Dark Matter is rightly called one of the greatest mysteries in the Universe. In fact, so mysterious is it, that we here in the opulent sky-scraper offices of Universe Today often joke that it should be called “Dark Mystery.” But that sounds like a cheesy History Channel show, and here at Universe Today we don’t like cheesy, so Dark Matter it remains.
Though we still don’t know what exactly Dark Matter is, we keep learning more about how it interacts with the rest of the Universe, and nibbling around at the edges of what it might be. But before we get into the latest news about Dark Matter, it’s worth stepping back a bit to remind ourselves of what is known about Dark Matter.
Evidence from cosmology shows that about 25% of the mass of the Universe is Dark Matter, also known as non-baryonic matter. Baryonic matter is ‘normal’ matter, which we are all familiar with. It’s made up of protons and neutrons, and it’s the matter that we interact with every day.
Cosmologists can’t see the 25% of matter that is Dark Matter, because it doesn’t interact with light. But they can see the effect it has on the large scale structure of the Universe, on the cosmic microwave background, and in the phenomenon of gravitational lensing. So they know it’s there.
Large galaxies like our own Milky Way are surrounded by what is called a halo of Dark Matter. These huge haloes are in turn surrounded by smaller sub-haloes of Dark Matter. These sub-haloes have enough gravitational force to form dwarf galaxies, like the Milky Way’s own Sagittarius and Canis Major dwarf galaxies. Then, these dwarf galaxies themselves have their own Dark Matter haloes, which at this scale are now much too small to contain gas or stars. Called dark satellites, these smaller haloes are of course invisible to telescopes, but theory states they should be there.
But proving that these dark satellites are even there requires some evidence of the effect they have on their host galaxies.
Now, thanks to Laura Sales, who is an assistant professor at the University of California, Riverside’s, Department of Physics and Astronomy, and her collaborators at the Kapteyn Astronomical Institute in the Netherlands, Tjitske Starkenberg and Amina Helmi, there is more evidence that these dark satellites are indeed there.
Their paper shows that when a dark satellite is at its closest point to a dwarf galaxy, the satellite’s gravitational influence compresses the gas in the dwarf. This causes a sustained period of star formation, called a starburst, that can last for billions of years.
Their modelling suggests that dwarf galaxies should be exhibiting a higher rate of star formation than would otherwise be expected. And observation of dwarf galaxies reveals that that is indeed the case. Their modelling also suggests that when a dark satellite and a dwarf galaxy interact, the shape of the dwarf galaxy should change. And again, this is born out by the observation of isolated spheroidal dwarf galaxies, whose origin has so far been a mystery.
The exact nature of Dark Matter is still a mystery, and will probably remain a mystery for quite some time. But studies like this keep shining more light on Dark Matter, and I encourage readers who want more detail to read it.
Way up in the constellation Cancer there’s a 14th magnitude speck of light you can claim in a 10-inch or larger telescope. If you saw it, you might sniff at something so insignificant, yet it represents the final farewell of chewed up stars as their remains whirl down the throat of an 18 billion solar mass black hole, one of the most massive known in the universe.
Astronomers know the object as OJ 287, a quasar that lies 3.5 billion light years from Earth. Quasars or quasi-stellar objects light up the centers of many remote galaxies. If we could pull up for a closer look, we’d see a brilliant, flattened accretion disk composed of heated star-stuff spinning about the central black hole at extreme speeds.
As matter gets sucked down the hole, jets of hot plasma and energetic light shoot out perpendicular to the disk. And if we’re so privileged that one of those jet happens to point directly at us, we call the quasar a “blazar”. Variability of the light streaming from the heart of a blazar is so constant, the object practically flickers.
A recent observational campaign involving more than two dozen optical telescopes and NASA’s space based SWIFT X-ray telescope allowed a team of astronomers to measure very accurately the rotational rate the black hole powering OJ 287 at one third the maximum spin rate — about 56,000 miles per second (90,000 kps) — allowed in General Relativity A careful analysis of these observations show that OJ 287 has produced close-to-periodic optical outbursts at intervals of approximately 12 years dating back to around 1891. A close inspection of newer data sets reveals the presence of double-peaks in these outbursts.
