees as a direct result of the extremely demanding landing regime.

Then after spending several post landing and launch days at sea due to stormy weather along the Florida Space Coast and to accommodate local shipping traffic and SpaceX planning needs, the booster at last neared shore from the south off the coast of Melbourne, FL.

Accompanied by a small armada of support vessels it was slowly towed to port by the Elsbeth III.

The SpaceX flotilla arrived at last at the mouth of Port Canaveral and Jetty Park Pier jutting into the Atlantic Ocean at about 830 a.m. EDT – offering a spectacular view at to a flock of space enthusiasts and photographers including this author.

SpaceX Booster arrival on 30 June 2017. Credit: Dawn Leek Taylor

I highly recommend you try and see a droneship arrival if all possible.

The leaning boosters – of which this is only the second – are even more dramatic!

Because the Falcon 9 barely survived the highest ever reentry force and landing heat to date, Musk reported.

The rectangularly shaped OCISLY droneship is tiny – barely the size of a moderately sized apartment complex parking lot.

Credit: Ken Kremer/kenkremer.com

Falcon 9’s first stage for the BulgariaSat-1 mission previously supported the Iridium-1 mission from Vandenberg Air Force Base in January of this year.

Some two minutes and 40 seconds after liftoff the first and second stages separated.

As the second stage continued to orbit, the recycled first stage began the daunting trip back to Earth on a very high energy trajectory that tested the limits of the boosters landing capability.

“Falcon 9 will experience its highest ever reentry force and heat in today’s launch. Good chance rocket booster doesn’t make it back,” SpaceX founder and CEO Elon Musk wrote in a prelaunch tweet.

Following stage separation, Falcon 9’s first stage carried out two burns, the entry burn and the landing burn using a trio of the Merlin 1D engines.

Ultimately the 15 story tall booster successfully landed on the “Of Course I Still Love You” or OCISLY droneship, stationed in the Atlantic Ocean about 400 miles (600 km) offshore and east of Cape Canaveral.

“Rocket is extra toasty and hit the deck hard (used almost all of the emergency crush core), but otherwise good,” Musk tweeted shortly after the recycled booster successfully launched and landed for its second time.

Up close view of blackened Aluminum grid fins on twice used SpaceX Falcon 9 1st stage which just sailed into Port Canaveral on 29 June after launching BulgariaSat-1 23 June 2017 from pad 39A on NASA’s Kennedy Space Center. The fins are being replaced by more resilient units made of Titanium as demonstrated 1st during the recent Iridium 2 launch. Credit: Ken Kremer/kenkremer.com

BulgariaSat-1 and Iridium-2 counted as the eighth and ninth SpaceX launches of 2017.

Including those two ocean platform landings, SpaceX has now successfully recovered 13 boosters; 5 by land and 8 by sea, over the past 18 months.

Both landing droneships are now back into their respective coastal ports.

It’s a feat straight out of science fiction but aimed at drastically slashing the cost of access to space as envisioned by Musk.

Watch my BulgariaSat-1 launch video from KSC pad 39A

Video Caption: Launch of SpaceX Falcon 9 on June 23, 2017 from pad 39A at the Kennedy Space Center carrying BulgariaSat-1 TV broadband satellite to geosynchronous orbit for BulgariaSat, which is Bulgaria’s 1st GeoComSat – as seen in this remote video taken at the pad. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s onsite BulgariaSat-1 mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Blastoff of 2nd flight-proven SpaceX Falcon 9 with 1st geostationary communications for Bulgaria at 3:10 p.m. EDT on June 23, 2017, carrying BulgariaSat-1 to orbit from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

SpaceX Accomplishes Double Headed American Space Spectacular – 2 Launches and 2 Landings in 2 Days from 2 Coasts: Gallery

Liftoff of SpaceX Falcon 9 on June 25 at 1:25 p.m. PDT (4:25 p.m. EDT) carrying ten Iridium Next mobile voice and data relay communications satellites to low Earth orbit on the Iridium-2 mission from Vandenberg Air Force Base in California. Credit: SpaceX
Liftoff of SpaceX Falcon 9 on June 25 at 1:25 p.m. PDT (4:25 p.m. EDT) carrying ten Iridium Next mobile voice and data relay communications satellites to low Earth orbit on the Iridium-2 mission from Vandenberg Air Force Base in California. Credit: SpaceX

KENNEDY SPACE CENTER, FL – With Sunday’s successful Falcon 9 blastoff for Iridium Communications joining rocketry’s history books, Elon Musk’s SpaceX accomplished a double headed American space spectacular this weekend with 2 launches and 2 booster landings in 2 days from 2 coasts for 2 commercial customers – in a remarkably rapid turnaround feat that set a new record for minimum time between launches for SpaceX.

On Sunday, June 25 at 1:25 p.m. PDT (4:25 p.m. EDT; 2025 UTC) a SpaceX Falcon 9 rocket successfully launched a second set of ten Iridium Next mobile voice and data relay communications satellites to low Earth orbit on the Iridium-2 mission from SLC-4E on Vandenberg Air Force Base in California.

“All sats healthy and talking,” tweeted Matt Desch, Iridium Communications CEO, soon after launch and confirmation that all 10 Iridium NEXT satellites were successfully deployed from their second stage satellite dispensers. Iridium is a global leader in mobile voice and data satellite communications.

“It was a great day!”

The US West Coast Falcon 9 liftoff of the Iridium-2 mission from California on Sunday, June 25 took place barely 48 hours after the US East Coast Falcon 9 liftoff of the BulgariaSat-1 mission from Florida on Friday, June 23.

Without a doubt, Musk’s dream of rocket reusability as a here and now means to slash the high costs of launching to space and thereby broaden access to space for more players is rapidly taking shape.

Following separation of the first and second stages, the Falcon 9’s 15 story tall first stage successfully landed on the “Just Read the Instructions” droneship ocean going platform stationed several hundred miles out in the Pacific Ocean off the coast of California, despite challenging weather conditions.

Indeed the droneships position was changed in the final minutes before launch due to the poor weather.

“Droneship repositioned due to extreme weather. Will be tight,” tweeted Musk minutes before liftoff.

The 156 foot tall booster touched down about 8 and ½ minutes after liftoff from Vandenberg AFB.

Liftoff of SpaceX Falcon 9 on June 25 at 1:25 p.m. PDT (4:25 p.m. EDT) carrying ten Iridium Next mobile voice and data relay communications satellites to low Earth orbit on the Iridium-2 mission from Vandenberg Air Force Base in California. Credit: SpaceX

The launch, landing and deployment of the 10 Iridium Next satellites was all broadcast live on a SpaceX webcast.

