Looking back in time – and through a gravitational lens – astronomers found evidence that galaxies in the early Universe went through a “growth spurt” of rapid and vigorous star formation. A distant galaxy, known as SMM J2135-0102 is making new stars 250 times faster than the Milky Way. Due to the amount of time it takes light to reach Earth the scientists observed the galaxy as it would have appeared 10 billion years ago – just three billion years after the Big Bang.
“This galaxy is like a teenager going through a growth spurt,” said Dr. Mark Swinbank from Durham University, lead author of a new paper published in Nature. “We don’t fully understand why the stars are forming so rapidly but our results suggest that stars formed much more efficiently in the early Universe than they do today. Galaxies in the early Universe appear to have gone through rapid growth and stars like our sun formed much more quickly than they do today.”
SMM J2135-0102 was found using the Atacama Pathfinder Experiment (APEX) telescope, which is operated by the European Southern Observatory (ESO). Follow-up observations were carried out by combining the natural gravitational lens of nearby galaxies with the powerful Submillimeter Array telescope based in Hawaii to magnify the galaxy even further.
“To a layperson, our images appear fuzzy, but to us, they show the exquisite detail of a Faberge egg,” said Steven Longmore of the Harvard-Smithsonian Center for Astrophysics (CfA).
“The magnification reveals the galaxy in unprecedented detail, even though it is so distant that its light has taken about 10 billion years to reach us,” said Swinbank. “In follow-up observations with the Submillimeter Array telescope we’ve been able to study the clouds where stars are forming in the galaxy with great precision.”
They found four discrete star-forming regions within the galaxy, and each region was more than 100 times brighter than star-forming regions in the Milky Way, such as the Orion Nebula, and estimate that the observed galaxy is producing stars at a rate equivalent to 250 suns per year.
“The star formation in this galaxy’s large dust clouds is unlike that in the nearby Universe,” said co-author Carlos De Breuck from ESO. “However, our observations suggest that we should be able to use underlying physics from the densest cores in nearby galaxies to understand star birth in these more distant galaxies.”
Their results provide new insight into a critical time during the Universe’s history. SMM J2135-0102 is seen at the epoch when the majority of all stars were born, and therefore when many of the properties of nearby galaxies were defined. By studying it and other distant galaxies in the young Universe, astronomers hope to learn about the history of the Milky Way and other nearby galaxies.
[/caption]
In a manner somewhat like the formation of an alliance to defeat Darth Vader’s Death Star, more than a decade ago astronomers formed the Whole Earth Blazar Telescope consortium to understand Nature’s Death Ray Gun (a.k.a. blazars). And contrary to its at-death’s-door sounding name, the GASP has proved crucial to unraveling the secrets of how Nature’s “LHC” works.
“As the universe’s biggest accelerators, blazar jets are important to understand,” said Kavli Institute for Particle Astrophysics and Cosmology (KIPAC) Research Fellow Masaaki Hayashida, corresponding author on the recent paper presenting the new results with KIPAC Astrophysicist Greg Madejski. “But how they are produced and how they are structured is not well understood. We’re still looking to understand the basics.”
Blazars dominate the gamma-ray sky, discrete spots on the dark backdrop of the universe. As nearby matter falls into the supermassive black hole at the center of a blazar, “feeding” the black hole, it sprays some of this energy back out into the universe as a jet of particles.
Researchers had previously theorized that such jets are held together by strong magnetic field tendrils, while the jet’s light is created by particles spiraling around these wisp-thin magnetic field “lines”.
Yet, until now, the details have been relatively poorly understood. The recent study upsets the prevailing understanding of the jet’s structure, revealing new insight into these mysterious yet mighty beasts.
“This work is a significant step toward understanding the physics of these jets,” said KIPAC Director Roger Blandford. “It’s this type of observation that is going to make it possible for us to figure out their anatomy.”
Over a full year of observations, the researchers focused on one particular blazar jet, 3C279, located in the constellation Virgo, monitoring it in many different wavebands: gamma-ray, X-ray, optical, infrared and radio. Blazars flicker continuously, and researchers expected continual changes in all wavebands. Midway through the year, however, researchers observed a spectacular change in the jet’s optical and gamma-ray emission: a 20-day-long flare in gamma rays was accompanied by a dramatic change in the jet’s optical light.
Although most optical light is unpolarized – consisting of light with an equal mix of all polarizations – the extreme bending of energetic particles around a magnetic field line can polarize light. During the 20-day gamma-ray flare, optical light from the jet changed its polarization. This temporal connection between changes in the gamma-ray light and changes in the optical polarization suggests that light in both wavebands is created in the same part of the jet; during those 20 days, something in the local environment changed to cause both the optical and gamma-ray light to vary.
“We have a fairly good idea of where in the jet optical light is created; now that we know the gamma rays and optical light are created in the same place, we can for the first time determine where the gamma rays come from,” said Hayashida.