To explain the blazar’s behavior, Prof. Mauri Valtonen of the University of Turku (Finland) and colleagues developed a model that beautifully explains the data if the quasar OJ 287 harbors not one buy two unequal mass black holes — an 18 billion mass one orbited by a smaller black hole.
OJ 287 is visible due to the streaming of matter present in the accretion disk onto the largest black hole. The smaller black hole passes through the larger’s the accretion disk during its orbit, causing the disk material to briefly heat up to very high temperatures. This heated material flows out from both sides of the accretion disk and radiates strongly for weeks, causing the double peak in brightness.
The orbit of the smaller black hole also precesses similar to how Mercury’s orbit precesses. This changes when and where the smaller black hole passes through the accretion disk. After carefully observing eight outbursts of the black hole, the team was able to determine not only the black holes’ masses but also the precession rate of the orbit. Based on Valtonen’s model, the team predicted a flare in late November 2015, and it happened right on schedule.
The timing of this bright outburst allowed Valtonen and his co-workers to directly measure the rotation rate of the more massive black hole to be nearly 1/3 the speed of light. I’ve checked around and as far as I can tell, this would make it the fastest spinning object we know of in the universe. Getting dizzy yet?
In about 4 billion years, scientists estimate that the Andromeda and the Milky Way galaxies are expected to collide, based on data from the Hubble Space Telescope. And when they merge, they will give rise to a super-galaxy that some are already calling Milkomeda or Milkdromeda (I know, awful isn’t it?) While this may sound like a cataclysmic event, these sorts of galactic collisions are quite common on a cosmic timescale.
As an international group of researchers from Japan and California have found, galactic “hookups” were quite common during the early universe. Using data from the Hubble Space Telescope and the Subaru Telescope at in Mauna Kea, Hawaii, they have discovered that 1.2 billion years after the Big Bang, galactic clumps grew to become large galaxies by merging. As part of the Hubble Space Telescope (HST) “Cosmic Evolution Survey (COSMOS)”, this information could tell us a great about the formation of the early universe.
Hundreds of galaxies hidden from sight by our own Milky Way galaxy have been studied for the first time. Though only 250 million light years away—which isn’t that far for galaxies—they have been obscured by the gas and dust of the Milky Way. These galaxies may be a tantalizing clue to the nature of The Great Attractor.
On February 9th, an international team of scientists published a paper detailing the results of their study of these galaxies using the Commonwealth Scientific and Industrial Research Organization’s (CSIRO) Parkes radio telescope, a 64 meter telescope in Australia. The ‘scope is equipped with an innovative new multi-beam receiver, which made it possible to peer through the Milky Way into the galaxies behind it.
The area around the Milky Way that is obscured to us is called the Zone of Avoidance (ZOA). This study focused on the southern portion of the ZOA, since the telescope is in Australia. (The northern portion of the ZOA is currently being studied by the Arecibo radio telescope, also equipped with the new multi-beam receiver.) The significance of their work is not that they found hundreds of new galaxies. There was no reason to suspect that galactic distribution would be any different in the ZOA than anywhere else. What’s significant is what it will tell us about The Great Attractor.
The Great Attractor is a feature of the large-scale structure of the Universe. It is drawing our Milky Way galaxy, and hundreds of thousands of other galaxies, towards it with the gravitational force of a million billion suns. The Great Attractor is an anomaly, because it deviates from our understanding of the universal expansion of the universe. “We don’t actually understand what’s causing this gravitational acceleration on the Milky Way or where it’s coming from,” said Professor Lister Staveley-Smith of The University of Western Australia, the lead author of the study.
“We know that in this region there are a few very large collections of galaxies we call clusters or superclusters, and our whole Milky Way is moving towards them at more than two million kilometres per hour.”
Professor Staveley-Smith and his team reported that they found 883 galaxies, of which over one third have never been seen before. “The Milky Way is very beautiful of course and it’s very interesting to study our own galaxy but it completely blocks out the view of the more distant galaxies behind it,” he said.
