NASA and Boeing Release New Rendering of their X-66 Sustainable Experimental Airliner

Artist’s concept of the X-66 aircraft that Boeing will produce through NASA’s Sustainable Flight Demonstrator project. Credit: NASA

Climate change is arguably the single greatest threat facing the world today. According to the Sixth Assessment Report (AR6) by the UN Intergovernmental Panel on Climate Change (IPCC), average global temperatures are set to increase between 1.5 and 2 °C (2.7 to 3.6 °F) by mid-century. To restrict global temperatures to an increase of 1.5 C and avoid the worst-case scenarios, the nations of the world need to achieve net zero emissions by then. Otherwise, things will get a lot worse before they get better, assuming they ever do.

This means transitioning to cleaner methods in terms of energy, transportation, and aviation. To meet our climate commitments, the aviation industry is developing technology to significantly reduce air travel’s carbon footprint. To help meet this goal, NASA and Boeing have come together to create the X-66 Sustainable Experimental Airliner, the first experimental plane specifically focused on helping the U.S. achieve net-zero aviation. Last week, NASA released a new rendering of the concept, giving the public an updated look at the future of air travel.

Continue reading “NASA and Boeing Release New Rendering of their X-66 Sustainable Experimental Airliner”

Shhh, NASA Reveals its New Quiet Supersonic Aircraft

NASA’s X-59 quiet supersonic research aircraft sits on the apron outside Lockheed Martin’s Skunk Works facility at dawn in Palmdale, California. The X-59 is the centerpiece of NASA’s Quesst mission, which seeks to address one of the primary challenges to supersonic flight over land by making sonic booms quieter. Lockheed Martin Skunk Works

The term space plane conjurs up all sorts of images and NASA, with their new X-59 (even the name sounds mysterious) they have definitely not dissapointed. Their new quiet supersonic aircraft has been designed to minimise the sonic boom it creates when it crosses the speed of sound. It will fly at 1.4 times the speed of sound and is set for its maiden flight later this year. 

Continue reading “Shhh, NASA Reveals its New Quiet Supersonic Aircraft”

The SpaceX Starship Could Fly This Summer!

Credit: Elon Musk

SpaceX is really coming along with its development of the Starship and Super Heavy launch system. After repeated delays caused by structural failures (aka. explosions), the company got back on track late in April when their fourth prototype (SN4) passed the crucial cryogenic load test. This was followed by a successful static fire test on May 4th, followed by a second static fire test the next day.

And, after being scrubbed three times since last Friday (May 15th), SpaceX conducted the third static fire test with the SN4 on Tuesday, May 19th. Unfortunately, an unexpected fire near the base of the rocket caused the prototype to get a bit scorched and caused some internal damage. However, the prototype survived and is back in working order, which means SpaceX is moving ahead with more tests in preparation for a full-scale launch.

Continue reading “The SpaceX Starship Could Fly This Summer!”

This is an Actual Photograph of the Shock Waves from Supersonic Jets Interacting with Each Other

Schlieren photography images of two supersonic jets and their soundwaves. Image Credit: NASA
Schlieren photography images of two supersonic jets and their soundwaves. Image Credit: NASA

After more than 10 years of hard work, NASA has reached another milestone. We’re accustomed to NASA reaching milestones, but this one’s a little different. This one’s all about a type of photography that captures images of the flow of fluids.

Continue reading “This is an Actual Photograph of the Shock Waves from Supersonic Jets Interacting with Each Other”

Northern Lights by Drone? You Won’t Believe Your Eyes

Credit: Oli Haukur, Ozzo Photography


Northern lights over Iceland filmed by Icelandic photographer Oli Haukur using a drone. Don’t forget to expand the screen.

I knew the era of real-time northern lights video was upon us. I just didn’t think drones would get into the act this soon. What was I thinking? They’re perfect for the job! If watching the aurora ever made you feel like you could fly, well now you can in Oli Haukur’s moving, real-time footage of an amazing aurora display filmed by drone.

Oli Haukur operates the drone and camera during a test run. Credit: Oli Hauku / OZZO Photography
Oli Haukur operates the drone and camera during a test run. Credit: Oli Hauku / OZZO Photography

Haukur hooked up a Sony a7S II digital camera and ultra-wide Sigma 20mm f/1.4 lens onto his DJI Matrice 600 hexacopter. The light from the gibbous moon illuminates the rugged shoreline and crashing waves of the Reykjanes Peninsula (The Steamy Peninsula) as while green curtains of aurora flicker above.

The Sony camera is shown attached to the drone. To capture the aurora, Haukur used a fast lens, high ISO and set the frame rate to 25 frames per second (fps) or 1/25th of a second per frame. Credit: Oli Haukur / OZZO Photography
The Sony camera is shown attached to the drone. To capture the aurora, Haukur used a fast lens, high ISO and set the frame rate to 25 frames per second (fps) or 1/25th of a second per frame. Credit: Oli Haukur / OZZO Photography

When the camera ascends over a sea stack, you can see gulls take off below, surprised by the mechanical bird buzzing just above their heads. Breathtaking. You might notice at the same time a flash of light — this is from the lighthouse beacon seen earlier in the video.

To capture his the footage, Haukur used a “fast” lens (one that needs only a small amount of light to make a picture) and an ISO of 25,600. The camera is capable of ISO 400,000, but the lower ISO provided greater resolution and color quality.

Moonlight provided all the light needed to bring out the landscape.

The drone used to make the night flight. Credit: Oli Haukur
The drone used to make the night flight and aurora recording is seen up close on takeoff. Haukur, of Rejkyavik, Iceland, works as a freelance photographer and filmmaker as well as providing professional drone services in that country. Credit: Oli Haukur / OZZO Photography

Remember when ISO 1600 or 3200 was as far you dared to go before the image turned to a grainy mush? Last year Canon released a camera that can literally see in the dark with a top ISO over 4,000,000! There’s no question we’ll be seeing more live aurora and drone aurora video in the coming months. Haukur plans additional shoots this winter and early next spring. Living in Iceland, which lies almost directly beneath the permanent auroral oval, you can schedule these sort of things!