This knowledge has far-reaching implications about how a supermassive black hole produces polar jets. The great majority of energy released in a jet escapes in the form of gamma rays, and researchers previously thought that all of this energy must be released near the black hole, close to where the matter flowing into the black hole gives up its energy in the first place. Yet the new results suggest that – like optical light – the gamma rays are emitted relatively far from the black hole. This, Hayashida and Madejski said, in turn suggests that the magnetic field lines must somehow help the energy travel far from the black hole before it is released in the form of gamma rays.
“What we found was very different from what we were expecting,” said Madejski. “The data suggest that gamma rays are produced not one or two light days from the black hole [as was expected] but closer to one light year. That’s surprising.”
In addition to revealing where in the jet light is produced, the gradual change of the optical light’s polarization also reveals something unexpected about the overall shape of the jet: the jet appears to curve as it travels away from the black hole.
“At one point during a gamma-ray flare, the polarization rotated about 180 degrees as the intensity of the light changed,” said Hayashida. “This suggests that the whole jet curves.”
This new understanding of the inner workings and construction of a blazar jet requires a new working model of the jet’s structure, one in which the jet curves dramatically and the most energetic light originates far from the black hole. This, Madejski said, is where theorists come in. “Our study poses a very important challenge to theorists: how would you construct a jet that could potentially be carrying energy so far from the black hole? And how could we then detect that? Taking the magnetic field lines into account is not simple. Related calculations are difficult to do analytically, and must be solved with extremely complex numerical schemes.”
Theorist Jonathan McKinney, a Stanford University Einstein Fellow and expert on the formation of magnetized jets, agrees that the results pose as many questions as they answer. “There’s been a long-time controversy about these jets – about exactly where the gamma-ray emission is coming from. This work constrains the types of jet models that are possible,” said McKinney, who is unassociated with the recent study. “From a theoretician’s point of view, I’m excited because it means we need to rethink our models.”
As theorists consider how the new observations fit models of how jets work, Hayashida, Madejski and other members of the research team will continue to gather more data. “There’s a clear need to conduct such observations across all types of light to understand this better,” said Madejski. “It takes a massive amount of coordination to accomplish this type of study, which included more than 250 scientists and data from about 20 telescopes. But it’s worth it.”
With this and future multi-wavelength studies, theorists will have new insight with which to craft models of how the universe’s biggest accelerators work. Darth Vader has been denied all access to these research results.
[/caption]
Have you heard of ‘living fossils’? The coelacanth, the ginko tree, the platypus, and several others are species alive today which seem to be the same as those found as fossils, in rocks up to hundreds of millions of years old.
Now combined results from the Hubble Space Telescope, Spitzer, Galaxy Evolution Explorer (GALEX), and Swift show that there are ‘living galaxy fossils’ in our own backyard!
Hickson Compact Group 31 is one of 100 compact galaxy groups catalogued by Canadian astronomer Paul Hickson; the recent study of them – led by Sarah Gallagher of The University of Western Ontario in London, Ontario – shows that the four dwarf galaxies in it are in the process of coming together (or ‘merging’ as astronomers say).
Such encounters between dwarf galaxies are normally seen billions of light-years away and therefore occurred billions of years ago. But these galaxies are relatively nearby, only 166 million light-years away.
New images of this foursome by NASA’s Hubble Space Telescope offer a window into the universe’s formative years when the buildup of large galaxies from smaller building blocks was common.
Astronomers have known for decades that these dwarf galaxies are gravitationally tugging on each other. Their classical spiral shapes have been stretched like taffy, pulling out long streamers of gas and dust. The brightest object in the Hubble image is actually two colliding galaxies. The entire system is aglow with a firestorm of star birth, triggered when hydrogen gas is compressed by the close encounters between the galaxies and collapses to form stars.
The Hubble observations have added important clues to the story of this interacting group, allowing astronomers to determine when the encounter began and to predict a future merger.
“We found the oldest stars in a few ancient globular star clusters that date back to about 10 billion years ago. Therefore, we know the system has been around for a while,” says Gallagher; “most other dwarf galaxies like these interacted billions of years ago, but these galaxies are just coming together for the first time. This encounter has been going on for at most a few hundred million years, the blink of an eye in cosmic history. It is an extremely rare local example of what we think was a quite common event in the distant universe.”
In other words, a living fossil.
Everywhere the astronomers looked in this group they found batches of infant star clusters and regions brimming with star birth. The entire system is rich in hydrogen gas, the stuff of which stars are made. Gallagher and her team used Hubble’s Advanced Camera for Surveys to resolve the youngest and brightest of those clusters, which allowed them to calculate the clusters’ ages, trace the star-formation history, and determine that the galaxies are undergoing the final stages of galaxy assembly.
