Subaru Telescope Reveals Orderly Massive Galaxy Evolution

FMOS spectra in the J-band (left panel) and H-band (right panel), each of which filters light so that only specific wavelengths can pass through. The horizontal axis refers to the wavelength direction while the vertical axis indicates individual spectra observed through each fiber. Small blue circles indicate the detection of emission lines (left: H? and [OIII]; right: H?, [NII]). The inset box shows the intensity of the emission lines for one galaxy. The vertical bands indicate the masked regions where bright sky (OH) emissions are prevented from entering science fibers placed on high-redshift galaxies. (Credit: FMOS-COSMOS)

Nobody likes a sloppy COSMOS (Cosmological Evolution Survey) and astronomers utilizing the Fiber-Multi-Object Spectrograph (FMOS) mounted on the Subaru Telescope have put order into chaos through their studies. The survey has found that some nine billion years ago galaxies were capable of producing new stars in a fashion as orderly as game of checkers. Despite their young cosmological age, the galaxies show signs containing high amounts of dust enriched by heavier elements – a mature state.

“These findings center on a major question: What was the universe like when it was maximally forming its stars?” says John Silverman, the principal investigator of the FMOS-COSMOS project at the Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU).

These “universal” questions are just what the COSMOS team seeks to answer. Their research goals are to enlighten the scales of cosmic time in relationship with the environment, formation and evolution of massive galactic structures. When studying individual galaxies, they may be able to tell if their rate of growth can be attributed to large-scale environments. Information of this type can clarify what factors the early Universe structure may have contributed to the current form of local galaxies. One of the data sets the team is focusing on is using the FMOS on the Subaru Telescope to chart out the distribution of more than a thousand galaxies which formed over nine billion years ago – a time when the Universe was hitting its star-formation peak.

“One key to generating fruitful results is collaboration between COSMOS researchers to maximize optimal use of FMOS.” Silverman continues, “In this project, researchers from Kavli IPMU in Japan and the Institute for Astronomy at the University of Hawaii (principal investigator: David Sanders) formed an effective collaboration to implement their goal.” The observations spanned 10 clear nights starting in March 2012.

Why choose spectroscopy? This advanced fiber optics technology speaks for itself, collecting light over an area of sky equal in size to that of the Moon. The FMOS focuses on the near-infrared, filtering out unwanted emissions caused by warm temperatures and can acquire spectra from 400 galaxies simultaneously with a wide field of coverage of 30 arc minutes at prime-focus. By employing such a wide field of view, astronomers can squeeze in a wide range of objects in their local environments. This enables researchers to maximize information on star-forming regions, cluster formation, and cosmology.

As David Sanders, the principal investigator of the FMOS-COSMOS project at IfA, puts it, “FMOS has clearly revolutionized our ability to study how galaxies form and evolve across cosmic time. It is currently the most powerful instrument we have to study the large numbers of objects needed to understand galaxies of all sizes, shapes and masses — from the largest ellipticals to the smallest dwarfs. We are extremely fortunate that the Kavli IPMU-IfA collaboration is giving us this unique opportunity to study the distant universe in such exquisite detail.”

FMOS will soon be famous by revealing its true potential. It has been collecting copious amounts of data in a high spectral resolution mode and at a very successful rate. So far it has accomplished nearly half of its goal – to examine over a thousand galaxies with redshifts to map the large-scale structure. The current survey consists of mapping an area of sky which spans a square degree in high-resolution mode and future plans for FMOS will involve enlarging the area. This expanded coverage will complement other instruments on alternative telescopes which have a wider spectral imaging system or a higher resolution which is limited to a smaller area. These combined findings may one day result in showing us some of the very first structures that eventually evolved into the massive galaxy clusters we see today!

Original Story Source: Kavli Institute for the Physics and Mathematics of the Universe News Release.

Galaxy May Host ‘Death Spiral’ Of Two Black Holes Becoming One

Artist's conception of two black holes gravitationally bound to each other. Credit: NASA

Two black holes in the middle of a galaxy are gravitationally bound to each other and may be starting to merge, according to a new study.