Am I allowed one tiny criticism? I want more — a minute and a half is barely enough! Haukur shot plenty but released only a taste to social media to prove it could be done and share the joy. Let’s hope he compiles the rest and makes it available for us to lose our selves in soon.

NASA’s New X-Plane Program to Bring Quiet Supersonic Flight

An illustration of what a quiet supersonic passenger aircraft might look like. Image: Lockheed Martin.
An illustration of what a quiet supersonic passenger aircraft might look like. Image: Lockheed Martin.

NASA has plans to develop new supersonic passenger aircraft that are not only quieter, but also greener and less expensive to operate. If NASA’s 2017 budget is approved, the agency will re-start their X-Plane program, the same program which was responsible for the first supersonic flight almost 70 years ago. And if all goes according to plan, the first test-model could be flying as soon as 2020.

The problem with supersonic flight—and the reason it’s banned— is the uber-loud boom that it creates. When an aircraft passes the speed of sound, a shockwave is created in the air it passes through. This shockwave can travel up to 40 kilometres (25 miles), and can even break windows. NASA thinks new aircraft designs can prevent this, and it starts with abandoning the ‘tube and wings’ model that current passenger aircraft design adheres to. It’s hoped that new designs will avoid the sonic booms that cause so much disturbance, and instead produce more of a soft thump, or supersonic ‘heartbeat.’

Another illustration of what a quiet supersonic aircraft might look like. Image: NASA/Boeing.
Another illustration of what a quiet supersonic aircraft might look like. Image: NASA/Boeing.

The image above shows what a hybrid wing-body aircraft might look like. Rather than a tube with wings attached, this design uses a unified body and wings built together. It’s powered by turbofan engines, and has vertical fins on the rear to direct sound up and away from the ground. (Just don’t ask for a window seat.)

Lockheed Martin Aeronautics has been chosen to complete a preliminary design for Quiet Supersonic Technology (QueSST.) They will have about 17 months to produce a design, which will then lead to a more detailed designing, building, and testing of a new QueSST jet, about half the size of a production aircraft. This aircraft will then have to undergo analytical testing and wind-tunnel validation.

After the design and build of QueSST will come the Low Boom Flight Demonstration (LBFD) phase. During the LBFD phase, NASA will seek community input on the aircraft’s performance and noise factor.

But noise reduction is not the only goal of NASA’s new X-Plane program. NASA administrator Charles Bolden acknowledged this when he said, “NASA is working hard to make flight greener, safer and quieter—all while developing aircraft that travel faster, and building an aviation system that operates more efficiently.” 

NASA has been working in recent years to reduce aircraft fuel consumption by 15%, and engine nitrogen oxide emissions by 75%. These goals are part of their Environmentally Responsible Aviation (ERA) project, which began in 2009. Other goals of ERA include reducing aircraft drag by 8% and aircraft weight by 10%. These goals dovetail nicely with their revamped X-Plane initiative.

It’s hard to bet against NASA. They’re one of the most effective organizations on Earth, and when they set goals, they tend to meet them. If their X-Plane program can achieve its goals, it will be a win for aircraft design, for paying customers, and for the environment.

For a look at the history of the X-Plane project, look here.

Buster the Dummy Strapped in for Mile High SpaceX Dragon Flight Test

Hans Koenigsmann, vice president of Mission Assurance at SpaceX with Jon Cowart, NASA’s CCP partner manager address the press during May 1, 2015 briefing on the Pad Abort Test of SpaceX's Dragon V2 crewed spacecraft. Credit: Julian Leek

SpaceX and NASA are just days away from a crucial test of a crew capsule escape system that will save astronauts lives in the unlikely event of a launch failure with the Falcon 9 rocket.

Buster the Dummy is already strapped into his seat aboard the SpaceX Crew Dragon test vehicle for what is called the Pad Abort Test, that is currently slated for Wednesday, May 6.

The test is critical for the timely development of the human rated Dragon that NASA is counting on to restore the US capability to launch astronauts from US soil abroad US rockets to the International Space Station (ISS) as early as 2017.

Boeing was also selected by NASA to build the CST-100 spaceship to provide a second, independent crew space taxi capability to the ISS during 2017.

The May 6 pad abort test will be performed from the SpaceX Falcon 9 launch pad from a platform at Space Launch Complex 40 (SLC-40) at Cape Canaveral Air Force Station, Florida. The test will not include an actual Falcon 9 booster.

First look at the SpaceX Crew Dragon’s pad abort vehicle set for flight test in March 2014.  Credit: SpaceX.
First look at the SpaceX Crew Dragon’s pad abort vehicle set for flight test in May 2015. Credit: SpaceX.

The SpaceX Dragon and trunk together stand about 20 feet tall and are positioned atop the launch mount at SLC-40 for what is clearly labeled as a development test to learn how the Dragon, engines and abort system perform.

Buster will soar along inside the Dragon that will be rapidly propelled to nearly a mile high height solely under the power of eight SpaceX SuperDraco engines.

The trunk will then separate, parachutes will be deployed and the capsule will splashdown about a mile offshore from Florida in the Atlantic Ocean, said Hans Koenigsmann, vice president of Mission Assurance at SpaceX during a May 1, 2015 press briefing on the pad abort test at the Kennedy Space Center, Florida.

The entire test will take about a minute and a half and recovery teams will retrieve Dragon from the ocean and bring it back on shore for detailed analysis.

The test will be broadcast live on NASA TV. The test window opens at 7 a.m. EDT May 6 and extends until 2:30 p.m. EDT. The webcast will start about 20 minutes prior to the opening of the window. NASA will also provide periodic updates about the test at their online Commercial Crew Blog.

SpaceX Dragon V2 pad abort test flight vehicle. Credit: SpaceX
SpaceX Dragon V2 pad abort test flight vehicle. Credit: SpaceX

The test is designed to simulate an emergency escape abort scenario from the test stand at the launch pad in the unlikely case of booster failing at liftoff or other scenario that would threaten astronauts inside the spacecraft.