The team identified new structures in the ZOA that could help explain the movement of The Milky Way, and other galaxies, towards The Great Attractor, at speeds of up to 200 million kilometres per hour. These include three galaxy concentrations, named NW1, NW2, and NW3, and two new clusters, named CW1 and CW2.
University of Cape Town astronomer Professor Renée Kraan-Korteweg, a member of the team who did this work, says “An average galaxy contains 100 billion stars, so finding hundreds of new galaxies hidden behind the Milky Way points to a lot of mass we didn’t know about until now.”
How exactly these new galaxies affect The Great Attractor will have to wait for further quantitative analysis in a future study, according to the paper. The data from the Arecibo scope will show us the northern hemisphere of the ZOA, which will also help build our understanding. But for now, just knowing that there are hundreds of new galaxies in our region of space sheds some light on the large-scale structure of our neighbourhood in the universe.
Brace yourselves: winter is coming. And by winter I mean the slow heat-death of the Universe, and by brace yourselves I mean don’t get terribly concerned because the process will take a very, very, very long time. (But still, it’s coming.)
Based on findings from the Galaxy and Mass Assembly (GAMA) project, which used seven of the world’s most powerful telescopes to observe the sky in a wide array of electromagnetic wavelengths, the energy output of the nearby Universe (currently estimated to be ~13.82 billion years old) is currently half of what it was “only” 2 billion years ago — and it’s still decreasing.
“The Universe has basically plonked itself down on the sofa, pulled up a blanket and is about to nod off for an eternal doze,” said Professor Simon Driver from the International Centre for Radio Astronomy Research (ICRAR) in Western Australia, head of the nearly 100-member international research team.
As part of the GAMA survey 200,000 galaxies were observed in 21 different wavelengths, from ultraviolet to far-infrared, from both the ground and in space. It’s the largest multi-wavelength galaxy survey ever made.
Of course this is something scientists have known about for decades but what the survey shows is that the reduction in output is occurring across a wide range of wavelengths. The cooling is, on the whole, epidemic.
Watch a video below showing a fly-through 3D simulation of the GAMA survey:
“Just as we become less active in our old age, the same is happening with the Universe, and it’s well past its prime,” says Dr. Luke Davies, a member of the ICRAR research team, in the video.
But, unlike living carbon-based bags of mostly water like us, the Universe won’t ever actually die. And for a long time still galaxies will evolve, stars and planets will form, and life – wherever it may be found – will go on. But around it all the trend will be an inevitable dissipation of energy.
“It will just grow old forever, slowly converting less and less mass into energy as billions of years pass by,” Davies says, “until eventually it will become a cold, dark, and desolate place where all of the lights go out.”
Our own Solar System will be a quite different place by then, the Sun having cast off its outer layers – roasting Earth and the inner planets in the process – and spending its permanent retirement cooling off as a white dwarf. What will remain of Earthly organisms by then, including us? Will we have spread throughout the galaxy, bringing our planet’s evolutionary heritage with us to thrive elsewhere? Or will our cradle also be our grave? That’s entirely up to us. But one thing is certain: the Universe isn’t waiting around for us to decide what to do.
The findings were presented by Professor Driver on Aug. 10, 2015, at the IAU XXIX General Assembly in Honolulu, and have been submitted for publication in the Monthly Notices of the Royal Astronomical Society.
This article is a guest post by Anna Ho, who is currently doing research on stars in the Milky Way through a one-year Fulbright Scholarship at the Max Planck Institute for Astronomy (MPIA) in Heidelberg, Germany.
In the Milky Way, an average of seven new stars are born every year. In the distant galaxy GN20, an astonishing average of 1,850 new stars are born every year. “How,” you might ask, indignant on behalf of our galactic home, “does GN20 manage 1,850 new stars in the time it takes the Milky Way to pull off one?”
To answer this, we would ideally take a detailed look at the stellar nurseries in GN20, and a detailed look at the stellar nurseries in the Milky Way, and see what makes the former so much more productive than the latter.
But GN20 is simply too far away for a detailed look.
