Even though it’s said that the average human eye can discern from seven to ten million different values and hues of colors, in reality our eyes are sensitive to only a very small section of the entire electromagnetic spectrum, corresponding to wavelengths in the range of 400 to 700 nanometers. Above and below those ranges lie enormously diverse segments of the EM spectrum, from minuscule yet powerful gamma rays to incredibly long, low-frequency radio waves.
Astronomers observe the Universe in all wavelengths because many objects and phenomena can only be detected in EM ranges other than visible light (which itself can easily be blocked by clouds of dense gas and dust.) But if we could see in radio waves the same way we do in visible light waves – that is with longer wavelengths being perceived as “red” and shorter wavelengths seen as “violet,” with all the blues, greens, and yellows in between – our world would look quite different… especially the night sky, which would be filled with fantastic shapes like those seen above!
Created from observations made at the Very Large Array in New Mexico, the image above shows a cluster of over 500 colliding galaxies located 800 million light-years away called Abell 2256. An intriguing target of study across the entire electromagnetic spectrum, here Abell 2256 (A2256 for short) has had its radio emissions mapped to the corresponding colors our eyes can see.
Within an area about the same width as the full Moon a space battle between magical cosmic creatures seems to be taking place! (In reality A2256 spans about 4 million light-years.)
See a visible-light image of A2256 by amateur astronomer Rick Johnson here.
The VLA radio observations will help researchers determine what’s happening within A2256, where multiple groups of galaxy clusters are interacting.
“The image reveals details of the interactions between the two merging clusters and suggests that previously unexpected physical processes are at work in such encounters,” said Frazer Owen of the National Radio Astronomy Observatory (NRAO).
Cosmologists are intellectual time travelers. Looking back over billions of years, these scientists are able to trace the evolution of our Universe in astonishing detail. 13.8 billion years ago, the Big Bang occurred. Fractions of a second later, the fledgling Universe expanded exponentially during an incredibly brief period of time called inflation. Over the ensuing eons, our cosmos has grown to such an enormous size that we can no longer see the other side of it.
But how can this be? If light’s velocity marks a cosmic speed limit, how can there possibly be regions of spacetime whose photons are forever out of our reach? And even if there are, how do we know that they exist at all?
The Expanding Universe
Like everything else in physics, our Universe strives to exist in the lowest possible energy state possible. But around 10-36 seconds after the Big Bang, inflationary cosmologists believe that the cosmos found itself resting instead at a “false vacuum energy” – a low-point that wasn’t really a low-point. Seeking the true nadir of vacuum energy, over a minute fraction of a moment, the Universe is thought to have ballooned by a factor of 1050.
Since that time, our Universe has continued to expand, but at a much slower pace. We see evidence of this expansion in the light from distant objects. As photons emitted by a star or galaxy propagate across the Universe, the stretching of space causes them to lose energy. Once the photons reach us, their wavelengths have been redshifted in accordance with the distance they have traveled.
This is why cosmologists speak of redshift as a function of distance in both space and time. The light from these distant objects has been traveling for so long that, when we finally see it, we are seeing the objects as they were billions of years ago.
The Hubble Volume
Redshifted light allows us to see objects like galaxies as they existed in the distant past; but we cannot see all events that occurred in our Universe during its history. Because our cosmos is expanding, the light from some objects is simply too far away for us ever to see.
The physics of that boundary rely, in part, on a chunk of surrounding spacetime called the Hubble volume. Here on Earth, we define the Hubble volume by measuring something called the Hubble parameter (H0), a value that relates the apparent recession speed of distant objects to their redshift. It was first calculated in 1929, when Edwin Hubble discovered that faraway galaxies appeared to be moving away from us at a rate that was proportional to the redshift of their light.
Dividing the speed of light by H0, we get the Hubble volume. This spherical bubble encloses a region where all objects move away from a central observer at speeds less than the speed of light. Correspondingly, all objects outside of the Hubble volume move away from the center faster than the speed of light.
Yes, “faster than the speed of light.” How is this possible?