The analysis was bolstered by infrared data from NASA’s Spitzer Space Telescope and ultraviolet observations from the Galaxy Evolution Explorer (GALEX) and NASA’s Swift satellite. Those data helped the astronomers measure the total amount of star formation in the system. “Hubble has the sharpness to resolve individual star clusters, which allowed us to age-date the clusters,” Gallagher adds.
Hubble reveals that the brightest clusters, hefty groups each holding at least 100,000 stars, are less than 10 million years old. The stars are feeding off of plenty of gas. A measurement of the gas content shows that very little has been used up – further proof that the “galactic fireworks” seen in the images are a recent event. The group has about five times as much hydrogen gas as our Milky Way Galaxy.
“This is a clear example of a group of galaxies on their way toward a merger because there is so much gas that is going to mix everything up,” Gallagher says. “The galaxies are relatively small, comparable in size to the Large Magellanic Cloud, a satellite galaxy of our Milky Way. Their velocities, measured from previous studies, show that they are moving very slowly relative to each other, just 134,000 miles an hour (60 kilometers a second). So it’s hard to imagine how this system wouldn’t wind up as a single elliptical galaxy in another billion years.”
Adds team member Pat Durrell of Youngstown State University: “The four small galaxies are extremely close together, within 75,000 light-years of each other – we could fit them all within our Milky Way.”
Why did the galaxies wait so long to interact? Perhaps, says Gallagher, because the system resides in a lower-density region of the universe, the equivalent of a rural village. Getting together took billions of years longer than it did for galaxies in denser areas.
[/caption]
Galaxy density in the Cosmic Evolution Survey (COSMOS) field, with colors representing the redshift of the galaxies, ranging from redshift of 0.2 (blue) to 1 (red). Pink x-ray contours show the extended x-ray emission as observed by XMM-Newton.
Dark matter (actually cold, dark – non-baryonic – matter) can be detected only by its gravitational influence. In clusters and groups of galaxies, that influence shows up as weak gravitational lensing, which is difficult to nail down. One way to much more accurately estimate the degree of gravitational lensing – and so the distribution of dark matter – is to use the x-ray emission from the hot intra-cluster plasma to locate the center of mass.
And that’s just what a team of astronomers have recently done … and they have, for the first time, given us a handle on how dark matter has evolved over the last many billion years.
COSMOS is an astronomical survey designed to probe the formation and evolution of galaxies as a function of cosmic time (redshift) and large scale structure environment. The survey covers a 2 square degree equatorial field with imaging by most of the major space-based telescopes (including Hubble and XMM-Newton) and a number of ground-based telescopes.
Understanding the nature of dark matter is one of the key open questions in modern cosmology. In one of the approaches used to address this question astronomers use the relationship between mass and luminosity that has been found for clusters of galaxies which links their x-ray emissions, an indication of the mass of the ordinary (“baryonic”) matter alone (of course, baryonic matter includes electrons, which are leptons!), and their total masses (baryonic plus dark matter) as determined by gravitational lensing.
To date the relationship has only been established for nearby clusters. New work by an international collaboration, including the Max Planck Institute for Extraterrestrial Physics (MPE), the Laboratory of Astrophysics of Marseilles (LAM), and Lawrence Berkeley National Laboratory (Berkeley Lab), has made major progress in extending the relationship to more distant and smaller structures than was previously possible.
To establish the link between x-ray emission and underlying dark matter, the team used one of the largest samples of x-ray-selected groups and clusters of galaxies, produced by the ESA’s x-ray observatory, XMM-Newton.
Groups and clusters of galaxies can be effectively found using their extended x-ray emission on sub-arcminute scales. As a result of its large effective area, XMM-Newton is the only x-ray telescope that can detect the faint level of emission from distant groups and clusters of galaxies.
“The ability of XMM-Newton to provide large catalogues of galaxy groups in deep fields is astonishing,” said Alexis Finoguenov of the MPE and the University of Maryland, a co-author of the recent Astrophysical Journal (ApJ) paper which reported the team’s results.
Since x-rays are the best way to find and characterize clusters, most follow-up studies have until now been limited to relatively nearby groups and clusters of galaxies.
“Given the unprecedented catalogues provided by XMM-Newton, we have been able to extend measurements of mass to much smaller structures, which existed much earlier in the history of the Universe,” says Alexie Leauthaud of Berkeley Lab’s Physics Division, the first author of the ApJ study.
Gravitational lensing occurs because mass curves the space around it, bending the path of light: the more mass (and the closer it is to the center of mass), the more space bends, and the more the image of a distant object is displaced and distorted. Thus measuring distortion, or ‘shear’, is key to measuring the mass of the lensing object.
In the case of weak gravitational lensing (as used in this study) the shear is too subtle to be seen directly, but faint additional distortions in a collection of distant galaxies can be calculated statistically, and the average shear due to the lensing of some massive object in front of them can be computed. However, in order to calculate the lens’ mass from average shear, one needs to know its center.
