Gravity’s a funny thing. Not only does it tug away at you, me, planets, moons and stars, but it can even bend light itself. And once you’re bending light, well, you’ve got yourself a telescope.
Everyone here is familiar with the practical applications of gravity. If not just from exposure to Loony Tunes, with an abundance of scenes with an anthropomorphized coyote being hurled at the ground from gravitational acceleration, giant rocks plummeting to a spot inevitably marked with an X, previously occupied by a member of the “accelerati incredibilus” family and soon to be a big squish mark containing the bodily remains of the previously mentioned Wile E. Coyote.
Despite having a very limited understanding of it, Gravity is a pretty amazing force, not just for decimating a infinitely resurrecting coyote, but for keeping our feet on the ground and our planet in just the right spot around our Sun. The force due to gravity has got a whole bag of tricks, and reaches across Universal distances. But one of its best tricks is how it acts like a lens, magnifying distant objects for astronomy.
How about four supernovae for the price of one? Using the Hubble Space Telescope, Dr. Patrick Kelly of the University of California-Berkeley along with the GLASS (Grism Lens Amplified Survey from Space) and Hubble Frontier Fields teams, discovered a remote supernova lensed into four copies of itself by the powerful gravity of a foreground galaxy cluster. Dubbed SN Refsdal, the object was discovered in the rich galaxy cluster MACS J1149.6+2223 five billion light years from Earth in the constellation Leo. It’s the first multiply-lensed supernova every discovered and one of nature’s most exotic mirages.
Gravitational lensing grew out of Einstein’s Theory of Relativitywherein he predicted massive objects would bend and warp the fabric of spacetime. The more massive the object, the more severe the bending. We can picture this by imagining a child standing on a trampoline, her weight pressing a dimple into the fabric. Replace the child with a 200-pound adult and the surface of the trampoline sags even more.
Similarly, the massive Sun creates a deep, but invisible dimple in the fabric of spacetime. The planets feel this ‘curvature of space’ and literally roll toward the Sun. Only their sideways motion or angular momentum keeps them from falling straight into the solar inferno.
Curved space created by massive objects also bends light rays. Einstein predicted that light from a star passing near the Sun or other massive object would follow this invisible curved spacescape and be deflected from an otherwise straight path. In effect, the object acts as a lens, bending and refocusing the light from the distant source into either a brighter image or multiple and distorted images. Also known as the deflection of starlight, nowadays we call it gravitational lensing.
Simulation of distorted spacetime around a massive galaxy cluster over time
Turns out there are lots of these gravitational lenses out there in the form of massive clusters of galaxies. They contain regular matter as well as vast quantities of the still-mysterious dark matter that makes up 96% of the material stuff in the universe. Rich galaxy clusters act like telescopes – their enormous mass and powerful gravity magnify and intensify the light of galaxies billions of light years beyond, making visible what would otherwise never be seen.
Let’s return to SN Refsdal, named for Sjur Refsdal, a Norwegian astrophysicist who did early work in the field of gravitational lensing. A massive elliptical galaxy in the MACS J1149 cluster “lenses” the 9.4 billion light year distant supernova and its host spiral galaxy from background obscurity into the limelight. The elliptical’s powerful gravity’s having done a fine job of distorting spacetime to bring the supernova into view also distorts the shape of the host galaxy and splits the supernova into four separate, similarly bright images. To create such neat symmetry, SN Refsdal must be precisely aligned behind the galaxy’s center.
The scenario here bears a striking resemblance to Einstein’s Cross, a gravitationally lensed quasar, where the light of a remote quasar has been broken into four images arranged about the foreground lensing galaxy. The quasar images flicker or change in brightness over time as they’re microlensed by the passage of individual stars within the galaxy. Each star acts as a smaller lens within the main lens.