The Magic of Relativity
The answer has to do with the difference between special relativity and general relativity. Special relativity requires what is called an “inertial reference frame” – more simply, a backdrop. According to this theory, the speed of light is the same when compared in all inertial reference frames. Whether an observer is sitting still on a park bench on planet Earth or zooming past Neptune in a futuristic high-velocity rocketship, the speed of light is always the same. A photon always travels away from the observer at 300,000,000 meters per second, and he or she will never catch up.
General relativity, however, describes the fabric of spacetime itself. In this theory, there is no inertial reference frame. Spacetime is not expanding with respect to anything outside of itself, so the the speed of light as a limit on its velocity doesn’t apply. Yes, galaxies outside of our Hubble sphere are receding from us faster than the speed of light. But the galaxies themselves aren’t breaking any cosmic speed limits. To an observer within one of those galaxies, nothing violates special relativity at all. It is the space in between us and those galaxies that is rapidly proliferating and stretching exponentially.
The Observable Universe
Now for the next bombshell: The Hubble volume is not the same thing as the observable Universe.
To understand this, consider that as the Universe gets older, distant light has more time to reach our detectors here on Earth. We can see objects that have accelerated beyond our current Hubble volume because the light we see today was emitted when they were within it.
Strictly speaking, our observable Universe coincides with something called the particle horizon. The particle horizon marks the distance to the farthest light that we can possibly see at this moment in time – photons that have had enough time to either remain within, or catch up to, our gently expanding Hubble sphere.
And just what is this distance? A little more than 46 billion light years in every direction – giving our observable Universe a diameter of approximately 93 billion light years, or more than 500 billion trillion miles.
(A quick note: the particle horizon is not the same thing as the cosmological event horizon. The particle horizon encompasses all the events in the past that we can currently see. The cosmological event horizon, on the other hand, defines a distance within which a future observer will be able to see the then-ancient light our little corner of spacetime is emitting today.
In other words, the particle horizon deals with the distance to past objects whose ancient light that we can see today; the cosmological event horizon deals with the distance that our present-day light that will be able to travel as faraway regions of the Universe accelerate away from us.)
Dark Energy
Thanks to the expansion of the Universe, there are regions of the cosmos that we will never see, even if we could wait an infinite amount of time for their light to reach us. But what about those areas just beyond the reaches of our present-day Hubble volume? If that sphere is also expanding, will we ever be able to see those boundary objects?
This depends on which region is expanding faster – the Hubble volume or the parts of the Universe just outside of it. And the answer to that question depends on two things: 1) whether H0 is increasing or decreasing, and 2) whether the Universe is accelerating or decelerating. These two rates are intimately related, but they are not the same.
In fact, cosmologists believe that we are actually living at a time when H0 is decreasing; but because of dark energy, the velocity of the Universe’s expansion is increasing.
That may sound counterintuitive, but as long as H0 decreases at a slower rate than that at which the Universe’s expansion velocity is increasing, the overall movement of galaxies away from us still occurs at an accelerated pace. And at this moment in time, cosmologists believe that the Universe’s expansion will outpace the more modest growth of the Hubble volume.
So even though our Hubble volume is expanding, the influence of dark energy appears to provide a hard limit to the ever-increasing observable Universe.
Our Earthly Limitations
Cosmologists seem to have a good handle on deep questions like what our observable Universe will someday look like and how the expansion of the cosmos will change. But ultimately, scientists can only theorize the answers to questions about the future based on their present-day understanding of the Universe. Cosmological timescales are so unimaginably long that it is impossible to say much of anything concrete about how the Universe will behave in the future. Today’s models fit the current data remarkably well, but the truth is that none of us will live long enough to see whether the predictions truly match all of the outcomes.
Disappointing? Sure. But totally worth the effort to help our puny brains consider such mind-bloggling science – a reality that, as usual, is just plain stranger than fiction.
When we look up at the night sky outside of the bright city, we can see a dazzling array of stars and galaxies. It is more difficult to see the clouds of gas within galaxies, however, but gas is required to form new stars and allow galaxies to grow. Although gas makes up less than 1% of the matter in the universe, “it’s the gas that drives the evolution of the galaxy, not the other way around,” says Felix “Jay” Lockman of the National Radio Astronomy Observatory (NRAO).