The pad abort demonstration will test the ability of a set of eight SuperDraco engines built into the side walls of the crew Dragon to pull the vehicle away from the launch pad in a split second in a simulated emergency to save the astronauts lives in the event of a real emergency.

The SuperDraco engines are located in four jet packs around the base. Each engine produces about 15,000 pounds of thrust pounds of axial thrust, for a combined total thrust of about 120,000 pounds, to carry astronauts to safety, according to Koenigsmann.

“This is what SpaceX was basically founded for, human spaceflight,” said Hans Koenigsmann, vice president of Mission Assurance with SpaceX.

“The pad abort is going to show that we’ve developed a revolutionary system for the safety of the astronauts, and this test is going to show how it works. It’s our first big test on the Crew Dragon.”

SpaceX and NASA hope to refurbish and reuse the same Dragon capsule for another abort test at high altitude later this year. The timing of the in flight abort test hinges on the outcome of the pad abort test.

“No matter what happens on test day, SpaceX is going to learn a lot,” said Jon Cowart, NASA’s partner manager for SpaceX. “One test is worth a thousand good analyses.”

Meet Dragon V2 - SpaceX CEO Elon pulls the curtain off manned Dragon V2 on May 29, 2014 for worldwide unveiling of SpaceX's new astronaut transporter for NASA. Credit: SpaceX
Meet Dragon V2 – SpaceX CEO Elon pulls the curtain off manned Dragon V2 on May 29, 2014 for worldwide unveiling of SpaceX’s new astronaut transporter for NASA. Credit: SpaceX

Beside Buster the dummy, who is human-sized, the Dragon is outfitted with 270 sensors to measure a wide range of vehicle, engine, acceleration and abort test parameters.

“There’s a lot of instrumentation on this flight – a lot,” Koenigsmann said. “Temperature sensors on the outside, acoustic sensors, microphones. This is basically a flying instrumentation deck. At the end of the day, that’s the point of tests, to get lots of data.”

Buster will be accelerated to a force of about 4 to 4½ times the force of Earth’s gravity, noted Koenigsmann.

The pad abort test is being done under SpaceX’s Commercial Crew Integrated Capability (CCiCap) agreement with NASA that will eventually lead to certification of the Dragon for crewed missions to low Earth orbit and the ISS.

“The point is to gather data – you don’t have to have a flawless test to be successful,” Cowart said.

The second Dragon flight test follows later in the year, perhaps in the summer. It will launch from a SpaceX pad at Vandenberg Air Force Base in California and involves simulating an in flight emergency abort scenario during ascent at high altitude at maximum aerodynamic pressure (Max-Q) at about T plus 1 minute, to save astronauts lives.

The pusher abort thrusters would propel the capsule and crew safely away from a failing Falcon 9 booster for a parachute assisted splashdown into the Ocean.

Koenigsmann notes that the SpaceX abort system provides for emergency escape all the way to orbit, unlike any prior escape system such as the conventional launch abort systems (LAS) mounted on top of the capsule.

“Whatever happens to Falcon 9, you will be able to pull out the astronauts and land them safely on this crew Dragon,” said Koenigsmann. “In my opinion, this will make it the safest vehicle that you can possibly fly.”

The SpaceX Dragon V2 and Boeing CST-100 vehicles were selected by NASA last fall for further funding under the auspices of the agency’s Commercial Crew Program (CCP), as the worlds privately developed spaceships to ferry astronauts back and forth to the International Space Station (ISS).

Both SpaceX and Boeing plan to launch the first manned test flights to the ISS with their respective transports in 2017.

During the Sept. 16, 2014 news briefing at the Kennedy Space Center, NASA Administrator Charles Bolden announced that contracts worth a total of $6.8 Billion were awarded to SpaceX to build the manned Dragon V2 and to Boeing to build the manned CST-100.

The next Falcon 9 launch is slated for mid-June carrying the CRS-7 Dragon cargo ship on a resupply mission for NASA to the ISS. On April 14, a flawless Falcon 9 launch boosted the SpaceX CRS-6 Dragon to the ISS.

SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT  on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com

There was no attempt to soft land the Falcon 9 first stage during the most recent launch on April 27. Due to the heavy weight of the TurkmenÄlem52E/MonacoSat satellite there was not enough residual fuel for a landing attempt on SpaceX’s ocean going barge.

The next landing attempt is set for the CRS-7 mission.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Hans Koenigsmann, vice president of Mission Assurance at SpaceX during CRS-6 mission media briefing in April 2015 at the Kennedy Space Center.  Credit: Ken Kremer/kenkremer.com
Hans Koenigsmann, vice president of Mission Assurance at SpaceX during CRS-6 mission media briefing in April 2015 at the Kennedy Space Center. Credit: Ken Kremer/kenkremer.com

By Boots or Bots? How Shall We Explore?

Over forty years separate the step made by an Apollo astronaut and the cleated wheel of the Curiosity Rover on Mars. (Photo Credits: NASA)

With robotic spacecraft, we have explored, discovered and expanded our understanding of the Solar System and the Universe at large. Our five senses have long since reached their limits and cannot reveal the presence of new objects or properties without the assistance of extraordinary sensors and optics. Data is returned and is transformed into a format that humans can interpret.

Humans remain confined to low-Earth orbit and forty-three years have passed since humans last escaped the bonds of Earth’s gravity. NASA’s budget is divided between human endeavors and robotic and each year there is a struggle to find balance between development of software and hardware to launch humans or carry robotic surrogates. Year after year, humans continue to advance robotic capabilities and artificial intelligence (A.I.), and with each passing year, it becomes less clear how we will fit ourselves into the future exploration of the Solar System and beyond.