This galaxy is so distant that its light took twelve billion years to reach our telescopes. For reference, Earth itself is only 4.5 billion years old and the universe itself is thought to be about 14 billion years old. Since light takes time to travel, looking out across space means looking back across time, so GN20 is not only a distant, but also a very ancient, galaxy. And, until recently, astronomers’ vision of these distant, ancient galaxies has been blurry.
Consider what happens when you try to load a video with a slow Internet connection, or when you download a low-resolution picture and then stretch it. The image is pixelated. What was once a person’s face becomes a few squares: a couple of brown squares for hair, a couple of pink squares for the face. The low-definition picture makes it impossible to see details: the eyes, the nose, the facial expression.
A face has many details and a galaxy has many varied stellar nurseries. But poor resolution, a result simply of the fact that ancient galaxies like GN20 are separated from our telescopes by vast cosmic distances, has forced astronomers to blur together all of this rich information into a single point.
The situation is completely different here at home in the Milky Way. Astronomers have been able to peer deep into stellar nurseries and witness stellar birth in stunning detail. In 2006, the Hubble Space Telescope took this unprecedentedly detailed action shot of stellar birth at the heart of the Orion Nebula, one of the Milky Way’s most famous stellar nurseries:
There are over 3,000 stars in this image: The glowing dots are newborn stars that have recently emerged from their cocoons. Stellar cocoons are made of gas: thousands of these gas cocoons sit nestled in immense cosmic nurseries, which are rich with gas and dust. The central region of that Hubble image, encased by what looks like a bubble, is so clear and bright because the massive stars within have blown away the dust and gas they were forged from. Majestic stellar nurseries are scattered all over the Milky Way, and astronomers have been very successful at uncloaking them in order to understand how stars are made.
Observing nurseries both here at home and in relatively nearby galaxies has enabled astronomers to make great leaps in understanding stellar birth in general: and, in particular, what makes one nursery, or one star formation region, “better” at building stars than another. The answer seems to be: how much gas there is in a particular region. More gas, faster rate of star birth. This relationship between the density of gas and the rate of stellar birth is called the Kennicutt-Schmidt Law. In 1959, the Dutch astronomer Maarten Schmidt raised the question of how exactly increasing gas density influences star birth, and forty years later, in an illustration of how scientific dialogues can span decades, his American colleague Robert Kennicutt used data from 97 galaxies to answer him.
Understanding the Kennicutt-Schmidt Law is crucial for determining how stars form and even how galaxies evolve. One fundamental question is whether there is one rule that governs all galaxies, or whether one rule governs our galactic neighborhood, but a different rule governs distant galaxies. In particular, a family of distant galaxies known as “starburst galaxies” seems to contain particularly productive nurseries. Dissecting these distant, highly efficient stellar factories would mean probing galaxies as they used to be, back near the beginning of the universe.
Enter GN20. GN20 is one of the brightest, most productive of these starburst galaxies. Previously a pixelated dot in astronomers’ images, GN20 has become an example of a transformation in technological capability.
In December 2014, an international team of astronomers led by Dr. Jacqueline Hodge of the National Radio Astronomy Observatory in the USA, and comprising astronomers from Germany, the United Kingdom, France, and Austria, were able to construct an unprecedentedly detailed picture of the stellar nurseries in GN20. Their results were published earlier this year.
The key is a technique called interferometry: observing one object with many telescopes, and combining the information from all the telescopes to construct one detailed image. Dr. Hodge’s team used some of the most sophisticated interferometers in the world: the Karl G. Jansky Very Large Array (VLA) in the New Mexico desert, and the Plateau de Bure Interferometer (PdBI) at 2550 meters (8370 feet) above sea level in the French Alps.
With data from these interferometers as well as the Hubble Space Telescope, they turned what used to be one dot into the following composite image:
This is a false color image, and each color stands for a different component of the galaxy. Blue is ultraviolet light, captured by the Hubble Space Telescope. Green is cold molecular gas, imaged by the VLA. And red is warm dust, heated by the star formation it is shrouding, detected by the PdBI.