With radio telescopes and surveys such as the Green Bank Telescope (GBT) in West Virginia, the Atacama Large Millimeter/submillimeter Array (ALMA), and the Arecibo Legacy Fast ALFA (ALFALFA) survey, Lockman and other astronomers are learning more about the role of gas in galaxy formation. They presented their results at the annual American Association for the Advancement of Science (AAAS) meeting in San Jose.
Although we have an excellent view of our part of the Milky Way, and we can tell that it has a disk-shaped structure — that is the origin of its name, after all — it is not so simple to study how the galaxy formed. Lockman described the situation with an analogy: if you were trying to understand how your own house was built without leaving it, you would look and listen throughout the house and you would look out the window to learn what you can from your neighbors’ homes. Andromeda is the Milky Way’s largest neighbor, and they both have “satellite” galaxies traveling around them, some of which appear to have gas.
In addition, Lockman and his colleagues found clouds of gas between Andromeda and one of its satellites, Triangulum, which could be a “source of fuel for future star formation” for the galaxies. As a dramatic example of high-velocity clouds, Lockman presented new GBT images of the Smith Cloud, which was first discovered in 1963 by a student in the Netherlands. The Smith Cloud is a newcomer to the Milky Way and could provide enough gas to form a million stars and solar systems. Based on its speed and trajectory, “we think in a few million years, splash!” as it collides with our galaxy.
Kartik Sheth, another scientist at NRAO, continued with a description of astronomers’ current state of knowledge of the assembly of disk and spiral galaxies, of which the Milky Way and Andromeda are only two examples. Spiral galaxies typically have many gas clouds forming new stars, often referred to as stellar nurseries, and now with ALMA, “a fantastic telescope at 16,500-ft elevation,” Sheth and his colleagues are studying them in more detail.
In particular, Sheth presented newly published results by Adam Leroy in the Astrophysical Journal, in which they examine star-forming clouds in the heart of the nearby starbursting galaxy, Sculptor, to study “the physics of how gas got converted into stars.” Sculptor and other starbursts form stars at a rate about 1,000 times faster than typical spiral galaxies like the Milky Way. “Only with ALMA can we actually accomplish observations like this” of objects outside our galaxy. By comparing the concentration and distribution of ten gas clouds in Sculptor, they find that the clouds are more massive, ten times denser, and more turbulent than similar clouds in more typical galaxies. Because of the density of these stellar nurseries, they can form stars much more efficiently.
Other astronomers at the AAAS meeting, such as Claudia Scarlata (University of Minnesota) and Eric Wilcots (University of Wisconsin), presented a larger-scale picture of how spiral galaxies collide with each other to form more massive elliptical-shaped galaxies. These galaxies typically appear older and have stopped forming stars, but they can grow by “merging” with a neighboring galaxy in its group. “I will contend that most galaxy transformations take place in groups,” says Wilcots. In a paper based on ALFALFA data published in the Astronomical Journal, Kelley Hess and Wilcots find gas-rich galaxies distributed primarily in the outskirts of groups, and therefore these systems tend to grow from the inside out.
In a related issue, both Priyamvada Natarajan (Yale University) and Scarlata discussed how the evolution of massive black holes at the centers of galaxies appear to be related to that of the galaxy as a whole, when astronomers follow them from “cradle to adulthood.” In particular, Natarajan explained how mature galaxies’ black holes can heat the gas in a galaxy and drive gas outflows, thus preventing continued star formation in the galaxy.
Finally, astronomers look forward to much more upcoming cutting-edge research on gas in galaxies. Ximena Fernández (Columbia University) described the COSMOS HI Large Extragalactic Survey (CHILES) of hydrogen gas in galaxies with the Very Large Array. They have completed a pilot survey so far, in which they have obtained the most distant detection so far of a galaxy containing gas. They plan to peer even further into the distant past than previous surveys, expecting to detect gas in 300 galaxies up to 5 billion light-years away—250 times further than the galaxy observed by Leroy.
Fernández also described MeerKAT, a radio telescope under construction in South Africa, and the Deep Investigation of Neutral Gas Origins (DINGO) in Australia, both of which will serve as precursors for the Square Kilometer Array in the 2020s. These new telescopes will add to astronomers’ increasingly complex view of the formation and evolution of galaxies.