“The problem with high-redshift clusters is that it is difficult to determine exactly which galaxy lies at the centre of the cluster,” says Leauthaud. “That’s where x-rays help. The x-ray luminosity from a galaxy cluster can be used to find its centre very accurately.”
Knowing the centers of mass from the analysis of x-ray emission, Leauthaud and colleagues could then use weak lensing to estimate the total mass of the distant groups and clusters with greater accuracy than ever before.
The final step was to determine the x-ray luminosity of each galaxy cluster and plot it against the mass determined from the weak lensing, with the resulting mass-luminosity relation for the new collection of groups and clusters extending previous studies to lower masses and higher redshifts. Within calculable uncertainty, the relation follows the same straight slope from nearby galaxy clusters to distant ones; a simple consistent scaling factor relates the total mass (baryonic plus dark) of a group or cluster to its x-ray brightness, the latter measuring the baryonic mass alone.
“By confirming the mass-luminosity relation and extending it to high redshifts, we have taken a small step in the right direction toward using weak lensing as a powerful tool to measure the evolution of structure,” says Jean-Paul Kneib a co-author of the ApJ paper from LAM and France’s National Center for Scientific Research (CNRS).
The origin of galaxies can be traced back to slight differences in the density of the hot, early Universe; traces of these differences can still be seen as minute temperature differences in the cosmic microwave background (CMB) – hot and cold spots.
“The variations we observe in the ancient microwave sky represent the imprints that developed over time into the cosmic dark-matter scaffolding for the galaxies we see today,” says George Smoot, director of the Berkeley Center for Cosmological Physics (BCCP), a professor of physics at the University of California at Berkeley, and a member of Berkeley Lab’s Physics Division. Smoot shared the 2006 Nobel Prize in Physics for measuring anisotropies in the CMB and is one of the authors of the ApJ paper. “It is very exciting that we can actually measure with gravitational lensing how the dark matter has collapsed and evolved since the beginning.”
One goal in studying the evolution of structure is to understand dark matter itself, and how it interacts with the ordinary matter we can see. Another goal is to learn more about dark energy, the mysterious phenomenon that is pushing matter apart and causing the Universe to expand at an accelerating rate. Many questions remain unanswered: Is dark energy constant, or is it dynamic? Or is it merely an illusion caused by a limitation in Einstein’s General Theory of Relativity?
The tools provided by the extended mass-luminosity relationship will do much to answer these questions about the opposing roles of gravity and dark energy in shaping the Universe, now and in the future.
Sources: ESA, and a paper published in the 20 January, 2010 issue of the Astrophysical Journal (arXiv:0910.5219 is the preprint)
At the end of the proverbial day, space-based missions like Spitzer produce millions of observations of astronomical objects, phenomena, and events. And those terabytes of data are used to test hypotheses in astrophysics which lead to a deeper understanding of the universe and our home in it, and perhaps some breakthrough whose here-on-the-ground implementation leads to a major, historic improvement in human welfare and planetary ecosystem health.
But such missions also leave more immediate legacies, in terms of the pleasure they bring millions of people, via the beauty of their images (not to mention posters, computer wallpaper and screen savers, and even inspiration for avatars).
Some recent results from one of Spitzer’s programs – SAGE-SMC – are no exception.
The image shows the main body of the Small Magellanic Cloud (SMC), which is comprised of the “bar” on the left and a “wing” extending to the right. The bar contains both old stars (in blue) and young stars lighting up their natal dust (green/red). The wing mainly contains young stars. In addition, the image contains a galactic globular cluster in the lower left (blue cluster of stars) and emission from dust in our own galaxy (green in the upper right and lower right corners).
The data in this image are being used by astronomers to study the lifecycle of dust in the entire galaxy: from the formation in stellar atmospheres, to the reservoir containing the present day interstellar medium, and the dust consumed in forming new stars. The dust being formed in old, evolved stars (blue stars with a red tinge) is measured using mid-infrared wavelengths. The present day interstellar dust is weighed by measuring the intensity and color of emission at longer infrared wavelengths. The rate at which the raw material is being consumed is determined by studying ionized gas regions and the younger stars (yellow/red extended regions). The SMC is one of very few galaxies where this type of study is possible, and the research could not be done without Spitzer.
This image was captured by Spitzer’s infrared array camera and multiband imaging photometer (blue is 3.6-micron light; green is 8.0 microns; and red is combination of 24-, 70- and 160-micron light). The blue color mainly traces old stars. The green color traces emission from organic dust grains (mainly polycyclic aromatic hydrocarbons). The red traces emission from larger, cooler dust grains.
The image was taken as part of the Spitzer Legacy program known as SAGE-SMC: Surveying the Agents of Galaxy Evolution in the Tidally-Stripped, Low Metallicity Small Magellanic Cloud.