Astronomers came to that conclusion after studying puzzling behavior in what is known as WISE J233237.05-505643.5, a discovery that came from NASA’s Wide-field Infrared Survey Explorer (WISE). Follow-up studies came from the Australian Telescope Compact Array and the Gemini South telescope in Chile.

“We think the jet of one black hole is being wiggled by the other, like a dance with ribbons,” stated research leader Chao-Wei Tsai of NASA’s Jet Propulsion Laboratory. “If so, it is likely the two black holes are fairly close and gravitationally entwined.”

“The dance of these black hole duos starts out slowly, with the objects circling each other at a distance of about a few thousand light-years,’ NASA added in a press release. “So far, only a few handfuls of supermassive black holes have been conclusively identified in this early phase of merging. As the black holes continue to spiral in toward each other, they get closer, separated by just a few light-years. ”

You can read more details of the find at a press release here, or at this Arxiv paper.

Astronomers Catch a Galactic Threesome in the Act

A combined image from the Spitzer, Hubble, and Subaru telescopes show this structure to be three galaxies merging into one (NASA/JPL-Caltech/STScI/NAOJ/Subaru)

An enormous and incredibly luminous distant galaxy has turned out to actually be three galaxies in the process of merging together, based on the latest observations from ALMA as well as the Hubble and Spitzer space telescopes. Located 13 billion light-years away, this galactic threesome is being seen near the very beginning of what astronomers call the “Cosmic Dawn,” a time when the Universe first became illuminated by stars.

“This exceedingly rare triple system, seen when the Universe was only 800 million years old, provides important insights into the earliest stages of galaxy formation during a period known as ‘Cosmic Dawn’ when the Universe was first bathed in starlight,” said Richard Ellis, professor of astronomy at Caltech and member of the research team. “Even more interesting, these galaxies appear poised to merge into a single massive galaxy, which could eventually evolve into something akin to the Milky Way.”

In the image above, infrared data from NASA’s Spitzer Space Telescope are shown in red, visible data from NASA’s Hubble Space Telescope are green, and ultraviolet data from Japan’s Subaru telescope are blue. First discovered in 2009, the object is named “Himiko” after a legendary queen of Japan.

The merging galaxies within Himiko are surrounded by a vast cloud of hydrogen and helium, glowing brightly from the galaxies’ powerful outpouring of energy.

What’s particularly intriguing to astronomers is the noted lack of heavier elements like carbon in the cloud.

“This suggests that the gas cloud around the galaxy is actually quite primitive in its composition,” Ellis states in an NRAO video, “and has not yet been enriched by the products of nuclear fusion in the stars in the triple galaxy system. And what this implies is that the system is much younger and potentially what we call primeval… a first-generation object that is being seen. If true that’s very very exciting.”

Further research of distant objects like Himiko with the new high-resolution capabilities of ALMA will help astronomers determine how the Universe’s first galaxies “turned on”… was it a relatively sudden event, or did it occur gradually over many millions of years?

Watch the full video from the National Radio Astronomy Observatory below:

The research team’s results have been accepted for publication in the Astrophysical Journal.

Source: NASA/JPL press release and the NRAO.

A Cosmic Intruder Grabbed Hot Gas From This Galaxy Group

NGC 5044 as seen by XMM-Newton. Astronomers say they are able to see hot gas moving in this galaxy because of an interaction with another galaxy millions of years ago. Credit: E. O’Sullivan & ESA

So galaxy group NGC 5044 was just sitting quietly by itself a few million years ago when galaxy NGC 5054 decided to pass right through it. That close encounter finished long ago, but the ricochet is still visible in telescopes as astronomers spotted hot gas rippling through the host galaxy.

“Galaxies are social beasts that are mostly found in groups or clusters – large assemblies of galaxies that are permeated by even larger amounts of diffuse gas. With temperatures of 10 million degrees or more, the gas in galaxy groups and clusters is hot enough to shine brightly in X-rays and be detected by ESA’s XMM-Newton X-ray observatory,” the European Space Agency stated.