On July 21, 1969, Neil Armstrong photographed Buzz Aldrin on the Moon. The Apollo 13 astronauts hold the record as having been the most distant humans from Earth - 249,205 miles. Since December 1972, 42 years, the furthest humans have traveled from Earth is 347 miles - to service the Hubble space telescope. The Mars Science Laboratory, Curiosity Rover resides at least 34 million miles and as far as 249 million from Earth, while the Voyager 1 probe is 12,141,887,500 miles from Earth. Having traveled billions of miles and peered through billions of light years of space, NASA robotic vehicles have rewritten astronomical textbooks.(Photo Credits: NASA)
On July 21, 1969, Neil Armstrong photographed Buzz Aldrin on the Moon. The Apollo 13 astronauts hold the record as having been the most distant humans from Earth – 249,205 miles. Since December 1972, 42 years, the furthest humans have traveled from Earth is 347 miles (equivalent to SF to LA) – to service the Hubble space telescope. The Mars Science Laboratory, Curiosity Rover resides at least 34 million miles and as far as 249 million from Earth, while the Voyager 1 probe is 12,141,887,500 miles from Earth. Having traveled billions of miles and peered into billions of light years of space, NASA robotic vehicles have rewritten astronomical textbooks.(Photo Credits: NASA)

Is it a race in which we are unwittingly partaking that places us against our inventions? And like the aftermath of the Kasparov versus Deep Blue chess match, are we destined to accept a segregation as necessary? Allow robotics, with or without A.I., to do what they do best – explore space and other worlds?

In May 1997, Garry Kasparov accepted a rematch with Deep Blue and lost. In the 17 years since the defeat, the supercomputing power has increased by a factor of 50,000 (FLOPS). Furthermore, Chess software has steadily improved. Advances in space robotics have not relied on sheer computing performance but rather from steady advances in reliability, memory storage, nanotechnology, material science, software and more. (Photo Credit: Reuters)
In May 1997, Garry Kasparov accepted a rematch with Deep Blue and lost. In the 17 years since the defeat, super-computing power has increased by a factor of 50,000 (FLOPS). Furthermore, Chess software has steadily improved. Advances in space robotics have not relied on sheer computing performance but rather from steady advances in reliability, memory storage, nanotechnology, material science, software and more. (Photo Credit: Reuters)

Should we continue to find new ways and better ways to plug ourselves into our surrogates and appreciate with greater detail what they sense and touch? Consider how naturally our children engross themselves in games and virtual reality and how difficult it is to separate them from the technology. Or is this just a prelude and are we all antecedents of future Captain Kirks and Jean Luc Picards?

The NASA 2015 budget passed on December 13, 2014, a part of the Continuing Resolution & Omnibus Bill (HR 83). Distribution of funds, percent of the total budget, percent change relative to the 2014 budget and relative to the White House proposed 2015 budget are shown. (Credit: T.Reyes)
The NASA 2015 budget passed on December 13, 2014, as part of the Continuing Resolution & Omnibus Bill (HR 83). Each  chart segment lists the allocated funds, the percent of the total budget, the percent change relative to NASA’s 2014 budget and percent change relative to the 2015 White House budget request. (Credit: T.Reyes)

Approximately 55% of the NASA budget is in the realm of human spaceflight (HSF). This includes specific funds for Orion and SLS and half measures of supporting segments of the NASA agency, such as Cross-Agency Support, Construction and Maintenance. In contrast, appropriations for robotic missions – project development, operations, R&D – represent 39% of the budget.

The appropriation of funds has always favored human spaceflight, primarily because HSF requires costlier, heavier and more complex systems to maintain humans in the hostile environment of space. And while NASA budgets are not nearly weighted 2-to-1 in favor of human spaceflight, few would contest that the return on investment (ROI) is over 2-to-1 in favor of robotic driven exploration of space. And many would scoff at this ratio and counter that 3-to-1 or 4-to-1 is closer to the advantage robots have over humans.

For NASA enthusiasts, NASA Administrator Charles Bolden and Texas representative Lamar Smith chairman of the Committee on Science, Space and Technology in the 113th Congress have raised CSPAN coverage to episodes of high drama. The lines of questioning and decision making define the line in the sand between Capital Hill and the White House's vision of NASA's future. (Credit: CSPAN,Getty Images)
For NASA enthusiasts, NASA Administrator Charles Bolden and Texas representative Lamar Smith, chairman of the Committee on Science, Space and Technology in the 113th Congress, have raised CSPAN coverage to moments of high drama. The lines of questioning and decision making define the line in the sand between Capital Hill and the White House’s vision of NASA’s future. (Credit: CSPAN,Getty Images)

Politics play a significantly bigger role in the choice of appropriations to HSF compared to robotic missions. The latter is distributed among smaller budget projects and operations and HSF has always involved large expensive programs lasting decades. The big programs attract the interest of public officials wanting to bring capital and jobs to their districts or states.

NASA appropriations are complicated further by a rift between the White House and Capitol Hill along party lines. The Democrat-controlled White House has favored robotics and the use of private enterprise to advance NASA while Republicans on the Hill have supported the big human spaceflight projects; further complications are due to political divisions over the issue of Climate Change. How the two parties treat NASA is the opposite to, at least, how the public perceives the party platforms – smaller government or more social programs, less spending and supporting private enterprise. This tug of war is clearly seen in the NASA budget pie chart.

The House reduced the White House request for NASA Space Technology by 15% while increasing the funds for Orion and SLS by 16%. Space Technology represents funds that NASA would use to develop the Asteroid Redirect Mission (ARM), which the Obama administration favors as a foundation for the first use of SLS as part of a human mission to an asteroid. In contrast, the House appropriated $100 million to the Europa mission concept. Due to the delays of Orion and SLS development and anemic funding of ARM, the first use of SLS could be to send a probe to Europa.

While HSF appropriations for Space Ops & Exploration (effectively HSF) increased ~6% – $300 million, NASA Science gained ~2% – $100 million over the 2014 appropriations; ultimately set by Capitol Hill legislators. The Planetary Society, which is the Science Mission Directorate’s (SMD) staunchest supporter, has expressed satisfaction that the Planetary Science budget has nearly reached their recommended $1.5 billion. However, the increase is delivered with the requirement that $100 million shall be used for Europa concept development and is also in contrast to cutbacks in other segments of the SMD budget.