The perfectly executed Iridium-2 and BulgariaSat-1 launch and landing duo clearly demonstrates the daunting capability of SpaceX’s privately owned and operated engineering team to pull off such a remarkable feat in nimble fashion.

Blastoff of 2nd flight-proven SpaceX Falcon 9 with 1st geostationary communications for Bulgaria at 3:10 p.m. EDT on June 23, 2017, carrying BulgariaSat-1 to orbit from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

The stage was set for the unprecedented Falcon 9 launch doubleheader just a week ago when SpaceX CEO and billionaire founder Elon Musk tweeted out the daring space goal after all went well with the Florida Space Coast’s static hotfire test for the first in line BulgariaSat-1 flight.

Blastoff of 2nd flight-proven SpaceX Falcon 9 with 1st geostationary communications for Bulgaria at 3:10 p.m. EDT on June 23, 2017, carrying BulgariaSat-1 to orbit from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

Check out the expanding gallery of Bulgariasat-1 eyepopping photos and videos from several space journalist colleagues and friends and myself.

Click back as the gallery grows !

Liftoff of used SpaceX Falcon 9 at 3:10 p.m. EDT on June 23, 2017 delivering BulgariaSat-1 to orbit from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Dawn Leek Taylor

Sunday’s Iridium 2 flight was Iridium Communications second contracted launch with SpaceX.

“This payload of 10 satellites was deployed into low-Earth orbit, approximately one hour after a SpaceX Falcon 9 rocket lifted off from Vandenberg,” Iridium said in a statement.

The Mini Cooper sized Iridium NEXT satellites each weigh 1,900 pounds, totaling approximately 19,000 pounds placed into space. That is the weight of a semi tractor trailer truck!

The inaugural Iridium 1 launch with the first ten Iridium Next satellites took place successfully at the start of this year on Jan. 14, 2017.

IridiumNEXT satellites being fueled, pressurized & stacked on dispenser tiers at Vandenberg AFB for Falcon 9 launch. Credit: Iridium

The new set of ten Iridium Next mobile relay satellites were delivered into a circular orbit at an altitude of 625 kilometers (388 miles) above Earth.

They were released one at a time from a pair of specially designed satellite dispensers at approximately 100 second intervals.

“Since the successful January 14, 2017 launch, Iridium NEXT satellites have already been integrated into the operational constellation and are providing service. The first eight operational Iridium NEXT satellites are already providing superior call quality and faster data speeds with increased capacity to Iridium customers. The two additional satellites from the first launch are continuing to drift to their operational orbital plane, where upon arrival they will begin providing service.”

Iridium 2 is the second of eight planned Falcon 9 launches to establish the Iridium NEXT constellation which will eventually consist of 81 advanced satellites.

At least 75 will be launched by SpaceX to low-Earth orbit, with 66 making up the operational constellation.

The inaugural launch of the advanced Iridium NEXT satellites in January 2017 started the process of replacing an aging Iridium fleet in orbit for nearly two decades.

Nine of the 81 will serve as on-orbit spares and six as ground spares.

“Now, and for approximately the next 45 days, these newly launched satellites will undergo a series of testing and validation procedures, ensuring they are ready for integration with the operational constellation,” said Iridium.

“We are thrilled with yesterday’s success. These new satellites are functioning well, and we are pressing forward with the testing process,” said Scott Smith, chief operating officer at Iridium.

“Since the last launch, the team at our Satellite Network Operations Center (SNOC) has been anxiously awaiting this new batch of satellites. There is a lot of work to do, and we are up for the challenge.”

Blastoff of 2nd flight-proven SpaceX Falcon 9 with 1st geostationary communications for Bulgaria at 3:10 p.m. EDT on June 23, 2017, carrying BulgariaSat-1 to orbit from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

BulgariaSat-1 and Iridium-2 count as the eighth and ninth SpaceX launches of 2017.

Including these two ocean platform landings, SpaceX has now successfully recovered 13 boosters; 5 by land and 8 by sea, over the past 18 months.

Both landing droneships are now headed back into their respective coastal ports.

It’s a feat straight out of science fiction but aimed at drastically slashing the cost of access to space as envisioned by Musk.

Liftoff of used SpaceX Falcon 9 at 3:10 p.m. EDT on June 23, 2017 delivering BulgariaSat-1 to orbit from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Julian Leek

Watch this BulgariaSat-1 launch video from KSC pad 39A

Video Caption: Launch of SpaceX Falcon 9 on June 23, 2017 from pad 39A at the Kennedy Space Center carrying BulgariaSat-1 TV broadband satellite to geosynchronous orbit for BulgariaSat, which is Bulgaria’s 1st GeoComSat – as seen in this remote video taken at the pad. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s onsite mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

BulgariaSat-1 streaks to orbit after June 23, 2017 liftoff from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com
BulgariaSat-1 arcs over eastwards to Africa as it streaks to orbit after June 23, 2017 liftoff from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com
Blastoff of 2nd flight-proven SpaceX Falcon 9 with 1st geostationary communications for Bulgaria at 3:10 p.m. EDT on June 23, 2017, carrying BulgariaSat-1 to orbit from Launch Complex 39A at NASA’s Kennedy Space Center in Florida- as seen from the crawlerway. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Blastoff of 2nd flight-proven SpaceX Falcon 9 with 1st geostationary communications for Bulgaria at 3:10 p.m. EDT on June 23, 2017, carrying BulgariaSat-1 to orbit from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

Blastoff of 2nd flight-proven SpaceX Falcon 9 with 1st geostationary communications for Bulgaria at 3:10 p.m. EDT on June 23, 2017, carrying BulgariaSat-1 to orbit from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com
BulgariaSat-1 liftoff atop SpaceX Falcon 9 on June 23, 2017 from pad 39A at NASA’s Kennedy Space Center in Florida, as seen from Titusville, FL residential area. Credit: Ashley Carrillo
BulgariaSat-1 liftoff atop SpaceX Falcon 9 on June 23, 2017 from pad 39A at NASA’s Kennedy Space Center in Florida, as seen from Titusville, FL residential area. Credit: Ashley Carrillo
BulgariaSat-1 launches June 23, 2017 on SpaceX Falcon 9 from NASA’s Kennedy Space Center in Florida, as seen from Titusville, FL residential area. Credit: Wesley Baskin
BulgariaSat-1 launches June 23, 2017 on SpaceX Falcon 9 from NASA’s Kennedy Space Center in Florida, as seen from Titusville, FL residential area. Credit: Wesley Baskin
Launch 2nd recycled SpaceX Falcon 9 with 1st geostationary communications for Bulgaria at 3:10 p.m. EDT on June 23, 2017, carrying BulgariaSat-1 to orbit from Launch Complex 39A at NASA’s Kennedy Space Center in Florida – as seen from the countdown clock. Credit: Ken Kremer/kenkremer.com