Unbundling one pixel into many enabled the team to determine that the nurseries in a starburst galaxy like GN20 are fundamentally different from those in a “normal” galaxy like the Milky Way. Given the same amount of gas, GN20 can churn out orders of magnitude more stars than the Milky Way can. It doesn’t simply have more raw material: it is more efficient at fashioning stars out of it.
This kind of study is currently unique to the extreme case of GN20. However, it will be more common with the new generation of interferometers, such as the Atacama Large Millimeter/submillimeter Array (ALMA).
Located 5000 meters (16000 feet) high up in the Chilean Andes, ALMA is poised to transform astronomers’ understanding of stellar birth. State-of-the-art telescopes are enabling astronomers to do the kind of detailed science with distant galaxies – ancient galaxies from the early universe – that was once thought to be possible only for our local neighborhood. This is crucial in the scientific quest for universal physical laws, as astronomers are able to test their theories beyond our neighborhood, out across space and back through time.
Turns out, we may not know our extragalactic neighbors as well as we thought.
One of the promises held forth with the purchase of our first GoTo telescope way back in the late 1990s was the ability to quickly and easily hunt down ever fainter deep sky fuzzies. No more juggling star charts and red headlamps, no more star-hopping. Heck, it was fun to just aim the scope at a favorable target field, hit ‘identify,’ and see what it turned up.
One of our more interesting ‘discoveries’ on these expeditions was NGC 2419, a globular cluster that my AstroMaster GoTo controller (featuring a 10K memory database!) triumphantly announced was an ‘Intergalactic Wanderer…’
Or is it? The case for NGC 2419 as a lonely globular wandering the cosmic void between the galaxies is a romantic and intriguing notion, and one you see repeated around the echo chamber that is the modern web. First observed by Sir William Herschel in 1788 and re-observed by his son John in 1833, the debate has swung back and forth as to whether NGC 2419 is a true globular or—as has been also suggested of the magnificent southern sky cluster Omega Centauri—the remnant of a dwarf spheroidal galaxy torn apart by our Milky Way. Lord Rosse also observed NGC 2419 with the 72-inch Leviathan of Parsonstown, and Harlow Shapley made a distance estimate of about 163,000 light years to NGC 2419 in 1922.
Today, we know that NGC 2419 is about 270,000 light years from the Sun, and about 300,000 light years from the core of our galaxy. Think of this: we actually see NGC 2419 as it appeared back in the middle of the Pleistocene Epoch, a time when modern homo sapiens were still the new hipsters on the evolutionary scene of life on Earth. What’s more, photometric studies over the past decade suggest there is a true gravitational link between NGC 2419 and the Milky Way. This would mean at its current distance, NGC 2419 would orbit our galaxy once every 3 billion years, about 75% the age of the Earth itself.
This hands down makes NGC 2419 the distant of the more than 150 globular clusters known to orbit our galaxy.
At an apparent magnitude of +9 and 6 arc minutes in size, NGC 2419 occupies an area of the sky otherwise devoid of globulars. Most tend to lie towards the galactic core as seen from our solar vantage point, and in fact, there are no bright globulars within 60 degrees of NGC 2419. The cluster sits 7 degrees north of the bright star Castor just across the border of Gemini in the constellation of the Lynx at Right Ascension 7 Hours, 38 minutes and 9 seconds and declination +38 degrees, 52 minutes and 55 seconds. Mid-January is the best time to spy NGC 2419 when it sits roughly opposite to the Sun , though June still sees the cluster 20 degrees above the western horizon at dusk before solar conjunction in mid-July.
We know globular clusters (say ‘globe’ -ular, not “glob’ -ular) are some of the most ancient structures in the universe due to their abundance of metal poor, first generation stars. In fact, it was a major mystery up until about a decade ago as to just how these clusters could appear to be older than the universe they inhabit. Today, we know that NGC 2419 is about 12.3 billion years old, and we’ve refined the age of the Universe as per data from the Planck spacecraft down to 13.73 (+/-0.12) billion years.