Note also that NASA Education and Public Outreach (EPO) received a significant boost from Republican controlled Capital Hill. In addition to the specific funding – a 2% increase over 2014 and 34% over the White House request, there is $42 million given specifically to the Science Mission Directorate (SMD) for EPO. The Obama Adminstration has attempted to reduce NASA EPO in favor of a consolidated government approach to improve effectiveness and reduce government.

The drive to explore beyond Earth’s orbit and set foot on new worlds is not just a question of finances. In retrospect, it was not finances at all and our remaining shackles to Earth was a choice of vision. Today, politicians and administrators cannot proclaim ‘Let’s do it again! Let’s make a better Shuttle or a better Space Station.’ There is no choice but to go beyond Earth orbit, but where?

From the Soyuz capsule, Space Shuttle Endeavour during Expedition 27 is docked to the International Space Station 220 miles above the Earth. Before Apollo 11 landed on the Moon, plans were underway to develop the next generation spacecraft that would lower the cost of human spaceflight and make trips routine. Forty years have passed since the Saturn rocket last flew and four years since the last Shuttle. Supporters on Capital Hill appear resigned to accept a replacement for the Shuttle, while inhernently safer, will cost $600 million per launch excluding the cost of the payload. SLS is destined to server both humand spaceflight and robotic missions. (Photo Credit: NASA)
From a Soyuz capsule, Space Shuttle Endeavour, during Expedition 27, is docked to the ISS, 220 miles above the Earth. Before even Apollo 11 landed on the Moon, plans were underway for the next generation spacecraft that would lower the cost of human spaceflight and make trips routine. Forty years have passed since the last Saturn rocket launch and four years since the last Shuttle. Legislators on Capital Hill appear ready to accept a replacement for the Shuttle that, while inherently safer, will cost $600 million per launch excluding the cost of the payload. The Space Launch System (SLS) is destined to serve both human spaceflight and robotic missions. (Photo Credit: NASA)

While the International Space Station program, led by NASA, now maintains a continued human presence in outer space, more people ask the question, ‘why aren’t we there yet?’ Why haven’t we stepped upon Mars or the Moon again, or anything other than Earth or floating in the void of low-Earth orbit. The answer now resides in museums and in the habitat orbiting the Earth every 90 minutes.

The retired Space Shuttle program and the International Space Station represent the funds expended on human spaceflight over the last 40 years, which is equivalent to the funds and the time necessary to send humans to Mars. Some would argue that the funds and time expended could have meant multiple human missions to Mars and maybe even a permanent presence. But the American human spaceflight program chose a less costly path, one more achievable – staying close to home.

Mars, the forbidden planet? No. The Amazing planet? Yes. Forboding? Perhaps. Radiation exposure, electronic or mechanical mishaps and years of zero or low gravity are the perils that the first Mars explorations face. But humanity's vision of landing on Mars remain just illustrations from the 1950s and 60s. Robotics encapsulated in the Mars Exploration Rover and Curiosity Rover has taken a select few virtually within arms length of the Martian surface through the panoramic views used to navigate the rovers from millions of miles away. (Photo Credit: Franklin Dixon, June 12, 1964 (left), MGM (right))
Mars, the forbidden planet? No. The Amazing planet? Yes. Foreboding? Perhaps. Radiation exposure, electronic or mechanical mishaps and years of zero or low gravity are the perils that the first Mars explorers face. But humanity’s vision of landing on Mars remains just illustrations from the ’50s and ’60s. A select few – Mars Rover navigators – have experienced the surface of Mars in virtual reality. (Photo Credits: Franklin Dixon, June 12, 1964 (left), MGM (right))

Ultimately, the goal is Mars. Administrators at NASA and others have become comfortable with this proclamation. However, some would say that it is treated more as a resignation. Presidents have been defining the objectives of human spaceflight and then redefining them. The Moon, Lagrangian Points or asteroids as waypoints to eventually land humans on Mars. Partial plans and roadmaps have been constructed by NASA and now politicians have mandated a roadmap. And politicians forced continuation of development of a big rocket; one which needs a clear path to justify its cost to taxpayers. One does need a big rocket to get anywhere beyond low-Earth orbit. However, a cancellation of the Constellation program – to build the replacement for the Shuttle and a new human-rated spacecraft – has meant delays and even more cost overruns.

During the ten years that have transpired to replace the Space Shuttle, with at least five more years remaining, events beyond the control of NASA and the federal government have taken place. Private enterprise is developing several new approaches to lofting payloads to Earth orbit and beyond. More countries have taken on the challenge. Spearheading this activity, independent of NASA or Washington plans, has been Space Exploration Technologies Corporation (SpaceX).

The launch of a SpaceX Falcon 9 is scheduled for Tuesday, December 5, 2015 and will include the return to Earth of the 1st stage Falcon core. Previous attempts landed the core into the Atlantic while this latest attempt will use a barge to attempt a full recovery. The successful soft landing and reuse of Falcon cores will be a major milestone in the history of spaceflight. (Photo Credits: SpaceX)
The launch of a SpaceX Falcon 9 is scheduled for Tuesday, December 5, 2015 and will include the return to Earth of the 1st stage Falcon core. Previous attempts landed the core into the Atlantic while this latest attempt will use a barge to attempt a full recovery. The successful soft landing and reuse of Falcon cores will be a major milestone in the history of spaceflight. (Photo Credits: SpaceX)

SpaceX’s Falcon 9 and soon to be Falcon Heavy represent alternatives to what was originally envisioned in the Constellation program with Ares I and Ares V. Falcon Heavy will not have the capability of an Ares V but at roughly $100 million per flight versus $600 million per flight for what Ares V has become – the Space Launch System (SLS) – there are those that would argue that ‘time is up.’ NASA has taken too long and the cost of SLS is not justifiable now that private enterprise has developed something cheaper and done so faster. Is Falcon Nine and Heavy “better”, as in NASA administrator Dan Golden’s proclamation – ‘Faster, Better, Cheaper’? Is it better than SLS technology? Is it better simply because its cheaper for lifting each pound of payload? Is it better because it is arriving ready-to-use sooner than SLS?