BulgariaSat-1 Blazes to Orbit on Used SpaceX Falcon 9 Rocket as Breakthrough Booster Lands 2nd Time on Oceanic Platform

Blastoff of 2nd flight-proven SpaceX Falcon 9 with 1st geostationary communications for Bulgaria at 3:10 p.m. EDT on June 23, 2017, carrying BulgariaSat-1 to orbit from Launch Complex 39A at NASA's Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com
Blastoff of 2nd flight-proven SpaceX Falcon 9 with 1st geostationary communications for Bulgaria at 3:10 p.m. EDT on June 23, 2017, carrying BulgariaSat-1 to orbit from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – In another breakthrough milestone aimed at slashing the high cost of rocketry, the innovators at billionaire entrepreneur Elon Musk’s SpaceX successfully launched a ‘used’ rocket for only the second time in history – that blazed a path to orbit with its BulgariaSat-1 commercial television comsat payload Friday afternoon, June 23, from the Kennedy Space Center and just minutes later landed upright and intact on an oceanic platform waiting offshore in the vast currents of the Atlantic ocean.

“This is really a great day for us,” Maxim Zayakov, CEO of BulgariaSat and Bulsatcom told Universe Today during pre and post launch interview’s onsite at NASA’s Kennedy Space Center in Florida.

“Everything is seeming to be a good success so far.”

To top that, SpaceX is targeting a bicoastal weekend doubleheader of launches signaling a remarkably rapid turnaround capability. Another Falcon 9 is scheduled for blastoff on Sunday, June 25 at 1:25 p.m. PDT (4:25 p.m. EDT; 2025 UTC) from Vandenberg Air Force Base in California on the Iridium-2 mission, less than 48 hours apart – which would set a new launch turnaround record for SpaceX.

The picture perfect liftoff of the BulgariaSat-1 communications satellite for East European commercial broadband provider BulgariaSat began at 3:10 p.m. EDT, or 19:10 UTC, June 23, with ignition of all nine of the ‘flight-proven’ Falcon 9 first stage engines on SpaceX’s seaside Launch Complex 39A at NASA’s Kennedy Space Center in Florida.

Launch 2nd recycled SpaceX Falcon 9 with 1st geostationary communications for Bulgaria at 3:10 p.m. EDT on June 23, 2017, carrying BulgariaSat-1 to orbit from Launch Complex 39A at NASA’s Kennedy Space Center in Florida – as seen from the countdown clock. Credit: Ken Kremer/kenkremer.com

BulgariaSat is an affiliate of Bulsatcom, Bulgaria’s largest digital television provider.

“Everything went down just as we expected,” BulgariaSat CEO Zayakov told me. “Of course there was a lot of excitement. And there are a lot of excited and scared feelings [with launches].”

“At the end of the day it not only worked out just as expected with the launch but the satellite also already reported in telemetry that she is doing fine,” Zayakov elaborated.

BulgariaSat-1 is the first geostationary communications satellite orbited for the nation of Bulgaria.

“We will start using it as soon as we can, in about one and a half months.”

Liftoff of used SpaceX Falcon 9 at 3:10 p.m. EDT on June 23, 2017 delivering BulgariaSat-1 to orbit from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Julian Leek

The used 229-foot-tall (70-meter) SpaceX Falcon 9 carrying BulgariaSat-1 soared off historic pad 39A into brilliant mid-afternoon blue skies drenching the Florida Space Coast with beloved sunshine to the delight of hordes of spectators gathered from across the globe – including a Bulgarian TV crew witnessing their first launch.

History’s first ‘flight-proven’ Falcon 9 booster was successfully launched by SpaceX this past March for Luxembourg based telecommunications giant SES on the SES-10 mission – likewise from pad 39A.

Some 35 minutes after blastoff, BulgariaSat-1 was successfully separated as planned from the Falcon 9 second stage and deployed to its targeted initial geostationary transfer orbit (GTO).

“So now she is on her way to the orbital position. The solar arrays deployed about 30 minutes after spacecraft separation from the second stage.”

Blastoff of 2nd flight-proven SpaceX Falcon 9 with 1st geostationary communications for Bulgaria at 3:10 p.m. EDT on June 23, 2017, carrying BulgariaSat-1 to orbit from Launch Complex 39A at NASA’s Kennedy Space Center in Florida- as seen from the crawlerway. Credit: Ken Kremer/kenkremer.com

Would you launch with Space X again?

“Yes looking to the future we would be happy to use SpaceX again in the future, certainly why not. SpaceX is definitely up there,” Zayakov replied.

BulgariaSat-1 will be located at the Bulgarian orbital position at 1.9 degrees East longitude and will provide reliable satellite communications solutions to broadcast, telecom, corporate and government customers.

How many customers will be served? I asked Zayakov.

“BulgariaSat-1 will serve about 800,000 customers in Bulgaria and about another million subscribers elsewhere in eastern Europe and the Balkans,” Zayakov elaborated.

The BulgariaSat-1 geostationary comsat will provide direct-to-home television (DTH) and data communications services to Southeastern Europe, including Serbia, the Balkans and other European regions.

You could not have asked for better weather as the recycled Falcon 9 roared to life for the second time with a paying customer and put on a long and exciting space spectacle for those lucky and fortunate enough to witness history with their own eyeballs first hand and follow along for several minutes as the rocket accelerated magnificently to orbit and arched over to the African continent in the nearly cloudless sky.

Falcon 9’s first stage for the BulgariaSat-1 mission previously supported the Iridium-1 mission from Vandenberg Air Force Base in January of this year.

Some two minutes and 40 seconds after liftoff the first and second stages separated.

As the second stage continued to orbit, the recycled first stage began the daunting trip back to Earth on a very high energy trajectory that tested the limits of the boosters landing capability.

“Falcon 9 will experience its highest ever reentry force and heat in today’s launch. Good chance rocket booster doesn’t make it back,” SpaceX founder and CEO Elon Musk wrote in a prelaunch tweet.