Last week, astronomers at Yale University reported seeing something unusual: a seemingly stedfast beacon from the far reaches of the Universe went quiet. This relic light source, a quasar located in the region of our sky known as the celestial equator, unexpectedly became 6-7 times dimmer over the first decade of the 21st century. Thanks to this dramatic change in luminosity, astronomers now have an unprecedented opportunity to study both the life cycle of quasars and the galaxies that they once called home.
A quasar arises from a distant (and therefore, very old) galaxy that once contained a central, rotating supermassive black hole – what astronomers call an active galactic nucleus. This spinning beast ravenously swallowed up large amounts of ambient gas and dust, kicking up surrounding material and sending it streaming out of the galaxy at blistering speeds. Quasars shine because these ancient jets achieved tremendous energies, thereby giving rise to a torrent of light so powerful that astronomers are still able to detect it here on Earth, billions of years later.
In their hey-day, some active galactic nuclei were also energetic enough to excite electrons farther away from the central black hole. But even in the very early Universe, electrons couldn’t withstand that kind of excitement forever; the laws of physics don’t allow it. Eventually, each electron would drop back down to its rest state, releasing a photon of corresponding energy. This cycle of excitation happened over and over and over again, in regular and predictable patterns. Modern astronomers can visualize those transitions – and the energies that caused them – by examining a quasar’s optical spectrum for characteristic emission lines at certain wavelengths.
Not all quasars are created equal, however. While the spectra of some quasars reveal many bright, broad emission lines at different energies, other quasars’ spectra consist of only the dim, narrow variety. Until now, some astronomers thought that these variations in emission lines among quasars were simply due to differences in their orientation as seen from Earth; that is, the more face-on a quasar was relative to us, the broader the emission lines astronomers would be able to see.
But all of that has now been thrown into question, thanks to our friend J015957.64+003310.5, the quasar revealed by the team of astronomers at Yale. Indeed, it is now plausible that a quasar’s pattern of emission lines simply changes over its lifetime. After gathering ten years of spectral observations from the quasar, the researchers observed its original change in brightness in 2010. In July 2014, they confirmed that it was still just as dim, disproving hypotheses that suggested the effect was simply due to intervening gas or dust. “We’ve looked at hundreds of thousands of quasars at this point, and now we’ve found one that has switched off,” explained C. Megan Urry, the study’s co-author.
How would that happen, you ask? After observing the comparable dearth of broad emission lines in its spectrum, Urry and her colleagues believe that long ago, the black hole at the heart of the quasar simply went on a diet. After all, an active galactic nucleus that consumed less material would generate less energy, giving rise to fainter particle jets and fewer excited atoms. “The power source just went dim,” said Stephanie LaMassa, the study’s principal investigator.
LaMassa continued, “Because the life cycle of a quasar is one of the big unknowns, catching one as it changes, within a human lifetime, is amazing.” And since the life cycle of quasars is dependent on the life cycle of supermassive black holes, this discovery may help astronomers to explain how those that lie at the center of most galaxies evolve over time – including Sagittarius A*, the supermassive black hole at the center of our own Milky Way.
“Even though astronomers have been studying quasars for more than 50 years, it’s exciting that someone like me, who has studied black holes for almost a decade, can find something completely new,” added LaMassa.
The team’s research will be published in an upcoming issue of The Astrophysical Journal. A pre-print of the paper is available here.
Given that our Solar System sits inside the Milky Way Galaxy, getting a clear picture of what it looks like as a whole can be quite tricky. In fact, it was not until 1852 that astronomer Stephen Alexander first postulated that the galaxy was spiral in shape. And since that time, numerous discoveries have come along that have altered how we picture it.
For decades astronomers have thought the Milky Way consists of four arms — made up of stars and clouds of star-forming gas — that extend outwards in a spiral fashion. Then in 2008, data from the Spitzer Space Telescope seemed to indicate that our Milky Way has just two arms, but a larger central bar. But now, according to a team of astronomers from China, one of our galaxy’s arms may stretch farther than previously thought, reaching all the way around the galaxy.