The Small Magellanic Cloud (SMC), and its larger sister galaxy, the Large Magellanic Cloud (LMC), are named after the seafaring explorer Ferdinand Magellan, who documented them while circling the globe nearly 500 years ago. From Earth’s southern hemisphere, they can appear as wispy clouds. The SMC is the further of the pair, at 200,000 light-years away.
Recent research has shown that the galaxies may not, as previously suspected, orbit around our galaxy, the Milky Way. Instead, they are thought to be merely sailing by, destined to go their own way. Astronomers say the two galaxies, which are both less evolved than a galaxy like ours, were triggered to create bursts of new stars by gravitational interactions with the Milky Way and with each other. In fact, the LMC may eventually consume its smaller companion.
Karl Gordon, the principal investigator of the latest Spitzer observations at the Space Telescope Science Institute in Baltimore, Maryland, and his team are interested in the SMC not only because it is so close and compact, but also because it is very similar to young galaxies thought to populate the universe billions of years ago. The SMC has only one-fifth the amount of heavier elements, such as carbon, contained in the Milky Way, which means that its stars haven’t been around long enough to pump large amounts of these elements back into their environment. Such elements were necessary for life to form in our solar system.
Studies of the SMC therefore offer a glimpse into the different types of environments in which stars form.
“It’s quite the treasure trove,” said Gordon, “because this galaxy is so close and relatively large, we can study all the various stages and facets of how stars form in one environment.” He continued: “With Spitzer, we are pinpointing how to best calculate the numbers of new stars that are forming right now. Observations in the infrared give us a view into the birthplace of stars, unveiling the dust-enshrouded locations where stars have just formed.”
This image shows the main body of the SMC, which is comprised of the “bar” and “wing” on the left and the “tail” extending to the right. The tail contains only gas, dust and newly formed stars. Spitzer data has confirmed that the tail region was recently torn off the main body of the galaxy. Two of the tail clusters, which are still embedded in their birth clouds, can be seen as red dots.
[/caption]
Galaxies long, long ago were very fecund; they gave birth to stars at a rate at least ten times what we see today.
Why? Was there more stuff around then, to make stars? Or were galaxies back then more efficient at star-making? Or something else??
Dr. Linda Tacconi, from Germany’s Max-Planck-Institut für extraterrestrische Physik, led an international team of astronomers to find out why … and the answer seems to be that young galaxies were stuffed to the gills with gas.
“We have been able, for the first time, to detect and image the cold molecular gas in normal star forming galaxies, which are representative of the typical massive galaxy populations shortly after the Big Bang,” said Dr Tacconi.
The challenging observations yield the first glimpse how galaxies, or more precisely the cold gas in these galaxies, looked a mere 3 to 5 billion years after the Big Bang (equivalent to a cosmological redshift z~2 to z~1). At this age, galaxies seem to have formed stars more or less continuously with at least ten times the rate seen in similar mass systems in the local Universe.
It is now reasonably well-established that galaxies formed from proto-galaxies, which themselves formed in local over-densities, dominated by cold dark matter – dark matter halos – where the newly neutral hydrogen and helium collected and cooled. Through collisions and mergers, and some on-going gas accretion, the proto-galaxies formed young galaxies, a few billion years after the Big Bang – in short, hierarchical formation.
Detailed observations of the cold gas and its distribution and dynamics hold a key role in disentangling the complex mechanisms responsible for turning the first proto-galaxies into modern galaxies, such as the Milky-Way. A major study of distant, luminous star forming galaxies at the Plateau de Bure millimeter interferometer has now resulted in a breakthrough by having a direct look at the star formation “food”. The study took advantage of major recent advances in the sensitivity of the radiometers at the observatory to make the first systematic survey of cold gas properties (traced by a rotational line of the carbon monoxide molecule) of normal massive galaxies when the Universe was 40% (z=1.2) and 24% (z=2.3) of its current age. Previous observations were largely restricted to rare, very luminous objects, including galaxy mergers and quasars. The new study instead traces massive star forming galaxies representative of the ‘normal’, average galaxy population in this mass and redshift range.
“When we started the programme about a year ago”, says Dr. Tacconi, “we could not be sure that we would even detect anything. But the observations were successful beyond our most optimistic hopes. We have been able to demonstrate that massive normal galaxies at z~1.2 and z~2.3 had five to ten times more gas than what we see in the local Universe. Given that these galaxies were forming gas at a high rate over long periods of time, this means that gas must have been continuously replenished by accretion from the dark matter halos, in excellent agreement with recent theoretical work.”
Another important result of these observations is the first spatially resolved images of the cold gas distribution and motions in several of the galaxies. “This survey has opened the door for an entirely new avenue of studying the evolution of galaxies,” says Pierre Cox, the director of IRAM. “This is really exciting and there is much more to come.”