Detailed color images taken by the GLASS and Hubble Frontier Fields groups show the supernova’s host galaxy is also multiply-imaged by the galaxy cluster’s gravity. According to their recent paper, Kelly and team are still working to obtain spectra of the supernova to determine if it resulted from the uncontrolled burning and explosion of a white dwarf star (Type Ia) or the cataclysmic collapse and rebound of a supergiant star that ran out of fuel (Type II).
The time light takes to travel to the Earth from each of the lensed images is different because each follows a slightly different path around the center of the lensing galaxy. Some paths are shorter, some longer. By timing the brightness variations between the individual images the team hopes to provide constraints not only on the distribution of bright matter vs. dark matter in the lensing galaxy and in the cluster but use that information to determine the expansion rate of the universe.
The quest for optimal sites to carry out astronomical observations has taken scientists to the frigid Arctic. Eric Steinbring, who led a team of National Research Council Canada experts, noted that a high Arctic site can, “offer excellent image quality that is maintained during many clear, calm, dark periods that can last 100 hours or more.” The new article by Steinbring and colleagues conveys recent progress made to obtain precise observations from a 600 m high ridge near the Eureka research base on Ellesmere Island, which is located in northern Canada.
The new telescope that Steinbring and his colleagues tested was located at the Polar Environment Atmospheric Research Laboratory (PEARL). The observatory can be accessed in winter by 4 x 4 trucks via a 15 km long road from a base facility at sea-level. That base camp is operated by Environment Canada and serviced by an airstrip and resupply ship in summer. Recently, wide-field cameras developed at the University of Toronto were deployed near Eureka to monitor thousands of stars, with the objective of expanding the exoplanet database.
Earlier work by Steinbring and colleagues indicated that data obtained from PEARL imply that clear weather prevails 68% of the time. After significant testing, the team concluded that the site “can allow reliable, uninterrupted temporal coverage during successive dark periods, in roughly 100 hour blocks with clear skies and good seeing.”
However, the optimal conditions can be interrupted by brief but potentially intense storms. In the article the team added that, “the primary issue is wind rather than the cold temperatures.” The PEARL facility is equipped with an important weather probe that conveys on-site conditions at 10 minute intervals, thanks to the Canadian Network for the Detection of Atmospheric Change (CANDAC).
There are numerous challenges that arise when observing from the Arctic, but scientists like Steinbring have worked to overcome them, potentially enabling new studies of gravitational lenses and other pertinent phenomena. Indeed, astronomical observations are likewise being obtained from Antarctica. For example, there is the Antarctic Search for Transiting Exoplanets (ASTEP) 40 cm telescope at Dome C, and three 50 cm Antarctic Survey Telescopes (AST3) at Dome A, Antarctica. Steinbring remarked that floorspace is potentially available for up to 5 more telescopes at PEARL, if the compact design they studied was adopted.
E. Steinbring and his colleagues B. Leckie and R. Murowinski are associated with the National Research Council Canada, Herzberg Astronomy and Astrophysics in Victoria, Canada. An electronic preprint of their article is available on arXiv, and the findings were presented recently at theAdapting to the Atmosphere Conference in Durham, UK.
A black hole is an extraordinarily massive, improbably dense knot of spacetime that makes a living swallowing or slinging away any morsel of energy that strays too close to its dark, twisted core. Anyone fortunate (or unfortunate) enough to directly observe one of these beasts in the wild would immediately notice the way its colossal gravitational field warps all of the light from the stars and galaxies behind it, a phenomenon known as gravitational lensing.
Thanks to the power of supercomputers, a curious observer no longer has to venture into outer space to see such a sight. A team of astronomers has released their first simulated images of the lensing effects of not just one, but two black holes, trapped in orbit by each other’s gravity and ultimately doomed to merge as one.
Astronomers have been able to model the gravitational effects of a single black hole since the 1970s, but the imposing mathematics of general relativity made doing so for a double black-hole system a much larger challenge. Over the last ten years, however, scientists have improved the accuracy of computer models that deal with these types of calculations in an effort to match observations from gravitational wave detectors like LIGO and VIRGO.