This arm is known as Scutum–Centaurus, which emanates from one end of the Milky Way bar, passes between us and Galactic Center, and extends to the other side of the galaxy. For many decades, it was believed that was where this arm terminated.
However, back in 2011, astronomers Thomas Dame and Patrick Thaddeus from the Harvard–Smithsonian Center for Astrophysics spotted what appeared to be an extension of this arm on the other side of the galaxy.
But according to astronomer Yan Sun and colleagues from the Purple Mountain Observatory in Nanjing, China, the Scutum–Centaurus Arm may extend even farther than that. Using a novel approach to study gas clouds located between 46,000 to 67,000 light-years beyond the center of our galaxy, they detected 48 new clouds of interstellar gas, as well as 24 previously-observed ones.
For the sake of their study, Sun and his colleagues relied on radio telescope data provided by the Milky Way Imaging Scroll Painting project, which scans interstellar dust clouds for radio waves emitted by carbon monoxide gas. Next to hydrogen, this gas is the most abundant element to be found in interstellar space – but is easier for radio telescopes to detect.
Combining this information with data obtained by the Canadian Galactic Plane Survey (which looks for hydrogen gas), they concluded that these 72 clouds line up along a spiral-arm segment that is 30,000 light-years in length. What’s more, they claim in their report that: “The new arm appears to be the extension of the distant arm recently discovered by Dame & Thaddeus (2011) as well as the Scutum-Centaurus Arm into the outer second quadrant.”
This would mean the arm is not only the single largest in our galaxy, but is also the only one to effectively reach 360° around the Milky Way. Such a find would be unprecedented given the fact that nothing of the sort has been observed with other spiral galaxies in our local universe.
Thomas Dame, one of the astronomers who discovered the possible extension of the Scutum-Centaurus Arm in 2011, was quoted by Scientific American as saying: “It’s rare. I bet that you would have to look through dozens of face-on spiral galaxy images to find one where you could convince yourself you could track one arm 360 degrees around.”
Naturally, the prospect presents some problems. For one, there is an apparent gap between the segment that Dame and Thaddeus discovered in 2011 and the start of the one discovered by the Chinese team – a 40,000 light-year gap to be exact. This could mean that the clouds that Sun and his colleagues discovered may not be part of the Scutum-Centaurus Arm after all, but an entirely new spiral-arm segment.
If this is true, than it would mean that our Galaxy has several “outer” arm segments. On the other hand, additional research may close that gap (so to speak) and prove that the Milky Way is as beautiful when seen afar as any of the spirals we often observe from the comfort of our own Solar System.
To a distant observer, our own Milky Way and the Andromeda galaxy would probably look very similar. Although Andromeda is longer, more massive, and more luminous than the Milky Way, both galaxies are vast spirals composed of hundreds of millions of stars. But new research presented at this week’s AAS conference in Seattle suggests that there are other differences as well – namely, in the movement and behavior of certain stellar age groups. This observation is the first of its kind, and raises new questions about the factors that contribute to the formation of spiral galaxies like our own.
Armed with data from both the Hubble Space Telescope and the Keck Observatory in Hawaii, a group of astronomers from UC Santa Cruz resolved 10,000 tiny points of light in the Andromeda galaxy into individual stars and used their spectra to calculate the stars’ ages and velocities – a feat never before accomplished for a galaxy outside of our own.
Led by Puragra Guhathakurta, a professor of astrophysics, and Claire Dorman, a graduate student, the researchers found that in Andromeda, the behavior of older stars is surprisingly more frazzled than that of their younger counterparts; that is, they have a much wider range of velocities around the galactic center. Meanwhile, in the Milky Way, stars of all ages seem to coexist far more peacefully, moving along at the same speed in a consistent, ordered pack.
The astronomers believe that this asymmetry causes Andromeda to look more distinct from our own galaxy than previously thought. “If you could look at [Andromeda’s] disk edge on, the stars in the well-ordered, coherent population would lie in a very thin plane, whereas the stars in the disordered population would form a much puffier layer,” said Dorman.