Following stage separation, Falcon 9’s first stage carried out two burns, the entry burn and the landing burn using a trio of the Merlin 1D engines.

Ultimately the 15 story tall booster successfully landed on the “Of Course I Still Love You” or OCISLY droneship, stationed in the Atlantic Ocean about 400 miles (600 km) offshore and east of Cape Canaveral.

“Rocket is extra toasty and hit the deck hard (used almost all of the emergency crush core), but otherwise good,” Musk tweeted shortly after the recycled booster successfully launched and landed for its second time.

The 156 foot tall first stage may have touched down with a slight tilt.

The OCISLY droneship is expected back into Port Canaveral in a few days.

The 8,100 pounds (3,700 kilograms) BulgariaSat-1 satellite was built by SSL in Palo Alto, Calif. It has a design lifetime for a 15-year mission.

BulgariaSat-1 is equipped with 2 Ku-band FSS transponders and 30 Ku-band BSS transponders for fixed satellite services and advanced television services such as high definition television.

With BulgariaSat-1 now safely in orbit, a period of critical testing and checkout is on tap next.

“It takes about ten days to arrive and stabilize at the final orbital slot,” Zayakov stated. “Then after those 10 days it takes about another 20 to 30 days to actually do all the orbital checkouts and orbital tests required to make sure that the satellite is performing fine and that we can start using it for broadcasts.”

“So in about one and a half months we will be ready to start using BulgariaSat-1.”

“We will start using it as soon as we can!”

2 enthusiastic ‘Thumbs Up’ from Maxim Zayakov, CEO of BulgariaSat, during interview with Universe Today at KSC countdown clock following June 23, 2017 launch of BulgariaSat-1 from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

The BulgariaSat-1 launch had originally been slated for this past Monday, June 19 but was delayed four days to fix a valve in the payload fairing.

“Postponing launch to replace fairing pneumatic valve,” Musk tweeted last Sunday. “It is dual redundant, but not worth taking a chance.”

And everything went off without a hitch!

BulgariaSat-1 counts as the eighth SpaceX launch of 2017.

Payload fairing encapsulating BulgariaSat-1 comsat launching atop used SpaceX Falcon 9 booster at Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s onsite BulgariaSat-1 mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Photo of BulgariaSat-1 undergoing launch processing. Credit: SpaceX
SpaceX Falcon 9 BulgariaSat-1 mission patch logo. Credit: SpaceX/BulgariaSat

2nd SpaceX Recycled Falcon 9 Rocket Launching 1st Bulgarian GeoComSat June 23, Plus Potential Weekend Launch ‘Doubleheader’ – Watch Live

Flight-proven SpaceX Falcon 9 first stage arrives at Launch Complex 39A at NASA's Kennedy Space Center in Florida slated for launch of BulgariaSat-1 on June 23, 2017. Credit: Ken Kremer/kenkremer.com
Flight-proven SpaceX Falcon 9 first stage arrives at Launch Complex 39A at NASA’s Kennedy Space Center in Florida slated for launch of BulgariaSat-1 on June 23, 2017. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – For only the second time in history, SpaceX will launch a ‘flight-proven’ Falcon 9 rocket this Friday afternoon and the payload this time for this remarkable and science fictionesque milestone is the first geostationary communications satellite for the nation of Bulgaria.

Blastoff of the BulgariaSat-1 communications satellite for commercial broadband provider BulgariaSat is slated for early Friday afternoon, June 23 at 2:10 p.m. EDT, or 18:10 UTC from SpaceX’s seaside Launch Complex 39A on NASA’s Kennedy Space Center in Florida.

BulgariaSat is an affiliate of Bulsatcom, Bulgaria’s largest digital television provider. The geostationary comsat will provide direct-to-home television (DTH) and data communications services to Southeastern Europe, including the Balkans and other European regions.

Flight-proven SpaceX Falcon 9 poised for launch of BulgariaSat-1 on June 23, 2017 at Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

The used 229-foot-tall (70-meter) SpaceX Falcon 9 will deliver BulgariaSat-1 to a Geostationary Transfer Orbit (GTO).

SpaceX conducts successful static hot fire test of Falcon 9 booster atop Launch Complex 39A at the Kennedy Space Center on 15 June 2017 as seen from Space View Park, Titusville, FL. The Falcon 9 is slated to launch BulgariaSat-1on June 23, 2017. Credit: Ken Kremer/Kenkremer.com

All systems are GO at this point!

And if all goes well there is a definite possibility of a weekend bicoastal launch double header by SpaceX – says SpaceX billionaire founder and CEO Elon. The next Falcon 9 mission is scheduled for blastoff on Sunday, June 25 from Vandenberg Air Force Base in California, barely 48 hours apart.

SpaceX is maintaining a blistering launch pace this year.

The Falcon 9 booster arrived just hours after launch of the Dragon CRS-11 resupply mission for NASA on June 3 – as I witnessed the recycled rockets arrival at pad 39A first hand later the same day (see photos).

Blastoff of SpaceX Falcon 9 rocket from Launch Complex 39A at the Kennedy Space Center at 5:07 p.m. EDT on June 3, 2017, on Dragon CRS-11 resupply mission to the International Space Station (ISS) for NASA. Credit: Ken Kremer/kenkremer.com

SpaceX successfully launched history’s first ‘flight-proven’ Falcon 9 booster this past March for Luxembourg based telecommunications giant SES on the SES-10 mission – likewise from pad 39A.

Recycled SpaceX Falcon 9 skyrockets to orbit with SES-10 telecomsat from historic Launch Complex 39A as it zooms past US Flag by the countdown clock at NASA’s Kennedy Space Center in Florida at 6:27 p.m. EDT on March 30, 2017. Credit: Ken Kremer/Kenkremer.com

The late lunchtime liftoff time for BulgariaSat-1 offers a very convenient opportunity for everyone to enjoy an eyewitness view, regardless of whether you live locally or if have the availability to take a quick trip to the Florida Space Coast.

And the current weather outlook is excellent say forecasters.

You can watch the launch live on a SpaceX dedicated webcast starting about 15 minutes prior to the opening of the launch window at 2:10 p.m. EDT, or 18:10 UTC

Watch the SpaceX broadcast live at: SpaceX.com/webcast

The recycled Falcon 9’s launch window extends for a full two hours until 4:10 p.m. EDT, June 23, or 20:10 UTC.