“These fascinating findings provide us with important clues and constraints for next-generation theoretical models that we will use to study the early phases of galaxy development in more detail,” says Andreas Burkert, specialist for star formation and the evolution of galaxies at Germany’s Excellence Cluster Universe. “Eventually these results will help to understand the origin and the development of our Milky Way.”
About the EGS 1305123 image: Spatially resolved optical and millimeter images of a typical massive galaxy at redshift z=1.1 (5.5 billion years after the Big Bang). The left image was taken with the Hubble Space Telescope in the V- and I-optical bands, as part of the AEGIS survey of distant galaxies. The right image is an overlay of the CO 3-2 emission observed with the PdBI (red/yellow colors) superposed on the I-image (grey). For the first time these observations clearly show that the molecular line emission and the optical light from massive stars trace a massive, rotating disk of diameter ~60,000 light years. This disk is similar in size and structure as seen in z~0 disk galaxies, such as the Milky Way. However, the mass of cold gas is in this disk is about an order of magnitude larger than in typical z~0 disk galaxies. This explains why high-z galaxies can form continuously at about ten times the rate of typical z~0 galaxies.
[/caption]
Why do some of the supermassive black holes in active galactic nuclei create back-to-back jets that can vaporize entire solar systems, while others have no jets at all?
Dan Evans, a postdoctoral researcher at MIT Kavli Institute for Astrophysics and Space Research (MKI) thinks he knows why; it’s because the jet-producing supermassive black holes are spinning backwards, relative to their accretion disks.
For two years, Evans has been comparing several dozen galaxies whose black holes host powerful jets (these galaxies are known as radio-loud active galactic nuclei, or AGN, and are often DRAGNs – double radio source associated with galactic nucleus) to those galaxies with supermassive black holes that do not eject jets. All black holes – those with and without jets – feature accretion disks, the clumps of dust and gas rotating just outside the event horizon. By examining the light reflected in the accretion disk of an AGN black hole, he concluded that jets may form right outside black holes that have a retrograde spin – or which spin in the opposite direction from their accretion disk. Although Evans and a colleague recently hypothesized that the gravitational effects of black hole spin may have something to do with why some have jets, Evans now has observational results to support the theory in a paper published in the Feb. 10 issue of the Astrophysical Journal.
Although Evans has suspected for nearly five years that retrograde black holes with jets are missing the innermost portion of their accretion disk, it wasn’t until last year that computational advances meant that he could analyze data collected between late 2007 and early 2008 by the Suzaku observatory, a Japanese satellite launched in 2005 with collaboration from NASA, to provide an example to support the theory. With these data, Evans and colleagues from the Harvard-Smithsonian Center for Astrophysics, Yale University, Keele University and the University of Hertfordshire in the United Kingdom analyzed the spectra of the active galactic nucleus with a pair of jets located about 800 million light years away in an AGN named 3C 33.
“It’s the first convincing galaxy of this type seen at this angle where the result is pretty robust,” said Patrick Ogle, an assistant research scientist at the California Institute of Technology, who studies AGN. Ogle believes Evans’s theory regarding retrograde spin is among the best explanations he has heard for why some AGN contain a supermassive black hole with a jet and others don’t.
Astrophysicists can see the signatures of x-ray emission from the inner regions of the accretion disk, which is located close to the edge of a black hole, as a result of a super hot atmospheric ring called a corona that lies above the disk and emits light (electromagnetic radiation) that an observatory like Suzaku can detect. In addition to this direct light, a fraction of light passes down from the corona onto the black hole’s accretion disk and is reflected from the disk’s surface, resulting in a spectral signature pattern called the Compton reflection hump, also detected by Suzaku.
But Evans’ team never found a Compton reflection hump in the x-ray emission given off by 3C 33, a finding the researchers believe provides crucial evidence that the accretion disk for a black hole with a jet is truncated, meaning it doesn’t extend as close to the center of the black hole with a jet as it does for a black hole that does not have a jet. The absence of this innermost portion of the disk means that nothing can reflect the light from the corona, which explains why observers only see a direct spectrum of x-ray light.
The researchers believe the absence may result from retrograde spin, which pushes out the orbit of the innermost portion of accretion material as a result of general relativity, or the gravitational pull between masses. This absence creates a gap between the disk and the center of the black hole that leads to the piling of magnetic fields that provide the force to fuel a jet.
While Ogle believes that the retrograde spin theory is a good explanation for Evans’ observations, he said it is far from being confirmed, and that it will take more examples with consistent results to convince the astrophysical community.