Humans will always depend on robotic launch vehicles, capsules and habitats laden with technological wonders to make our spaceflight possible. However, once we step out beyond Earth orbit and onto other worlds, what shall we do? From Carl Sagan to Steve Squyres, NASA scientists have stated that a trained astronaut could do in just weeks what the Mars rovers have required years to accomplish. How long will this hold up and is it really true?

Man versus Machine? All missions whether robotic or human spaceflight benefit mankind but the question is raised: how will human boots fit into the exploration of the universe that robotics has made possible. (Photo Credits: NASA, Illustration - J.Schmidt)
Man versus Machine? All missions whether robotic or human spaceflight benefit mankind but the question is raised: how will human boots fit into the exploration of the universe that robotics has made possible. (Photo Credits: NASA, Illustration – J.Schmidt)

Since Chess Champion Garry Kasparov was defeated by IBM’s Deep Blue, there have been 8 two-year periods representing the doubling of transistors in integrated circuits. This is a factor of 256. Arguably, computers have grown 100 times more powerful in the 17 years. However, robotics is not just electronics. It is the confluence of several technologies that have steadily developed over the 40 years that Shuttle technology stood still and at least 20 years that Space Station designs were locked into technological choices. Advances in material science, nano-technology, electro-optics, and software development are equally important.

While human decision making has been capable of spinning its wheels and then making poor choices and logistical errors, the development of robotics altogether is a juggernaut. While appropriations for human spaceflight have always surpassed robotics, advances in robotics have been driven by government investments across numerous agencies and by private enterprise. The noted futurist and inventor Ray Kurzweil who predicts the arrival of the Singularity by around 2045 (his arrival date is not exact) has emphasized that the surpassing of human intellect by machines is inevitable due to the “The Law of Accelerating Returns”. Technological development is a juggernaut.

In the same year that NASA was founded, 1958, the term Singularity was first used by mathematician John von Neumann to describe the arrival of artificial intelligence that surpasses humans.

Unknowingly, this is the foot race that NASA has been in since its creation. The mechanisms and electronics that facilitated landing men on the surface of the Moon never stopped advancing. And in that time span, human decisions and plans for NASA never stopped vacillating or stop locking existing technology into designs; suffering delays and cost overruns before launching humans to space.

David Hardy's illustration of the Daedalus Project envisioned by the British Interplanetary Society: a spacecraft to travel to the nearest stars. Advances in artificial intelligence and robotics leads one to ask who shall reside inside such a future vessel - robotic surrogates or human beings. (Credit: D. Hardy)
David Hardy’s illustration of the Daedalus Project envisioned by the British Interplanetary Society – a spacecraft to travel to the nearest stars. Advances in artificial intelligence and robotics leads one to wonder who shall reside inside such vessels of the future – robotic surrogates or human beings or something in between. (Credit: D. Hardy)

So are we destined to arrive on Mars and roam its surface like retired geologists and biologists wandering in the desert with a poking stick or rock hammer? Have we wasted too much time and has the window passed in which human exploration can make discoveries that robotics cannot accomplish faster, better and cheaper? Will Mars just become an art colony where humans can experience new sunrises and setting moons? Or will we segregate ourselves from our robotic surrogates and appreciate our limited skills and go forth into the Universe? Or will we mind meld with robotics and master our own biology just moments after taking our first feeble steps beyond the Earth?

An excerpt of page 3 of NASA's FY15 Agency Mission Planning Model (AMPM). The figure emphasizes the list of planned projects and missions for human spaceflight (HEOMD) and the Science Mission Directorate (SMD) which represents robotic development and missions. The comparison shows the cost advantage of robotics over human spaceflight. The robotic missions will amount to hundreds of years of combined mission lifetime in comparison to the HEOMD missions that are still limited to months by individual astronauts in flight.(Credit: NASA)
An excerpt of page 3 of NASA’s FY15 Agency Mission Planning Model (AMPM[alt]); a 20 year plan. This figure emphasizes the list of planned projects and missions for human spaceflight (HEOMD), orange, and the Science Mission Directorate (SMD), green, representing robotic development and missions. The lopsided list is indicative of the cost advantage of robotics over human spaceflight. The robotic missions will amount to hundreds of years of combined mission lifetime in comparison to the HEOMD missions that are still limited to months by individual astronauts in flight.(Credit: NASA)
References:

The CROmnibus Is Here with Strong Funding for NASA & NSF (AAS)

NASA Gets Big Increase in FY2015 Omnibus, NOAA Satellites Do OK (SpacePolicyOnline.com)

Here’s How Planetary Science Will Spend Its $1.44 Billion in 2015 (Planetary Society)

Mr. Fusion? Compact Fusion Reactor Will be Available in 5 Years Says Lockheed-Martin

Could the future of fusion driven rockets for interplantary or even interstellar travel be near at hand? Engineers at the Lockheed-Martin Skunk Works believe they will have a compact fusion reactor prototype operational in five years and in use within 10 years. (Illustration Credit:© David A. Hardy/www.astroart.org, Project Daedalus)

The Farnsworth Fusor; Pons and Fleishmann. It seems the trail to fusion energy has long gone cold — stone cold, that is, and not cold as in cold fusion. Despite the promise of fusion providing a sustainable and safe energy source, fusion reactors are not a dime a dozen and they won’t be replacing coal fired power plants any time soon. Or will they? Lockheed-Martin Skunk Works announced a prototype compact fusion reactor that could be ready within five years. This revelation has raised eyebrows and sparked moments of enthusiasm.

But, let’s considers this story and where it all fits in both the history and future.