“As galaxies speed through these gigantic cauldrons, they occasionally jumble the gas and forge it into lop-sided shapes. An example is revealed in this composite image of the galaxy group NGC 5044, the brightest group in X-rays in the entire sky.”

Fresh observations from XMM-Newton (in blue) are visible in this composite image with other pictures from the Wide-field Infrared Survey Explorer, the Digitized Sky Survey (optical) and Galex (near-ultraviolet).

Publication of this research was accepted in MNRAS and is currently available on prepublishing site Arxiv. The lead author is Ewan O’Sullivan, a visiting scientist at the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass.

Taking Measure: A ‘New’ Most Distant Galaxy

Galaxy z8_GND_5296 (seen in the inset) is the earliest galaxy that astronomers have measured the distance to accurately. It formed approximately 700 million years after the Big Bang, and is forming stars at an incredibly rapid rate. [Credit: V. Tilvi (Texas A&M), S. Finkelstein (UT Austin), the CANDELS team, and HST/NASA]

“The farthest galaxy yet seen!” Haven’t we heard that one before? (See here and here, for example.) While it’s true that astronomers keep pushing farther back in time with better instruments, there are fundamental challenges both in observing and measuring the distances to the earliest galaxies in the cosmos.

That’s why this new observation of a galaxy that formed about 700 million years after the Big Bang is significant. While scores of galaxies have been identified that formed in that era, astronomers have only measured accurate distances for five of them. This galaxy marks the sixth, and it is the farthest of the bunch. Perhaps even more important than the distance measurement, researchers determined that this galaxy gave birth to new stars at more than 100 times the rate the Milky Way does today. That indicates early galaxies may have been more aggressive with star-formation than previously believed. Continue reading “Taking Measure: A ‘New’ Most Distant Galaxy”

Here’s A Nine-Billion-Year Old Gravitational Lens In Space

A picture of the object J1000+0221, which demonstrates the most distant gravitational lens ever discovered. This Hubble picture shows a normal galaxy's center region (the glow in the picture), but the object is also aligned with a younger, star-creating galaxy that is in behind. The object in the foreground pulls light from the background galaxy with gravity -- making rings of pictures. Credit: NASA/ESA/A. van der Wel

Here’s a picture of what deflected light looks like from 9.4 billion years away. This is the most faraway “gravitational lens” that we know of, and a demonstration of how a galaxy can bend the light of an object behind it. The phenomenon was first predicted by Einstein, and is a handy way of measuring mass (including the mass of mysterious dark matter.)

“The discovery was completely by chance,” stated Arjen van der Wel, who is with the Max Planck Institute for Astronomy in Heidelberg, Germany.

“I had been reviewing observations from an earlier project when I noticed a galaxy that was decidedly odd. It looked like an extremely young galaxy, but it seemed to be at a much larger distance than expected. It shouldn’t even have been part of our observing program.”

The alignment between object J1000+0221 and the object in behind is so perfect that you can see rings of light being formed in the image. Scientists previously believed this kind of lens would happen very rarely. This leaves two possibilities: that the astronomy team was lucky, or there are way more young galaxies than previously thought.

This schematic image represents how light from a distant galaxy is distorted by the gravitational effects of a nearer foreground galaxy, which acts like a lens and makes the distant source appear distorted, but brighter, forming characteristic rings of light, known as Einstein rings. An analysis of the distortion has revealed that some of the distant star-forming galaxies are as bright as 40 trillion Suns, and have been magnified by the gravitational lens by up to 22 times. Credit: ALMA (ESO/NRAO/NAOJ), L. Calçada (ESO), Y. Hezaveh et al.
This schematic image represents how light from a distant galaxy is distorted by the gravitational effects of a nearer foreground galaxy, which acts like a lens and makes the distant source appear distorted, but brighter, forming characteristic rings of light, known as Einstein rings. An analysis of the distortion has revealed that some of the distant star-forming galaxies are as bright as 40 trillion Suns, and have been magnified by the gravitational lens by up to 22 times. Credit: ALMA (ESO/NRAO/NAOJ), L. Calçada (ESO), Y. Hezaveh et al.