Fridays weather forecast is currently 90% GO for favorable conditions at launch time. That’s about as good as it gets for the notoriously fickle central Florida region.

The concern is for the Cumulus Cumulus Cloud Rule according to Air Force meteorologists with the 45th Space Wing at Patrick Air Force Base.

In case of a scrub for any reason on Friday, June 23, the backup launch opportunity is Saturday, June 24, at 2:10 p.m. EDT, or 18:10 UTC. Likewise it extends for two hours.

Saturdays’ weather forecast also quite good, dropping only slightly to 80% GO. The concern is for the Cumulus Cumulus Cloud Rule.

Falcon 9’s first stage for the BulgariaSat-1 mission previously supported the Iridium-1 mission from Vandenberg Air Force Base in January of this year. Following stage separation, Falcon 9’s first stage will attempt a landing on the “Of Course I Still Love You” droneship, which will be stationed in the Atlantic Ocean.

The satellite was built by SSL in Palo Alto, Calif. It has a design lifetime for a 15-year mission.

“We selected SSL to manufacture our first satellite early on, based on its history of success and reliability,” says Maxim Zayakov, chief executive officer of Bulgaria Sat. “SSL has been an excellent partner in helping us bring this project to fruition.”

BulgariaSat-1 will be equipped with 2 Ku-band FSS transponders and 30 Ku-band BSS transponders for fixed satellite services and advanced television services such as high definition television.

Photo of BulgariaSat-1 undergoing launch processing. Credit: SpaceX

The historic pad 39A was previously used to launch NASA’s Apollo Saturn Moon rockets and Space Shuttles.

The path to launch was cleared following the successful completion of a critical static hot-fire test of the first stage last Thursday, June 15.

The hot fire test lasted about seven seconds as I witnessed from Banana River Lagoon and Rt. 1 in Titusville, which provides numerous excellent viewing locations.

SpaceX conducts successful static hot fire test of Falcon 9 booster atop Launch Complex 39A at the Kennedy Space Center on 15 June 2017 as seen from Space View Park, Titusville, FL. The Falcon 9 is slated to launch BulgariaSat-1on June 23, 2017. Credit: Ken Kremer/Kenkremer.com

The BulgariaSat-1 launch had originally been slated for this past Monday, June 19 but was delayed four days to fix a valve in the payload fairing.

Payload fairing encapsulating BulgariaSat-1 comsat launching atop used SpaceX Falcon 9 booster at Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s onsite BulgariaSat-1 mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about the upcoming SpaceX launch of BulgariaSat 1, recent SpaceX Dragon CRS-11 resupply launch to ISS, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

June 22-24: “SpaceX BulgariaSat 1 launch, SpaceX CRS-11 and CRS-10 resupply launches to the ISS, Inmarsat 5 and NRO Spysat, EchoStar 23, SLS, Orion, Commercial crew capsules from Boeing and SpaceX , Heroes and Legends at KSCVC, ULA Atlas/John Glenn Cygnus launch to ISS, SBIRS GEO 3 launch, GOES-R weather satellite launch, OSIRIS-Rex, Juno at Jupiter, InSight Mars lander, SpaceX and Orbital ATK cargo missions to the ISS, ULA Delta 4 Heavy spy satellite, Curiosity and Opportunity explore Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

SpaceX Falcon 9 BulgariaSat-1 mission patch logo. Credit: SpaceX/BulgariaSat

Reused SpaceX Dragon Supply Ship Arrives Space Station, Cygnus Departs, Falcon 9 Launch & Landing: Photos/Videos

The SpaceX Dragon CRS-11 is seen seconds away from its capture with the Canadarm2 robotic arm on June 5, 2017. Credit: NASA TV
The SpaceX Dragon CRS-11 is seen seconds away from its capture with the Canadarm2 robotic arm on June 5, 2017. Credit: NASA TV

KENNEDY SPACE CENTER, FL – The first ever reused Dragon supply ship successfully arrived at the International Space Station (ISS) two days after a thunderous liftoff from NASA’s Kennedy Space Center atop a SpaceX Falcon 9 rocket on Saturday, June 3. The first stage booster made a magnificent return to the Cape and erect ground landing some 8 minutes after liftoff.

Meanwhile the already berthed Orbital ATK Cygnus OA-7 supply ship departed the station on Sunday, June 4 after ground controllers detached it and maneuvered it into position for departure.

The commercial Dragon cargo freighter carrying nearly 3 tons of science and supplies for the multinational crew on the CRS-11 resupply mission reached the space stations vicinity Monday morning, June 5, after a two day orbital chase starting from the Kennedy Space Center and a flawless series of carefully choreographed thruster firings culminated in rendezvous.

Liftoff of the SpaceX Falcon 9 rocket carrying the unmanned Dragon cargo freighter from seaside Launch Complex 39A at KSC in Florida took place during an instantaneous launch window at 5:07 p.m. EDT Saturday, June 3, following a 48 hour delay due to a stormy weather scrub at the Florida Space Coast on Thursday, June 1.

The stunning Falcon 9 launch and landing events were captured by journalists and tourists gathered from around the globe to witness history in the making with their own eyeballs.

The Falcon 9 blastoff also counts as the 100th flight from KSC’s historic pad 39A which previously launched NASA’s Apollo astronauts on lunar landing missions and space shuttles for 3 decades

Check out the expanding gallery of eyepopping photos and videos from several space journalist colleagues and friends and myself – for views you won’t see elsewhere.

Click back as the gallery grows !

1st Reused SpaceX Dragon cargo craft lifts off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 5:07 p.m. June 3, 2017 on CRS-11 mission carrying 3 tons of research equipment, cargo and supplies to the International Space Station. Credit: Ken Kremer/kenkremer.com

By 8:30 a.m. Monday morning ground controllers had maneuvered Dragon to within 250 meters of the station and the imaginary keep out sphere around the orbiting complex.

Engineers carefully assessed the health of the Dragon and its systems to insure its ability to slowly and safely move in closer for capture by the crew.

When Dragon reached a distance of 11 meters, it was grappled by Expedition 52 astronauts Peggy Whitson and Jack Fischer using the 57.7 foot long (17.6 meter long) Canadian-built robotic arm Monday morning at 9:52 a.m. EDT, a few minutes ahead of schedule.

“Capture complete,” radioed Whitson as Dragon was captured at its grapple pin by the grappling snares at the terminus of the Canadarm2 robotic arm.