For every Skunk Works project that has made the runway such as the Stealth Fighter or SR-71 Blackbird, there are untold others that never see the light of day. This adds to the surprise and mystery of Lockheed-Martin’s willingness to release images and a detailed narrative describing a compact fusion reactor project. The impact that such a device would have on humanity can be imagined … and at the same time one imagines how much is unimaginable.

Lockheed-Martin engineers in the Skunkworks prepare a vessel, one component of an apparatus that they announced will lead to nuclear fusion in a truck-sized reactor within 5 years. An international effort is underway in Europe to create the worlds first practical tokamak fusion reactor, a much larger and costlier design that has never achieved the long sought "breakeven" point. (Photo Credit: Lockheed-Martin)
Lockheed-Martin engineers in the Skunkworks prepare a vessel, one component of an apparatus that they announced will lead to nuclear fusion in a truck-sized reactor within 5 years. An international effort is underway in Europe to create the world’s first practical tokamak fusion reactor, a much larger and costlier design that has never achieved the long sought “breakeven” point. (Photo Credit: Lockheed-Martin)

The program manager of the Skunk Works’ compact fusion reactor experiment is Tom Maguire. Maguire and his team places emphasis on the turn-around time for modifying and testing the compact fusion device. With the confidence they are expressing in their design and the ability to quickly build, test and modify, they are claiming only five years will be needed to reach a prototype.

What exactly the prototype represents was left unexplained, however. Maguire continues by saying that in 10 years, the device will be seen in military applications and in 20 years it will be delivered to the world as a replacement for the dirty energy sources that are in use today. Military apps at 10 years means that the device will be too expensive initially for civilian operations but such military use would improve performance and lower costs which could lead to the 20 year milestone moment if all goes as planned.

Their system uses magnetic confinement, the same basic principle behind the tokamak toroidal plasma confinement system that has received the greatest attention and government funding for over 50 years.

The ITER Tokamak Fusion Reactor is expected to begin operational testing in 2020 and begin producing deuterium-tritium fusion reactions in 2027. (Credits: ITER, Illus. T.Reyes)
The ITER Tokamak Fusion Reactor is expected to begin operational testing in 2020 and begin producing deuterium-tritium fusion reactions in 2027. (Credits: ITER, Illus. T.Reyes)

The International Thermonuclear Experimental Reactor (ITER) is currently under construction in Europe under the assumption that it will be the first net energy producing fusion generator ever. It is funded by the European Union, India, Japan, People’s Republic of China, Russia, South Korea and the United States. But there are cost over-runs and its price has gone from $5 billion to $50 billion.

ITER is scheduled to begin initial testing in 2019 about the time Lockheed-Martin’s compact fusion reactor prototype is expected. If Lockheed-Martin succeeds in their quest, they will effectively have skunked ITER and laid to waste a $50 billion international effort at likely 1/1000th the cost.

There are a few reasons Lockheed-Martin has gone out on a limb. Consider the potential. One ton of Uranium used in Fission reactors has as much energy as 1,500 tons of coal. But fission reactors produce radioactive waste and are a finite resource without breeder reactors, themselves a nuclear proliferation risk. Fusion produces 3 to 4 times more energy per reaction than fission. Additionally, the fuel — isotopes of hydrogen — is available from sea water — which is nearly limitless — and the byproducts are far less radioactive than with fission. Fusion generators once developed could provide our energy needs for millions of years.

More pragmatically, corporations promote their R&D. They are in a constant state of competition. They present a profile that ranges from the practical to the cutting edge to instill confidence in their Washington coffers. Furthermore, their competitors have high profile individuals and projects. A fusion project demonstrates that Lockheed-Martin is doing more than creating better mouse-traps.

To date, no nuclear fusion reactor has achieved breakeven. This is when the fusion device outputs as much energy as is input to operate it. Magnetic confinement such as the various tokamak designs, Lawrence Livermore’s laser-based inertial confinement method, and even the simple Philo Farnsworth Fusor can all claim to be generating energy from fusion reactions. They are just all spending more energy than their devices output.

An example of a homemade Fusor. Originally invented in the 1960s by the inventor of the television, Philo Farnsworth. (Credit: Wikipedia, W.Jack)
An example of a homemade Fusor. Originally invented in the 1960s by the inventor of the television, Philo Farnsworth. (Credit: Wikipedia, W.Jack)

The fusor, invented in the 1960s by Farnsworth and Hirsh, is a electrostatic plasma confinement system. It uses electric fields to confine and accelerate ions through a central point at which some ions will collide with sufficient energy to fuse. Although the voltage needed is readily achieved by amateurs – about 4000 volts – not uncommon in household devices, no fusor has reached breakeven and theoretically never will. The challenge to reaching breakeven involves not just energy/temperature but also plasma densities. Replicating conditions that exist in the core of stars in a controllable way is not easy. Nevertheless, there is a robust community of “fusioneers” around the world and linked by the internet.

Mr Fusion, the compact fusion reactor that drove the 21st Century version of the DeLorian in Back to the Future. The movie trilogy grossed $1 billion at the box office. Mr Fusion could apparently function off of any water bearing material. (Credit: Universal Pictures)
Mr Fusion, the compact fusion reactor that drove the 21st Century version of the DeLorean in Back to the Future. The movie trilogy grossed $1 billion at the box office. Mr Fusion could apparently function off of any water bearing material. (Credit: Universal Pictures)

It remains to be seen who, what and when a viable fusion reactor will be demonstrated. With Lockheed-Martin’s latest announcement, once again, fusion energy is “just around the corner.” But many skeptics remain who will quickly state that commercial fusion energy remains 50 years in the future. So long as Maguire’s team meets milestones with expected performance improvements, their work will go on. The potential of fusion energy remains too great to dismiss categorically.

Source: Lockheed-Martin Products Page, Compact Fusion

SpaceX Starts 2014 With Spectacular Private Rocket Success Delivering Thai Satellite to Orbit – Gallery

Blastoff of 1st Falcon 9 rocket in 2014 with Thaicom 6 commercial satellite from Cape Canaveral, FL on Jan. 6. Credit: Jeff Seibert

SpaceX began 2014 with a spectacular big bang for private space today, Jan. 6, when the firms next generation Falcon 9 rocket blasted off for the first time this year and successfully delivered the Thaicom 6 commercial broadcasting satellite to its target orbit.