“Gravitational lenses are the result of a chance alignment. In this case, the alignment is very precise,” a press release on the discovery stated.

“To make matters worse, the magnified object is a starbursting dwarf galaxy: a comparatively light galaxy … but extremely young (about 10-40 million years old) and producing new stars at an enormous rate. The chances that such a peculiar galaxy would be gravitationally lensed is very small. Yet this is the second starbursting dwarf galaxy that has been found to be lensed.”

“This has been a weird and interesting discovery,” added van der Wel. “It was a completely serendipitous find, but it has the potential to start a new chapter in our description of galaxy evolution in the early universe.”

The research will be available soon in the Astrophysical Journal; in the meantime, check out a preprint version on Arxiv.

Source: Hubble European Space Agency Information Centre

ALMA Peers Into Giant Black Hole Jets

This detailed view shows the central parts of the nearby active galaxy NGC 1433. The dim blue background image, showing the central dust lanes of this galaxy, comes from the NASA/ESA Hubble Space Telescope. The coloured structures near the centre are from recent ALMA observations that have revealed a spiral shape, as well as an unexpected outflow, for the first time. Credit: ALMA (ESO/NAOJ/NRAO)/NASA/ESA/F. Combes

Did you ever wonder what it would be like to observe what happens to a galaxy near a black hole? For all of us who remember that wonderful Disney movie, it would be a remarkable – if not hypnotic – experience. Now, thanks to the powerful observational tools of the Atacama Large Millimeter/submillimeter Array (ALMA), two international astronomy teams have had the opportunity to study the jets of black holes near their galactic cores and see just how they impact their neighborhood. The researchers have captured the best view so far of a molecular gas cloud surrounding a nearby, quiescent black hole and were gifted with a surprise look at the base of a massive jet near a distant one.

These aren’t lightweights. The black holes the astronomers are studying weigh in a several billion solar masses and make their homes at the center of nearly all the galaxies in the Universe – including the Milky Way. Once upon a time, these enigmatic galactic phenomena were busy creatures. They absorbed huge amounts of matter from their surroundings, shining like bright beacons. These early black holes thrust small amounts of the matter they took in through highly powerful jets, but their current counterparts aren’t quite as active. While things may have changed a bit with time, the correlation of black hole jets and their surroundings still play a crucial role in how galaxies evolve. In the very latest of studies, both published today in the journal Astronomy & Astrophysics, astronomers employed ALMA to investigate black hole jets at very different scales: a nearby and relatively quiet black hole in the galaxy NGC 1433 and a very distant and active object called PKS 1830-211.

“ALMA has revealed a surprising spiral structure in the molecular gas close to the center of NGC 1433,” says Françoise Combes (Observatoire de Paris, France), who is the lead author of the first paper. “This explains how the material is flowing in to fuel the black hole. With the sharp new observations from ALMA, we have discovered a jet of material flowing away from the black hole, extending for only 150 light-years. This is the smallest such molecular outflow ever observed in an external galaxy.”

Need feedback? Well, that’s exactly what this process is called. “Feedback” may enlighten us to the relationship between black hole mass and the mass of the surrounding galactic bulge. The black hole consumes gas and becomes active, but then it creates jets which purge gas from its proximity. This halts star formation and controls the growth of the central bulge. In PKS 1830-211, Ivan Marti-Vidal (Chalmers University of Technology, Onsala Space Observatory, Onsala, Sweden) and his team witnessed a supermassive black hole with a jet, “but a much brighter and more active one in the early universe. It is unusual because its brilliant light passes a massive intervening galaxy on its way to Earth, and is split into two images by gravitational lensing.”