What would the skies look like from a planet inside NGC 2419? Well, in addition to the swarm of hundreds of thousands of nearby stars, the Milky Way galaxy itself would be a conspicuous object extending about 30 degrees across and shining at magnitude -2. Move NGC 2419 up to 10 parsecs distant, and it would rival the brightness of our First Quarter Moon and be visible in the daytime shining at magnitude -9.5.
And ironically, another 2007 study has suggested that the relative velocity of Large and Small Magellanic Clouds suggest that they may not be bound to our galaxy, but are instead first time visitors passing by.
And speaking of passing by, yet another study suggests that the Milky Way and the Andromeda galaxy set on a collision course billions of years hence may be in contact… now.
Mind not blown yet?
A 2014 study looking at extragalactic background light during a mission known as CIBER suggests that there may actually be more stars wandering the universe than are bound to galaxies…
But that’s enough paradigm-shifting for one day. Be sure to check out NGC 2419 and friends and remember, everything you learned about the universe as a kid, is likely to be false.
The merger of the Milky Way and Andromeda galaxy won’t happen for another 4 billion years, but the recent discovery of a massive halo of hot gas around Andromeda may mean our galaxies are already touching. University of Notre Dame astrophysicist Nicholas Lehner led a team of scientists using the Hubble Space Telescope to identify an enormous halo of hot, ionized gas at least 2 million light years in diameter surrounding the galaxy.
The Andromeda Galaxy is the largest member of a ragtag collection of some 54 galaxies, including the Milky Way, called the Local Group. With a trillion stars — twice as many as the Milky Way — it shines 25% brighter and can easily be seen with the naked eye from suburban and rural skies.
Think about this for a moment. If the halo extends at least a million light years in our direction, our two galaxies are MUCH closer to touching that previously thought. Granted, we’re only talking halo interactions at first, but the two may be mingling molecules even now if our galaxy is similarly cocooned.
Lehner describes halos as the “gaseous atmospheres of galaxies”. Despite its enormous size, Andromeda’s nimbus is virtually invisible. To find and study the halo, the team sought out quasars, distant star-like objects that radiate tremendous amounts of energy as matter funnels into the supermassive black holes in their cores. The brightest quasar, 3C273 in Virgo, can be seen in a 6-inch telescope! Their brilliant, pinpoint nature make them perfect probes.
“As the light from the quasars travels toward Hubble, the halo’s gas will absorb some of that light and make the quasar appear a little darker in just a very small wavelength range,” said J. Christopher Howk , associate professor of physics at Notre Dame and co-investigator. “By measuring the dip in brightness, we can tell how much halo gas from M31 there is between us and that quasar.”
Astronomers have observed halos around 44 other galaxies but never one as massive as Andromeda where so many quasars are available to clearly define its extent. The previous 44 were all extremely distant galaxies, with only a single quasar or data point to determine halo size and structure.
Andromeda’s close and huge with lots of quasars peppering its periphery. The team drew from about five years’ worth of observations of archived Hubble data to find many of the 18 objects needed for a good sample.
The halo is estimated to contain half the mass of the stars in the Andromeda galaxy itself, in the form of a hot, diffuse gas. Simulations suggest that it formed at the same time as the rest of the galaxy. Although mostly composed of ionized hydrogen — naked protons and electrons — Andromeda’s aura is also rich in heavier elements, probably supplied by supernovae. They erupt within the visible galaxy and violently blow good stuff like iron, silicon, oxygen and other familiar elements far into space. Over Andromeda’s lifetime, nearly half of all the heavy elements made by its stars have been expelled far beyond the galaxy’s 200,000-light-year-diameter stellar disk.
You might wonder if galactic halos might account for some or much of the still-mysterious dark matter. Probably not. While dark matter still makes up the bulk of the solid material in the universe, astronomers have been trying to account for the lack of visible matter in galaxies as well. Halos now seem a likely contributor.
The next clear night you look up to spy Andromeda, know this: It’s closer than you think!
Beam us up, Scotty. There’s no signs of intelligent life out there. At least, no obvious signs, according to a recent survey performed by researchers at Penn State University. After reviewing data taken by the NASA Wide-field Infrared Survey Explorer (WISE) space telescope of over 100,000 galaxies, there appears to be little evidence that advanced, spacefaring civilizations exist in any of them.