The field of research will expand considerably in August 2011 with the planned launch of NASA’s Nuclear Spectroscopic Telescope Array (NuSTAR) satellite, which is 10 to 50 times more sensitive to spectra and the Compton reflection hump than current technology. NuSTAR will help researchers conduct a “giant census” of supermassive black holes that “will absolutely revolutionize the way we look at X-ray spectra of AGN,” Evans explained. He plans to spend another two years comparing black holes with and without jets, hoping to learn more about the properties of AGN. His goal over the next decade is to determine how the spin of a supermassive black hole evolves over time.
[/caption]
Excellent teamwork by astronomers working in two different wavebands – x-ray and optical – has led to the discovery of a binary quasar being created by a pair of merging galaxies.
“This is really the first case in which you see two separate galaxies, both with quasars, that are clearly interacting,” says Carnegie astronomer John Mulchaey who made observations crucial to understanding the galaxy merger.
“The model verifies the merger origin for this binary quasar system,” Thomas Cox, now a fellow at the Carnegie Observatories, says, referring to computer simulations of the merging galaxies he produced. When Cox’s model galaxies merged, they showed features remarkably similar to what Mulchaey observed in the Magellan images. “It also hints that this kind of galaxy interaction is a key component of the growth of black holes and production of quasars throughout our universe,” Cox added.
“Just because you see two galaxies that are close to each other in the sky doesn’t mean they are merging,” says Mulchaey. “But from the Magellan images we can actually see tidal tails, one from each galaxy, which suggests that the galaxies are in fact interacting and are in the process of merging.”
As Universe Today readers know, quasars are the extremely bright centers of galaxies surrounding supermassive black holes, and binary quasars are pairs of quasars bound together by the mutual gravitation of the two host galaxies’ nuclei. Binary quasars, like other quasars, are thought to be the product of galaxy mergers. Until now, however, binary quasars have not been seen in galaxies that are unambiguously in the act of merging. But images of a new binary quasar from the Carnegie Institution’s Magellan telescope in Chile show two distinct galaxies with tails produced by tidal forces from their mutual gravitational attraction.
Supermassive black holes are to be found in the nuclei of most, if not all, large galaxies, such as our galaxy the Milky Way. Because galaxies regularly interact and merge, astronomers have concluded that binary supermassive black holes have been common in the Universe, especially during its early history (when galaxy mergers were far more common). Supermassive black holes can only be detected as quasars – which are one kind of highly luminous active galactic nucleus (AGN) – when they are actively accreting matter, a process that releases vast amounts of energy across the entire electromagnetic spectrum. A leading theory of ordinary AGNs is that galaxy mergers trigger accretion, creating quasars in both galaxies (AGNs in the hearts of the giant elliptical galaxies in rich clusters are thought to be fueled by a different mechanism, cooling flow). Because most such mergers would have happened in the distant past, binary quasars and their associated galaxies are very far away and therefore difficult for most telescopes to resolve.
The binary quasar, named SDSS J1254+0846, was initially detected by the Sloan Digital Sky Survey, a multi-year, large scale astronomical survey of galaxies and quasars. Further observations by Paul Green of the Harvard-Smithsonian Center for Astrophysics and colleagues using NASA’s Chandra’s X-ray Observatory and telescopes at Kitt Peak National Observatory in Arizona and Palomar Observatory in California strongly suggest that the object was likely a binary quasar in the midst of a galaxy merger. Carnegie’s Mulchaey then used the 6.5 meter Baade-Magellan telescope at the Las Campanas observatory in Chile to obtain deeper images and more detailed spectroscopy of the merging galaxies.
[/caption]
The Wilkinson Microwave Anisotropy Probe (WMAP) science team has finished analyzing seven full years’ of data from the little probe that could, and once again it seems we can sum up the universe in six parameters and a model.
Using the seven-year WMAP data, together with recent results on the large-scale distribution of galaxies, and an updated estimate of the Hubble constant, the present-day age of the universe is 13.75 (plus-or-minus 0.11) billion years, dark energy comprises 72.8% (+/- 1.5%) of the universe’s mass-energy, baryons 4.56% (+/- 0.16%), non-baryonic matter (CDM) 22.7% (+/- 1.4%), and the redshift of reionization is 10.4 (+/- 1.2).
In addition, the team report several new cosmological constraints – primordial abundance of helium (this rules out various alternative, ‘cold big bang’ models), and an estimate of a parameter which describes a feature of density fluctuations in the very early universe sufficiently precisely to rule out a whole class of inflation models (the Harrison-Zel’dovich-Peebles spectrum), to take just two – as well as tighter limits on many others (number of neutrino species, mass of the neutrino, parity violations, axion dark matter, …).
The best eye-candy from the team’s six papers are the stacked temperature and polarization maps for hot and cold spots; if these spots are due to sound waves in matter frozen in when radiation (photons) and baryons parted company – the cosmic microwave background (CMB) encodes all the details of this separation – then there should be nicely circular rings, of rather exact sizes, around the spots. Further, the polarization directions should switch from radial to tangential, from the center out (for cold spots; vice versa for hot spots).