Dragon’s capture took place as the ISS was orbiting 250 miles over the South Atlantic Ocean as it was nearing the East coast of Argentina.

“Complete complete. Go for capture configuration,” replied Houston Mission control.

The newly arrived SpaceX Dragon CRS-11 resupply ship is installed to the Harmony module on June 5, 2017. The Progress 66 cargo craft is docked to the Pirs docking compartment and the Soyuz MS-04 crew vehicle is docked to the Poisk module. Credit: NASA

“We want to thank the entire team on the ground that made this possible, both in Hawthorne and in Houston. Really around the whole world, from support in Canada for this wonderful robotic arm, Kennedy Space Center’s launch support, to countless organizations which prepared the experiments and cargo,” Fischer radioed in response.

“These people have supplied us with a vast amount of science and supplies, really fuel for the engine of innovation we get to call home, the International Space Station. We have a new generation of vehicles now, led by commercial partners like SpaceX, as they build the infrastructure that will carry us into the future of exploration.”

“It’s also the first second mission to the ISS which was previously here as CRS-4. The last returned visitor was space shuttle Atlantis on the STS-135 mission,” Fischer said.

A little over two hours after it was captured by Expedition 52 Flight Engineers Jack Fischer and Peggy Whitson, ground teams maneuvered the unpiloted SpaceX Dragon cargo craft for attachment to the Earth-facing port of the station’s Harmony module.

“Ground controllers at Mission Control, Houston reported that Dragon was bolted into place at 12:07 p.m. EDT as the station flew 258 statute miles over central Kazakhstan,” NASA reported.

The berthing of Dragon to Harmony was not broadcast live on NASA TV.

1st Reused SpaceX Dragon cargo craft lifts off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 5:07 p.m. June 3, 2017 on CRS-11 mission carrying 3 tons of research equipment, cargo and supplies to the International Space Station. Credit: Ken Kremer/kenkremer.com

Dragon CRS-11 marks SpaceX’s eleventh contracted commercial resupply services (CRS) mission to the International Space Station for NASA since 2012.

Check out these exquisite videos from a wide variety of vantage points including remote cameras at the pad and Cape Canaveral media viewing site – including an A/V compilation of sonic booms from the propulsive ground landing.

Video Caption: CRS-11 Launch from KSC Pad 39A with the first re-used Dragon capsule. SpaceX Falcon 9 launch of the CRS-11 mission to take supplies, equipment and experiments to the ISS, followed by the first stage landing at LZ-1 on the Cape Canaveral Air Force Station. Credit: Jeff Seibert

Video Caption: SpaceX Falcon 9/Dragon CRS 11 Launch 3 June 2017. Launch of SpaceX Falcon 9 on June 3, 2017 from pad 39A at the Kennedy Space Center, FL carrying 1st recycled Dragon supply ship bound for the International Space Station on the CRS-11 mission loaded with 3 tons of science and supplies – as seen in this remote video taken at the pad under cloudy afternoon skies. Credit: Ken Kremer/kenkremer.com

Video Caption: Sonic booms from the return of the CRS-11 booster to LZ-1 on June 3, 2017. Triple sonic booms signal the return of the Falcon 9 first stage to LZ-1 after launching the CRS-11 Dragon spacecraft to the ISS. Credit: Jeff Seibert

The gumdrop shaped 20-foot high, 12-foot-diameter Dragon is carrying almost 5,970 pounds of science experiments and research instruments, crew supplies, food water, clothing, hardware, gear and spare parts to the million pound orbiting laboratory complex.

SpaceX Falcon 9 booster deploys quartet of landing legs moments before precision propulsive ground touchdown at Landing Zone 1 on Canaveral Air Force Station barely nine minutes after liftoff from Launch Complex 39A on 3 June 2017 from the Kennedy Space Center in Florida on the Dragon CRS-11 resupply mission to the International Space Station for NASA. Credit: Ken Kremer/Kenkremer.com

The CRS-11 cargo ship will support over 62 of the 250 active research investigations and experiments being conducted by Expedition 52 and 53 crew members.

The flight delivered investigations and facilities that study neutron stars, osteoporosis, solar panels, tools for Earth-observation, and more.

40 new micestonauts are also aboard inside the rodent research habitat for a first of its kind osteoporosis science study – that seeks to stem the loss of bone density afflicting millions of people on Earth and astronauts crews in space by testing an experimental drug called NELL-1. The therapy will also examine whether bone can be regenerated for the first time. No drug exists for bone regeneration.

The unpressurized trunk of the Dragon spacecraft also transported 3 payloads for science and technology experiments and demonstrations.

The truck payloads include the Roll-Out Solar Array (ROSA) solar panels, the Multiple User System for Earth Sensing (MUSES) facility which hosts Earth-viewing instruments and tools for Earth-observation and equipment to study neutron stars with the Neutron Star Interior Composition Explorer (NICER) payload.

NICER is the first ever space mission to study the rapidly spinning neutron stars – the densest objects in the universe. The launch coincidentally comes nearly 50 years after they were discovered by British astrophysicist Jocelyn Bell.

A second objective of NICER involves the first space test attempting to use pulsars as navigation beacons through technology called Station Explorer for X-Ray Timing and Navigation (SEXTANT).

Blastoff of 1st recycled SpaceX Falcon 9 rocket from Launch Complex 39A at the Kennedy Space Center on June 3, 2017 delivering Dragon CRS-11 resupply mission to the International Space Station (ISS) for NASA. Credit: Ken Kremer/kenkremer.com

NASA decided to use the SpaceX weather related launch delay to move up the departure of the “SS John Glenn” Cygnus cargo ship by over a month since it was already fully loaded and had completed its mission to deliver approximately 7,600 pounds of supplies and science experiments to the orbiting laboratory and its Expedition 51 and 52 crew members for Orbital ATK’s seventh NASA-contracted commercial resupply mission called OA-7.

Named after legendary Mercury and shuttle astronaut John Glenn – 1st American to orbit the Earth – the supply ship had spent 44 days at the station.

The “SS John Glenn” will now remain in orbit a week to conduct the third SAFFIRE fire experiment as well as deploy four small Nanoracks satellites before Orbital ATK flight controllers send commands June 11 to deorbit the spacecraft for its destructive reentry into the Earth’s atmosphere over the Pacific Ocean.

The Orbital ATK Cygnus cargo craft, with its prominent Ultra Flex solar arrays, is pictured moments after being released from the International Space Station on June 4, 2017 . Credit: NASA TV

Watch for Ken’s onsite CRS-11 mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

……….