What could account for such disorderly conduct among Andromeda’s older generation? It is possible that these more mature stars could have been disturbed long ago, during episodes of the kind of “galactic cannibalism” that is thought to go on among most spiral galaxies. Indeed, trails of stars in its outer halo suggest that Andromeda has collided with and consumed a number of smaller galaxies over the course of its lifetime; however, these effects cannot completely account for the jumbled flow of Andromeda’s most elderly stars.
Astronomers believe that a second explanation could fill in the blanks – one that owes to events occurring far earlier in history, during the birth of the galaxy itself. After all, if Andromeda originated from a lumpy, irregular gas cloud, its oldest stars would naturally appear fairly disordered. Over time, the parent gas would have settled down, giving rise to ever more organized generations of stars.
Guhathakurta, Dorman, and the rest of the team hope that their work will encourage other scientists to create simulations that will better constrain these possibilities. To them, understanding Andromeda is a vital key to learning more about our own galaxy. Guhathakurta explained, “In the Andromeda galaxy we have the unique combination of a global yet detailed view of a galaxy similar to our own. We have lots of detail in our own Milky Way, but not the global, external perspective.”
Now, thanks to this new research, scientists can cite our own galaxy’s comparative orderliness as strong evidence that we live in a quieter, less cannibalistic neighborhood than most other spiral galaxies in the Universe. “Even the most well ordered Andromeda stars are not as well ordered as the stars in the Milky Way’s disk,” said Dorman.
At least until 4 billion years from now, when the Milky Way and Andromeda collide.
We may as well enjoy the A+ for conduct while we can.
We often publish photos from professional observatories, but it’s important to note that amateurs can also do a great job taking pictures of the sky with modest equipment and photo processing software.
On Universe Today’s Flickr pool, we’re proud to showcase the work of all the fans of the cosmos. Included here are some of the best shots of galaxies and nebulas that we’ve seen uploaded to the site in recent days.
Woah, is that ever close! The Hubble Space Telescope’s new picture of the Andromeda Galaxy makes us feel as though we’re hovering right above the iconic structure, which is visible with the naked eye from Earth under the right conditions.
Just to show you how awesome this close-up is, we’ve posted a picture below the jump showing what is the typical view of M31 in a more modest telescope.
“This ambitious photographic cartography of the Andromeda galaxy represents a new benchmark for precision studies of large spiral galaxies that dominate the universe’s population of over 100 billion galaxies,” stated the Space Telescope Science Institute (STScI), which operates the telescope.
“Never before have astronomers been able to see individual stars inside an external spiral galaxy over such a large contiguous area. Most of the stars in the universe live inside such majestic star cities, and this is the first data that reveal populations of stars in context to their home galaxy.”
Andromeda is about 2.5 million light-years from us and on a collision course with our galaxy. The image at the top of this story is actually not a single picture; it was assembled from an astounding 7,398 exposures taken over 411 individual pointings, according to STScI.
The image is so big, in fact, that there’s a zoomable version that was released separately so that you can get a better sense of how high-definition this view is. Dontcha wish you could take a light-travel ship and see this thing up close, for real?
Astronomy is, by definition, intangible. Traditional laboratory-style experiments that utilize variables and control groups are of little use to the scientists who spend their careers analyzing the intricacies our Universe. Instead, astronomers rely on simulations – robust, mathematically-driven facsimiles of the cosmos – to investigate the long-term evolution of objects like stars, black holes, and galaxies. Now, a team of European researchers has broken new ground with their development of the EAGLE project: a simulation that, due to its high level of agreement between theory and observation, can be used to probe the earliest epochs of galaxy formation, over 13 billion years ago.
The EAGLE project, which stands for Evolution and Assembly of GaLaxies and their Environments, owes much of its increased accuracy to the better modeling of galactic winds. Galactic winds are powerful streams of charged particles that “blow” out of galaxies as a result of high-energy processes like star formation, supernova explosions, and the regurgitation of material by active galactic nuclei (the supermassive black holes that lie at the heart of most galaxies). These mighty winds tend to carry gas and dust out of the galaxy, leaving less material for continued star formation and overall growth.