First deployed in 2009, the WISE mission has been able to identify thousands of asteroids in our solar system and previously undiscovered star clusters in our galaxy. However, Jason T. Wright, an assistant professor of astronomy and astrophysics at the Center for Exoplanets and Habitable Worlds at Penn State University, conceived of and initiated a new field of research – using the infrared data to assist in the search for signs of extra-terrestrial civilizations.
And while their first look did not yield much in the way of results, it is an exciting new area of research and provides some very useful information on one of the greatest questions ever asked: are we alone in the universe?
“The idea behind our research is that, if an entire galaxy had been colonized by an advanced spacefaring civilization, the energy produced by that civilization’s technologies would be detectable in mid-infrared wavelengths,” said Wright, “exactly the radiation that the WISE satellite was designed to detect for other astronomical purposes.”
This logic is in keeping with the theories of Russian astronomer Nikolai Kardashev and theoretical physicist Freeman Dyson. In 1964, Kardashev proposed that a civilization’s level of technological advancement could be measured based on the amount of energy that civilization is able to utilize.
To characterize the level of extra-terrestrial development, Kardashev developed a three category system – Type I, II, and III civilizations – known as the “Kardashev Scale”. A Type I civilization uses all available resources on its home planet, while a Type II is able to harness all the energy of its star. Type III civilizations are those that are advanced enough to harness the energy of their entire galaxy.
Similarly, Dyson proposed in 1960 that advanced alien civilizations beyond Earth could be detected by the telltale evidence of their mid-infrared emissions. Believing that a sufficiently advanced civilization would be able to enclose their parent star, he believed it would be possible to search for extraterrestrials by looking for large objects radiating in the infrared range of the electromagnetic spectrum.
These thoughts were expressed in a short paper submitted to the journal Science, entitled “Search for Artificial Stellar Sources of Infrared Radiation“. In it, Dyson proposed that an advanced species would use artificial structures – now referred to as “Dyson Spheres” (though he used the term “shell” in his paper) – to intercept electromagnetic radiation with wavelengths from visible light downwards and radiating waste heat outwards as infrared radiation.
“Whether an advanced spacefaring civilization uses the large amounts of energy from its galaxy’s stars to power computers, space flight, communication, or something we can’t yet imagine, fundamental thermodynamics tells us that this energy must be radiated away as heat in the mid-infrared wavelengths,” said Wright. “This same basic physics causes your computer to radiate heat while it is turned on.”
However, it was not until space-based telescopes like WISE were deployed that it became possible to make sensitive measurements of this radiation. WISE is one of three infrared missions currently in space, the other two being NASA’s Spitzer Space Telescope and the Herschel Space Observatory – a European Space Agency mission with important NASA participation.
WISE is different from these missions in that it surveys the entire sky and is designed to cast a net wide enough to catch all sorts of previously unseen cosmic interests. And there are few things more interesting than the prospect of advanced alien civilizations!
To search for them, Roger Griffith – a postbaccalaureate researcher at Penn State and the lead author of the paper – and colleagues scoured the entries in the WISE satellites database looking for evidence of a galaxy that was emitting too much mid-infrared radiation. He and his team then individually examined and categorized 100,000 of the most promising galaxy images.
And while they didn’t find any obvious signs of a Type II civilization or Dyson Spheres in any of them, they did find around 50 candidates that showed unusually high levels of mid-infrared radiation. The next step will be to confirm whether or not these signs are due to natural astronomical processes, or could be an indication of a highly advanced civilization tapping their parent star for energy.
In any case, the team’s findings were quite interesting and broke new ground in what is sure to be an ongoing area of research. The only previous study, according to the G-HAT team, surveyed only about 100 galaxies, and was unable to examine them in the infrared to see how much heat they emitted. What’s more, the research may help shed some light on the burning questions about the very existence of intelligent, extra-terrestrial life in our universe.