Are supermassive black holes messy eaters? You bet. There have been occasions when a supermassive black hole will unexpectedly consume a staggering amount of mass which, in turn, turbo-charges the power of the jets and lights up the radiation output to the very pinnacle of energy output. This energy is emitted as gamma rays, the shortest wavelength and highest energy form of electromagnetic radiation. And now ALMA has, by chance, caught one of these events as it happened in PKS 1830-211.

“The ALMA observation of this case of black hole indigestion has been completely serendipitous. We were observing PKS 1830-211 for another purpose, and then we spotted subtle changes of color and intensity among the images of the gravitational lens. A very careful look at this unexpected behavior led us to the conclusion that we were observing, just by a very lucky chance, right at the time when fresh new matter entered into the jet base of the black hole,” says Sebastien Muller, a co-author of the second paper.

The main image, showing the nearby active galaxy NGC 1433, comes from the NASA/ESA Hubble Space Telescope. The coloured structures near the centre shown in the insert are from recent ALMA observations that have revealed a spiral shape, as well as an unexpected outflow, for the first time. Credit: ALMA (ESO/NAOJ/NRAO)/NASA/ESA/F. Combes
The main image, showing the nearby active galaxy NGC 1433, comes from the NASA/ESA Hubble Space Telescope. The coloured structures near the centre shown in the insert are from recent ALMA observations that have revealed a spiral shape, as well as an unexpected outflow, for the first time. Credit: ALMA (ESO/NAOJ/NRAO)/NASA/ESA/F. Combes
As with all astronomical observations, the key to discovery is confirmation. Did the ALMA findings show up on other telescopic observations? The answer is yes. Thanks to monitoring observations with NASA’s Fermi Gamma-ray Space Telescope, there was a definite gamma ray signature exactly where it should be. Whatever was responsible for the scaling up of radiation at ALMA’s long wavelengths was also responsible for making the light of the black hole jet flare impressively.

“This is the first time that such a clear connection between gamma rays and submillimeter radio waves has been established as coming from the real base of a black hole’s jet,” adds Sebastien Muller.

It isn’t the end of the story, however. It’s just the beginning. ALMA will continue to probe into the mysterious workings of supermassive black hole jets – both near and far. Combes and her investigative team are already observing close active galaxies with ALMA, and even a unique object cataloged as PKS 1830-211. The research will continue, and with it we may one day have answers to many questions.

“There is still a lot to be learned about how black holes can create these huge energetic jets of matter and radiation,” concludes Ivan Marti-Vidal. “But the new results, obtained even before ALMA was completed, show that it is a uniquely powerful tool for probing these jets — and the discoveries are just beginning!”

Original Story Source: ESO News Release.

Masked Starbirth Mapped In New Milky Way Survey

Artist's conception of a star being born, within a protective shroud of gas and dust. New research shows that magnetic winds aid the growth of both protostars and SMBHs. Credit: NASA

Stars are born in private. Hidden in dust and gas clouds, these bright beacons in the universe slowly coalesce. All that debris makes it hard to spot the stars, but mapping out the pockets of starbirth is a good start to understanding what is going on inside.

A new survey tracked down 6,000 of these areas in our galaxy (the Milky Way), with the aim of understanding more about what happens when stars are just starting to come together. Most surveys, the team says, focus more on the “protostar” stage, when these objects are starting to look recognizably like stars.

“Starless clumps have only been detected in small numbers to date,” stated Yancy Shirley, an astronomer with the University of Arizona’s Steward Observatory who led the research. “Now, for the first time, we have seen this earliest phase of star formation, before a cluster actually forms, in large numbers in an unbiased way.”

Artist's conception of the Milky Way galaxy. Credit: Nick Risinger
Artist’s conception of the Milky Way galaxy. Credit: Nick Risinger

These areas are difficult to peer through in visible light, but radio works just fine. The astronomers used the Sub-Millimeter Telescope at the Arizona Radio Observatory to conduct the survey, which looks at “all parts of the galactic plane visible from the northern hemisphere”, the team says.