And that’s just what the team found!
Concerning Dark Energy. Since the Five-Year WMAP results were published, several independent studies with direct relevance to cosmology have been published. The WMAP team took those from observations of the baryon acoustic oscillations (BAO) in the distribution of galaxies; of Cepheids, supernovae, and a water maser in local galaxies; of time-delay in a lensed quasar system; and of high redshift supernovae, and combined them to reduce the nooks and crannies in parameter space in which non-cosmological constant varieties of dark energy could be hiding. At least some alternative kinds of dark energy may still be possible, but for now Λ, the cosmological constant, rules.
Concerning Inflation. Very, very, very early in the life of the universe – so the theory of cosmic inflation goes – there was a period of dramatic expansion, and the tiny quantum fluctuations before inflation became the giant cosmic structures we see today. “Inflation predicts that the statistical distribution of primordial fluctuations is nearly a Gaussian distribution with random phases. Measuring deviations from a Gaussian distribution,” the team reports, “is a powerful test of inflation, as how precisely the distribution is (non-) Gaussian depends on the detailed physics of inflation.” While the limits on non-Gaussianity (as it is called), from analysis of the WMAP data, only weakly constrain various models of inflation, they do leave almost nowhere for cosmological models without inflation to hide.
Concerning ‘cosmic shadows’ (the Sunyaev-Zel’dovich (SZ) effect). While many researchers have looked for cosmic shadows in WMAP data before – perhaps the best known to the general public is the 2006 Lieu, Mittaz, and Zhang paper (the SZ effect: hot electrons in the plasma which pervades rich clusters of galaxies interact with CMB photons, via inverse Compton scattering) – the WMAP team’s recent analysis is their first to investigate this effect. They detect the SZ effect directly in the nearest rich cluster (Coma; Virgo is behind the Milky Way foreground), and also statistically by correlation with the location of some 700 relatively nearby rich clusters. While the WMAP team’s finding is consistent with data from x-ray observations, it is inconsistent with theoretical models. Back to the drawing board for astrophysicists studying galaxy clusters.
I’ll wrap up by quoting Komatsu et al. “The standard ΛCDM cosmological model continues to be an exquisite fit to the existing data.”
Primary source: Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation (arXiv:1001.4738). The five other Seven-Year WMAP papers are: Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Are There Cosmic Microwave Background Anomalies? (arXiv:1001.4758), Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Planets and Celestial Calibration Sources (arXiv:1001.4731), Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic Errors, and Basic Results (arXiv:1001.4744), Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Power Spectra and WMAP-Derived Parameters (arXiv:1001.4635), and Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Galactic Foreground Emission (arXiv:1001.4555). Also check out the official WMAP website.
Galaxies come in all sorts of shapes. But in the past, the various galaxy shapes used to be more diverse and “peculiar” than they are now. Over time, according to a new study, galaxies tend to become spirals. “Six billion years ago, there were many more peculiar galaxies than now — a very surprising result,” said Rodney Delgado-Serrano, lead author of a new paper. “This means that in the last six billion years, these peculiar galaxies must have become normal spirals, giving us a more dramatic picture of the recent Universe than we had before.”
Using data from the Hubble Space Telescope and the Sloan Digital Sky Survey, a team of astronomers created the first demographic census of galaxy types at two different points in the Universe’s history, putting together two Hubble sequences from different eras that help explain how galaxies form. The results showed that the Hubble sequence six billion years ago was very different from the one that astronomers see today.
The top image represents the current — or local — universe, and the bottom image represents the make up of the distant galaxies (six billion years ago), showing a much larger fraction of peculiar galaxies. In sampling 116 local galaxies and 148 distant galaxies, the researchers found that more than half of the present-day spiral galaxies had so-called peculiar shapes only 6 billion years ago.
Edwin Hubble invented the Hubble Sequence, sometimes called the Hubble tuning-fork diagram. The diagram divides galaxies into three 3 broad classes based on their basic shapes: spiral, barred spiral, and elliptical.
“Our aim was to find a scenario that would connect the current picture of the Universe with the morphologies of distant, older galaxies — to find the right fit for this puzzling view of galaxy evolution,” said François Hammer of the Observatoire de Paris who led the team of astronomers.
The astronomers think that these peculiar galaxies did indeed become spirals through collisions and merging. This is contrary to the widely held opinion that galaxy mergers result in the formation of elliptical galaxies, but Hammer and his team propose a “spiral rebuilding” hypothesis, which suggests that peculiar galaxies affected by gas-rich mergers are slowly reborn as giant spirals with discs and central bulges.
Crashes between galaxies give rise to enormous new galaxies and, although it was commonly believed that galaxy mergers decreased significantly eight billion years ago, the new result implies that mergers were still occurring frequently after that time — up to as recently as four billion years ago.
Link to higher resolution version of the top image.