SpaceX Falcon 9 aloft carrying 1st reused Dragon on CRS-11 resupply flight to the International Space Station on June 3, 2017 from Launch Complex 39A at the Kennedy Space Center. Credit: Ken Kremer/kenkremer.com
Blastoff of SpaceX Falcon 9 with reused Dragon CRS-11 cargo craft from Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 5:07 p.m. on June 3, 2017. Credit: Julian Leek
Descent of SpaceX Falcon 9 1st stage towards Landing Zone-1 at Cape Canaveral after Jun 3, 2017 launch from pad 39A at the Kennedy Space Center. Credit: Julian Leek
Recycled SpaceX Dragon CRS-11 cargo craft lifted off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 5:07 p.m. June 3, 2017 carrying 3 tons of research equipment, cargo and supplies to Earth orbit and the International Space Station. Credit: Ken Kremer/kenkremer.com
3 June 2017 launch of SpaceX Falcon 9 on CRS-11 mission to the ISS – as seen from Port Orange, FL. Credit: Gerald DaBose
Landing of SpaceX Falcon 9 1st stage following launch of Dragon CRS-11 cargo craft from Launch Complex 39A at NASA’s Kennedy Space Center in Florida on June 3, 2017 to the ISS. Credit: Jean Wright
SpaceX Falcon 9 rocket goes erect to launch position atop Launch Complex 39A at the Kennedy Space Center on 1 Jun 2017 as seen the morning before later afternoon launch from inside from the pad perimeter. Liftoff of the CRS-11 resupply mission to the International Space Station (ISS) slated for 1 June 2017. Credit: Ken Kremer/Kenkremer.com
Up close view of SpaceX Dragon CRS-11 resupply vessel atop Falcon 9 rocket and delivering 3 tons of science and supplies to the International Space Station (ISS) for NASA. Liftoff slated for 1 June 2017. Credit: Ken Kremer/Kenkremer.com

1st Recycled SpaceX Dragon Blasts Off for Space Station on 100th Flight from Pad 39A with Science Rich Cargo and Bonus Booster Landing: Gallery

Blastoff of SpaceX Falcon 9 rocket from Launch Complex 39A at the Kennedy Space Center at 5:07 p.m. EDT on June 3, 2017, on Dragon CRS-11 resupply mission to the International Space Station (ISS) for NASA. Credit: Ken Kremer/kenkremer.com
Blastoff of SpaceX Falcon 9 rocket from Launch Complex 39A at the Kennedy Space Center) at 5:07 p.m. EDT on June 3, 2017, on Dragon CRS-11 resupply mission to the International Space Station (ISS) for NASA. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – After threatening stormy skies over the Florida Space Coast miraculously parted just in the nick of time, the first ever recycled SpaceX Dragon cargo freighter blasted off on the 100th flight from historic pad 39A on the Kennedy Space Center (KSC) late Saturday afternoon June 3 – bound for the International Space Station (ISS) loaded with a science rich cargo from NASA for the multinational crew.

Nearly simultaneously the first stage booster accomplished another heart stopping and stupendous ground landing back at the Cape accompanied by multiple shockingly loud sonic booms screeching out dozens of miles (km) in all directions across the space coast region.

SpaceX Falcon 9 booster deploys quartet of landing legs moments before precision propulsive ground touchdown at Landing Zone 1 on Canaveral Air Force Station barely nine minutes after liftoff from Launch Complex 39A on 3 June 2017 from the Kennedy Space Center in Florida on the Dragon CRS-11 resupply mission to the International Space Station for NASA. Credit: Ken Kremer/Kenkremer.com

Liftoff of the SpaceX Falcon 9 rocket carrying the unmanned Dragon cargo freighter from seaside Launch Complex 39A at KSC in Florida took place during an instantaneous launch window at 5:07 p.m. EDT Saturday, June 3, after a predicted downpour held off just long enough for the SpaceX launch team to get the rocket safely off the ground.

The launch took place after a 48 hour scrub from Thursday June 1 forced by stormy weather and lightning strikes came within 10 miles of pad 39A less than 30 minutes from the planned liftoff time.

The backup crew of 40 new micestonauts are also aboard for a first of its kind osteoporosis science study – that seeks to stem the loss of bone density afflicting millions of people on Earth and astronauts crews in space by testing an experimental drug called NELL-1. The 40 originally designated mice lost their coveted slot and were swapped out Friday due to the scrub.

The 213-foot-tall (65-meter-tall) SpaceX Falcon 9 roared to life off pad 39A upon ignition of the 9 Merlin 1 D first stage engines generating 1.7 million pounds of liftoff thrust and successfully delivered the Dragon bolted on top to low Earth orbit on course for the space station and jam packed with three tons of essential cargo.

Loading of the densified liquid oxygen and RP-1 propellants into the Falcon 9 first and second stages starting about 70 minutes prior to ignition. Everything went off without a hitch.

Final descent of the SpaceX Falcon 9 1st stage landing as seen from the NASA Causeway under heavily overcast skies after Jun 3, 2017 launch from pad 39A at the Kennedy Space Center. The booster successfully soft landed upright at Landing Zone-1 (LZ-1) accompanied by multiple sonic booms at Cape Canaveral Air Force Station, Florida, about 8 minutes after launch to the International Space Station (ISS). Note SpaceX logo lettering visible on booster skin. Credit: Ken Kremer/kenkremer.com

Dragon reached its preliminary orbit 10 minutes after launch and deployed its power generating solar arrays. It now set out on a carefully choreographed series of thruster firings to reach the space station Monday morning.

Following stage separation at 2 min 25 sec after liftoff, the first stage began a series of three burns (boostback, entry and landing) to carry out a precision propulsive ground landing back at Cape Canaveral Air Force Station, FL at Landing Zone-1 (LZ-1).

SpaceX Falcon 9 booster starts landing leg deployment moments before precision propulsive ground touchdown at Landing Zone 1 on Canaveral Air Force Station barely eight minutes after liftoff from pad 39A on 3 June 2017 from the Kennedy Space Center in Florida on the Dragon CRS-11 resupply mission to the International Space Station for NASA. Credit: Ken Kremer/Kenkremer.com

The 156-foot-tall (47-meter-tall) first stage successfully touched down upright at LZ-1 some 8 minutes after liftoff as I witnessed from the NASA Causeway and seen in photos from myself and colleagues herein.

LZ-1 is located about 9 miles (14 kilometers) south of the starting point at pad 39A.