The new, next generation Falcon 9 rocket lifted off at 5:06 p.m. EST (2206 GMT) from Cape Canaveral Air Force Station, Florida with the Thai payload.

The sunset SpaceX launch from the Florida Space Coast took place precisely on time with ignition of the nine Merlin 1-D first stage engines at Space Launch Complex 40.

TCom6-01

The launch was broadcast live via a SpaceX webcast.

The nine engines on the 224 foot tall Falcon 9 v1.1 rocket generate 1.3 million pounds of thrust, about 50% more than the initial Falcon 9.

The second stage Merlin vacuum engine fired twice as planned.

The first firing began approximately 184 seconds into flight and lasted five minutes and 35 second to deliver Thaicom 6 into its parking orbit.

Clearing the strongback, the Thaicom 6/Falcon 9 mission roars from the pad in its quest for supergeosync orbit. Credit: nasatech.net
Clearing the strongback, the Thaicom 6/Falcon 9 mission roars from the pad in its quest for supergeosync orbit. Credit: nasatech.net

The engine relit for a second burn eighteen minutes later and lasted just over one minute to carry the satellite to its final geostationary transfer orbit.

The restart of the Falcon 9 second stage is a requirement for all geostationary transfer missions.

Falcon 9 rocket soar to space with Thaicom 6 commercial satellite on Jan 6, 2014 from Cape Canaveral, FL. Credit: Jeff Seibert
Falcon 9 rocket soars to space with Thaicom 6 commercial satellite on Jan 6, 2014 from Cape Canaveral, FL. Credit: Jeff Seibert

31 minutes after liftoff the Thaicom 6 spacecraft separated from the Falcon 9 launch vehicle and was placed into the desired geosynchronous transfer orbit of 295 x 90,000 km geosynchronous at 22.5 degrees inclination.

SpaceX said in a statement that, “The Falcon 9 launch vehicle performed as expected, meeting 100% of mission objectives.”

SpaceX did not attempt to recover the first stage booster on this mission, SpaceX spokeswoman Emily Shanklin told me. “We may try on the next flight.”

Thaicom 6 commercial broadcasting satellite in geosynchronous orbit, artists concept
Thaicom 6 commercial broadcasting satellite in geosynchronous orbit, artists concept

This marks the second launch of the upgraded Falcon 9 in just over a month, following closely on the heels of the maiden flight from Cape Canaveral on Dec. 3 with another commercial satellite, namely SES-8.

“Today’s successful launch of the THAICOM 6 satellite marks the eighth successful flight in a row for Falcon 9,” said Gwynne Shotwell, President of SpaceX. “SpaceX greatly appreciates THAICOM’s support throughout this campaign and we look forward to a busy launch schedule in 2014.”

Both the Thaicom-6 and SES-8 satellites were built by Orbital Sciences, one of SpaceX’s chief competitors in the commercial space race, making for strange bedfellows.

Thaicom 6 patch
Thaicom 6 patch

Indeed it’s a very busy week for private rockets.

Orbital Sciences is poised to launch their Antares rocket in less than 48 hours on Wednesday, Jan. 8 on a commercial resupply mission for NASA that’s bound for the international Space Station (ISS).

The new Falcon 9 is the key to fulfilling SpaceX’s future launch manifest of nearly 50 payloads worth billions of dollars for a diverse customer base.

Next Generation SpaceX Falcon 9 rocket blasts off with SES-8 communications satellite on Dec. 3, 2013 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
Next Generation SpaceX Falcon 9 rocket blasts off with SES-8 communications satellite on Dec. 3, 2013 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

The next gen Falcon 9 will also launch the human rated SpaceX Dragon to the ISS in a bid to restore America’s human spaceflight capability.

A pair of critical Falcon 9/Dragon abort tests are planned for 2014. Read my new article and discussion with SpaceX CEO Elon Musk – here.

The next SpaceX Dragon cargo launch to the ISS is currently scheduled for Feb. 22, said SpaceX spokeswoman Emily Shanklin told Universe Today.

Sunset launch of Falcon 9 with Thiacom 6 broadcast satellite on Jan 6, 2014 from Cape Canaveral, FL.   Credit: Jeff Seibert
Sunset launch of Falcon 9 with Thiacom 6 broadcast satellite on Jan 6, 2014 from Cape Canaveral, FL. Credit: Jeff Seibert

Almost clear of the catenary wires, the Thaicom 6/Falcon 9 mission streaks to orbit. Credit: nasatech.net
Almost clear of the catenary wires, the Thaicom 6/Falcon 9 mission streaks to orbit. Credit: nasatech.net

Stay tuned here for Ken’s continuing SpaceX, Orbital Sciences, commercial space, Chang’e-3, LADEE, Mars and more news.

Ken Kremer

…………….

Learn more about SpaceX, Orbital Sciences Antares Jan. 8 launch, Curiosity, Orion, MAVEN, MOM, Mars rovers and more at Ken’s upcoming presentations

Jan 7-9: “Antares/Cygnus ISS Rocket Launch from Virginia on Jan. 8” & “Space mission updates”; Rodeway Inn, Chincoteague, VA, evening

Falcon 9 rocket disappears into the clouds following blastoff on Jan. 6, 2014 from Cape Canaveral, FL. Credit: Jeff Seibert
Falcon 9 rocket disappears into the clouds following blastoff on Jan. 6, 2014 from Cape Canaveral, FL. Credit: Jeff Seibert

Blastoff of 1st Falcon 9 rocket in 2014 with Thaicom 6 commercial satellite from Cape Canaveral, FL on Jan. 6. Credit: SpaceX
Blastoff of 1st Falcon 9 rocket in 2014 with Thaicom 6 commercial satellite from Cape Canaveral, FL on Jan. 6. Credit: SpaceX