“Our results mean that, out of the 100,000 galaxies that WISE could see in sufficient detail, none of them is widely populated by an alien civilization using most of the starlight in its galaxy for its own purposes,” said Wright. “That’s interesting because these galaxies are billions of years old, which should have been plenty of time for them to have been filled with alien civilizations, if they exist. Either they don’t exist, or they don’t yet use enough energy for us to recognize them.”
Alas, it seems we are no closer to resolving the Fermi Paradox. But for the first time, it seems that investigations into the matter are moving beyond theoretical arguments. And given time, and further refinements in our detection methods, who knows what we might find lurking out there? The universe is very, very big place, after all.
The research team’s first research paper about their Glimpsing Heat from Alien Technologies Survey (G-HAT) survey appeared in the Astrophysical Journal Supplement Series on April 15, 2015.
This week, scientists with the Dark Energy Survey (DES) collaboration released the first in a series of detailed maps charting the distribution of dark matter inferred from its gravitational effects. The new maps confirm current theories that suggest galaxies will form where large concentrations of dark matter exist. The new data show large filaments of dark matter where visible galaxies and galaxy clusters lie and cosmic voids where very few galaxies reside.
“Our analysis so far is in line with what the current picture of the universe predicts,” said Chihway Chang from the Swiss Federal Institute of Technology (ETH) in Zurich, a co-leader of the analysis. “Zooming into the maps, we have measured how dark matter envelops galaxies of different types and how together they evolve over cosmic time.”
The research and maps, which span a large area of the sky, are the product of a massive effort of an international team from the US, UK, Spain, Germany, Switzerland, and Brazil. They announced their new results at the American Physical Society (APS) meeting in Baltimore, Maryland.
According to cosmologists, dark matter particles stream and clump together over time in particular regions of the cosmos, often in the same places where galaxies form and cluster. Over time, a “cosmic web” develops across the universe. Though dark matter is invisible, it expands with the universe and feels the pull of gravity. Astrophysicists then can reconstruct maps of it by surveying millions of galaxies, much like one might infer the shifting orientation of a flock of birds from its shadow moving along the ground.
DES scientists created the maps with one of the world’s most powerful digital cameras, the 570-megapixel Dark Energy Camera (DECam), which is particularly sensitive to the light from distant galaxies. It is mounted on the 4-meter Victor M. Blanco Telescope, located at the Cerro Tololo Inter-American Observatory in northern Chile. Each of its images records data from an area 20 times the size of the moon as seen from earth.
In addition, DECam collects data nearly ten times faster than previous machines. According to David Bacon, at the University of Portsmouth’s Institute of Cosmology and Gravitation, “This allows us to stare deeper into space and see the effects of dark matter and dark energy with greater clarity. Ironically, although these dark entities make up 96% of our universe, seeing them is hard and requires vast amounts of data.”
The telescope and its instruments enable precise measurements utilizing a technique known as “gravitational lensing.” Astrophysicists study the small distortions and shear of images of galaxies due to the gravitational pull of dark matter around them, similar to warped images of objects in a magnifying glass, except that the lensed galaxies observed by the DES scientists are at least 6 billion light-years away.
Chang and Vinu Vikram (Argonne National Laboratory) led the analysis, with which they traced the web of dark matter in unprecedented detail across 139 square degrees of the southern hemisphere. “We measured the barely perceptible distortions in the shapes of about 2 million galaxies to construct these new maps,” Vikram said. This amounts to less then 0.4% of the whole sky, but the completed DES survey will map out more than 30 times this area over the next few years.
They submitted their research paper for publication in an upcoming issue of the Monthly Notices of the Royal Astronomical Society, and the DES team publicly released it as part of a set of papers on the arXiv.org server on Tuesday.
The precision and detail of these large contiguous maps being produced by DES scientists will allow for tests of other cosmological models. “I’m really excited about what these maps will tell us about dark matter in galaxy clusters especially with respect to theories of modified gravity,” says Robert Nichol (University of Portsmouth). Einstein’s model of gravity, general relativity, could be incorrect on large cosmological scales or in the densest regions of the universe, and ongoing research with the Dark Energy Survey will facilitate investigations of this.