Descent of SpaceX Falcon 9 1st stage towards Landing Zone-1 at Cape Canaveral after Jun 3, 2017 launch from pad 39A at the Kennedy Space Center. Credit: Julian Leek

Thus overall SpaceX has now successfully recovered 11 boosters; 5 by land and 6 by sea, over the past 18 months – in a feat straight out of science fiction but aimed at drastically slashing the cost of access to space as envisioned by SpaceX billionaire CEO and founder Elon Musk.

Another significant milestone for this flight is that it features the first reuse of a previously launched Dragon. It previously launched on the CRS-4 resupply mission.

The recycled Dragon has undergone some refurbishments to requalify it for flight but most of the structure is intact, according to SpaceX VP for Mission Assurance Hans Koenigsmann.

The 20-foot high, 12-foot-diameter Dragon is carrying almost 5,970 pounds of science experiments and research instruments, crew supplies, food water, clothing, hardware, gear and spare parts to the million pound orbiting laboratory complex. This will support over 62 of the 250 research investigations and experiments being conducted by Expedition 52 and 53 crew members.

See detailed CRS-11 cargo mission cargo below.

Blastoff of SpaceX Falcon 9 with reused Dragon CRS-11 cargo craft from Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 5:07 p.m. on June 3, 2017. Credit: Julian Leek

Dragon CRS-11 marks SpaceX’s eleventh contracted commercial resupply services (CRS) mission to the International Space Station for NASA since 2012.

Falcon 9 streaked to orbit in spectacular fashion darting in and out of clouds for the hordes of onlookers and spectators who had gathered from around the globe to witness the spectacle of a rocket launch and booster landing first hand.

Recycled SpaceX Dragon CRS-11 cargo craft lifted off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 5:07 p.m. June 3, 2017 carrying 3 tons of research equipment, cargo and supplies to Earth orbit and the International Space Station. Credit: Ken Kremer/kenkremer.com

Dragon is loaded with “major experiments that will look into the human body and out into the galaxy.”

The flight will deliver investigations and facilities that study neutron stars, osteoporosis, solar panels, tools for Earth-observation, and more.

The unpressurized trunk of the spacecraft also will transport 3 payloads for science and technology experiments and demonstrations.

The truck payloads include the Roll-Out Solar Array (ROSA) solar panels, the Multiple User System for Earth Sensing (MUSES) facility which hosts Earth-viewing instruments and tools for Earth-observation and equipment to study neutron stars with the Neutron Star Interior Composition Explorer (NICER) payload.

NICER is the first ever space mission to study the rapidly spinning neutron stars – the densest objects in the universe. The launch coincidentally comes nearly 50 years after they were discovered by British astrophysicist Jocelyn Bell.

A second objective of NICER involves the first space test attempting to use pulsars as navigation beacons through technology called Station Explorer for X-Ray Timing and Navigation (SEXTANT).

Roll Out Solar Array (ROSA) is among the science investigations launching on the next SpaceX commercial resupply flight to the International Space Station, targeted for June 1, 2017.
Credits: Deployable Space Systems, Inc.

If all goes well, Dragon will arrive at the ISS 2 days after launch and be grappled by Expedition 52 astronauts Peggy Whitson and Jack Fischer using the 57.7 foot long (17.6 meter long) Canadian-built robotic arm.

They will berth Dragon at the Earth-facing port of the Harmony module.

NASA TV will begin covering the Dragon rendezvous and grappling activities starting at 8:30 a.m. Monday.

Dragon CRS-11 is SpaceX’s second contracted resupply mission to launch this year for NASA.

The prior SpaceX cargo ship launched on Feb 19, 2017 on the CRS-10 mission to the space station. CRS-10 is further noteworthy as being the first SpaceX launch of a Falcon 9 from NASA’s historic pad 39A.

Overall CRS-11 marks the 100th launch from pad 39A and the sixth SpaceX launch from this pad.

SpaceX leased pad 39A from NASA in 2014 and after refurbishments placed the pad back in service this year for the first time since the retirement of the space shuttles in 2011. To date this is the sixth SpaceX launch from this pad.

Previous launches include 11 Apollo flights, the launch of the unmanned Skylab in 1973, 82 shuttle flights and five SpaceX launches.

June 3, 2017 liftoff of SpaceX Falcon 9 with reused Dragon CRS-11 cargo craft from Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 5:07 p.m. on June 3, 2017. Credit: Jeff Seibert

Cargo Manifest for CRS-11:

TOTAL CARGO: 5970.1 lbs. / 2708 kg

TOTAL PRESSURIZED CARGO WITH PACKAGING: 3761.1 lbs. / 1665 kg
• Science Investigations 2356.7 lbs. / 1069 kg
• Crew Supplies 533.5 lbs. / 242 kg
• Vehicle Hardware 438.7 lbs. / 199 kg
• Spacewalk Equipment 123.4 lbs. / 56 kg
• Computer Resources 59.4 lbs. / 27 kg

UNPRESSURIZED 2209.0 lbs. / 1002 kg
• Roll-Out Solar Array (ROSA) 716.5 lbs. / 325 kg
• Neutron Star Interior Composition Explorer (NICER) 820.1 lbs. / 372 kg
• Multiple User System for Earth Sensing (MUSES) 672.4 lbs. / 305 kg

Watch for Ken’s onsite CRS-11 mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 booster starts landing leg deployment moments before precision propulsive ground touchdown at Landing Zone 1 on Canaveral Air Force Station barely eight minutes after liftoff from pad 39A on 3 June 2017 from the Kennedy Space Center in Florida on the Dragon CRS-11 resupply mission to the International Space Station for NASA. Credit: Ken Kremer/Kenkremer.com
Launch of SpaceX Falcon 9 with reused Dragon CRS-11 cargo craft from Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 5:07 p.m. on June 3, 2017 as seen from the Countdown clock at the KSC Press Site. Credit: Jean Wright
Up close view of SpaceX Dragon CRS-11 resupply vessel atop Falcon 9 rocket and delivering 3 tons of science and supplies to the International Space Station (ISS) for NASA. Liftoff occurred 3 June 2017. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 rocket goes erect to launch position atop Launch Complex 39A at the Kennedy Space Center on 1 Jun 2017 as seen the morning before later afternoon launch from inside from the pad perimeter. Liftoff of the CRS-11 resupply mission to the International Space Station (ISS) occurred 3 June 2017. Credit: Ken Kremer/Kenkremer.com