Previous simulations were problematic for researchers because they produced galaxies that were far older and more massive than those that astronomers see today; however, EAGLE’s simulation of strong galactic winds fixes these anomalies. By accounting for characteristic, high-speed ejections of gas and dust over time, researchers found that younger and lighter galaxies naturally emerged.
After running the simulation on two European supercomputers, the Cosmology Machine at Durham University in England and Curie in France, the researchers concluded that the EAGLE project was a success. Indeed, the galaxies produced by EAGLE look just like those that astronomers expect to see when they look to the night sky. Richard Bower, a member of the team from Durham, raved, “The universe generated by the computer is just like the real thing. There are galaxies everywhere, with all the shapes, sizes and colours I’ve seen with the world’s largest telescopes. It is incredible.”
The upshots of this new work are not limited to scientists alone; you, too, can explore the Universe with EAGLE by downloading the team’s Cosmic Universe app. Videos of the EAGLE project’s simulations are also available on the team’s website.
A paper detailing the team’s work is published in the January 1 issue of Monthly Notices of the Royal Astronomical Society. A preprint of the results is available on the ArXiv.
As part of the Local Group, a collection of 54 galaxies and dwarf galaxies that measures 10 million light years in diameter, the Milky Way has no shortage of neighbors. However, refinements made in the field of astronomy in recent years are leading to the observation of neighbors that were previously unseen. This, in turn, is changing our view of the local universe to one where things are a lot more crowded.
For instance, scientists working out of the Special Astrophysical Observatory in Karachai-Cherkessia, Russia, recently found a previously undetected dwarf galaxy that exists 7 million light years away. The discovery of this galaxy, named KKs3, and those like it is an exciting prospect for scientists, since they can tell us much about how stars are born in our universe.
The Russian team, led by Prof Igor Karachentsev of the Special Astrophysical Observatory (SAO), used the Hubble Space Telescope Advanced Camera for Surveys (ACS) to locate KKs3 in the southern sky near the constellation of Hydrus. The discovery occurred back in August 2014, when they finalized their observations a series of stars that have only one ten-thousandth the mass of the Milky Way.
Such dwarf galaxies are far more difficult to detect than others due to a number of distinct characteristics. KKs3 is what is known as a dwarf spheroid (or dSph) galaxy, a type that has no spiral arms like the Milky Way and also suffers from an absence of raw materials (like dust and gas). Since they lack the materials to form new stars, they are generally composed of older, fainter stars.
Image of the KKR 25 dwarf spheroid galaxy obtained by the Special Astrophysical Observatory using the HST. Credit: SAO RAS
In addition, these galaxies are typically found in close proximity to much larger galaxies, like Andromeda, which appear to have gobbled up their gas and dust long ago. Being faint in nature, and so close to far more luminous objects, is what makes them so tough to spot by direct observation.
Team member Prof Dimitry Makarov, also of the Special Astrophysical Observatory, described the process: “Finding objects like Kks3 is painstaking work, even with observatories like the Hubble Space Telescope. But with persistence, we’re slowly building up a map of our local neighborhood, which turns out to be less empty than we thought. It may be that are a huge number of dwarf spheroidal galaxies out there, something that would have profound consequences for our ideas about the evolution of the cosmos.”
Painstaking is no exaggeration. Since they are devoid of materials like clouds of gas and dust fields, scientists are forced to spot these galaxies by identifying individual stars. Because of this, only one other isolated dwarf spheroidal has been found in the Local Group: a dSph known as KKR 25, which was also discovered by the Russian research team back in 1999.
But despite the challenges of spotting them, astronomers are eager to find more examples of dSph galaxies. As it stands, it is believed that these isolated spheroids must have been born out of a period of rapid star formation, before the galaxies were stripped of their dust and gas or used them all up.
Studying more of these galaxies can therefore tell us much about the process star formation in our universe. The Russian team expects that the task will become easier in the coming years as the James Webb Space Telescope and the European Extremely Large Telescope begin service.
Much like the Spitzer Space Telescope, these next-generation telescopes are optimized for infrared detection and will therefore prove very useful in picking out faint stars. This, in turn, will also give us a more complete understanding of our universe and all that it holds.