It’s the first survey to show the environments where different stages of starbirth take place. While the team did not immediately disclose their plans for a follow-up in a press release, they state that one aim of mapping these areas is to “better understand how the properties of these regions change as star formation progresses.”

Read all about the survey in The Astrophysical Journal, or the preprint version on Arxiv.

Source: University of Arizona

Tranquil Galaxy With Petals Shows Clues To A Violent Past

PGC 6240, a petal-like galaxy that probably was altered by a galactic merger. Credit: ESA/Hubble & NASA with acknowledgement to Judy Schmidt

Across the universe, some 350 million light-years away, lies a galaxy that looks like it has white rose petals. Don’t let the tranquil appearance of PGC 6240 fool you as to its past, however. This galaxy in Hydrus (The Water Snake) likely was dramatically altered by a galactic merger.

There’s a bunch of evidence pointing to this. There are “star shells” of globular clusters around the galaxy, but they’re distributed unevenly — some are close in, some are way out in the distant suburbs. Also, “several wisps of material have been thrown so far that they appear to be almost detached from the galaxy altogether,” stated the Hubble European Space Agency Information Centre.

“The most likely explanation for both the galaxy’s stacked shell structure and the unexpectedly young star clusters is that PGC 6240 merged with another galaxy at some point in the recent past,” the agency added.

“Such a merger would send ripples through the galaxy and disrupt its structure, forming the concentric shells of material seen here. It would also ignite a strong burst of star formation in the galaxy, which would then trigger similar activity in nearby space — leading to the creation of new, younger globular clusters around PGC 6240.”

Source: The Hubble European Space Agency Information Centre

Keck Spots A Galaxy Fueled With Ancient Gas

Image of a galaxy with rendering showing a stream of inflowing gas, as rendered in a supercomputer. Credit: MPIA (G. Stinson / A.V. Maccio)

“Primordial hydrogen” sounds like a great name for a band. It’s also a great thing to find when you’re looking at a galaxy. This ancient gas is a leftover of the Big Bang, and astronomers discovered it in a faraway star-forming galaxy that was created when the universe was young.

A continuous stream of gas was likely responsible for a cornucopia of star formation that took place about 10 billion years ago, when galaxies were churning out starbirths at a furious rate.

The astronomers spotted the gas by using a quasar that lit up the fuel from behind. Quasars a handy tool to use if you want to illuminate something, because even though quasars don’t live for very long in cosmic terms — they occur when matter falls into a ginormous black hole — they are extremely bright. Since the gas absorbs the light at certain frequencies, the absorption lines that show up in spectrometers reveal information about the composition, temperature and density of the gas.

“This is not the first time astronomers have found a galaxy with nearby gas, revealed by a quasar. But it is the first time that everything fits together,” stated Neil Crighton, who is with the Max Planck Institute for Astronomy and Swinburne University and led the research. His team found the galaxy using the Keck I telescope in Hawaii.

The sun sets on Mauna Kea as the twin Kecks prepare for observing. Credit: Laurie Hatch/ W. M. Keck Observatory

“The galaxy is vigorously forming stars,” added Crighton, “and the gas properties clearly show that this is pristine material, left over from the early universe shortly after the Big Bang.”

Q1442-MD50 (as the galaxy is called) is 11 billion light years away from us — pretty close to the start of the universe about 13.8 billion years ago. The quasar that lit it up is called QSO J1444535+291905.

“Since this discovery is the result of a systematic search, we can now deduce that such cold flows are quite common,” stated Joseph Hennawi, the leader of the ENIGMA research group at the Max Planck Institute for Astronomy. “We only had to search 12 quasar-galaxy pairs to discover this example. This rate is in rough agreement with the predictions of supercomputer simulations, which provides a vote of confidence for our current theories of how galaxies formed.”

You can read more details in the article (which is in Astrophysical Letters) or in this preprint version on Arxiv.

Source: Keck Observatory