The research collaboration Simulating Extreme Spacetimes (SXS) has begun using these models to mimic the lensing effects of high-gravity systems involving objects such as neutron stars and black holes. In their most recent paper, the team imagines a camera pointing at a binary black hole system against a backdrop of the stars and dust of the Milky Way. One way to figure out what the camera would see in this situation would be to use general relativity to compute the path of each photon traveling from every light source at all points within the frame. This method, however, involves a nearly impossible number of calculations. So instead, the researchers worked backwards, mapping only those photons that would reach the camera and result in a bright spot on the final image – that is, photons that would not be swallowed by either of the black holes.
As you can see in the image above, the team’s simulations testify to the enormous effect that these black holes have on the fabric of spacetime. Ambient photons curl into a ring around the converging binaries in a process known as frame dragging. Background objects appear to multiply on opposite sides of the merger (for instance, the yellow and blue pair of stars in the “northeast” and the “southwest” areas of the ring). Light from behind the camera is even pulled into the frame by the black holes’ mammoth combined gravitational field. And each black hole distorts the appearance of the other, pinching off curved, comma-shaped regions of shadow called “eyebrows.” If you could zoom in with unlimited precision, you would find that there are, in fact, an infinite number of these eyebrows, each smaller than the last, like a cosmic set of Russian dolls.
In case you thought things couldn’t get any more amazing, SXS has also created two videos of the black hole merger: one simulated from above, and the other edge-on.
The SXS collaboration will continue to investigate gravitationally ponderous objects like black holes and neutron stars in an effort to better understand their astronomical and physical properties. Their work will also assist observational scientists as they search the skies for evidence of gravitational waves.
Check out the team’s ArXiv paper describing this work and their website for even more fascinating images.
An international team of astronomers has obtained the best view yet of two galaxies colliding when the universe was only half its current age.
The team relied heavily on space- and ground-based telescopes, including the Hubble Space Telescope, the Atacama Large Millimeter/submillimeter Array (ALMA), the Keck Observatory, and the Karl Jansky Very Large Array (VLA). But the greatest asset was a chance cosmic alignment.
“While astronomers are often limited by the power of their telescopes, in some cases our ability to see detail is hugely boosted by natural lenses created by the universe,” said lead author Hugo Messias of the Universidad de Concepción in Chile and the Centro de Astronomia e Astrofísica da Universidade de Lisboa in Portugal.
Such a rare cosmic alignment plays visual tricks, where the intervening lens (be it a galaxy or a galaxy cluster) appears to bend and even magnify the distant light. This effect, called gravitational lensing, allows astronomers to study objects which would not be visible otherwise and to directly compare local galaxies with much more remote galaxies, seen when the universe was significantly younger.
The distant object in question, dubbed H-ATLAS J142935.3-002836, was originally spotted in the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS). Although very faint in visible light pictures, it is among the brightest gravitationally lensed objects in the far-infrared regime found so far.
The Hubble and Keck images reveal that the foreground galaxy is a spiral galaxy, seen edge-on. Although the galaxy’s large dust clouds obscure part of the background light, both ALMA and VLA can observe the sky at longer wavelengths, which are unaffected by dust.
Using the combined data, the team discovered that the background system was actually an ongoing collision between two galaxies.
First, the team noticed that these two galaxies resembled a much closer system: the Antennae galaxies, two galaxies that have spent the past few hundred million years in a whirling embrace as they merge together. The similarity suggested a collision, but ALMA — with its high sensitivity and spatial resolution — was able to verify it.
ALMA has the unique ability to detect the emission from carbon monoxide, as opposed to other telescopes, which might only be able to probe the absorption along the line of sight. This allowed astronomers to measure the velocity of the gas in the more distant object. With this information, they were able to show that the lensed galaxy is indeed an ongoing galactic collision.
Such collisions naturally enhance star formation. Any gas within the galaxies will feel a headwind, much as a runner feels a wind even on the stillest day, and become compressed enough to spark star formation. Sure enough, ALMA shows that the two galaxies are forming hundreds of new stars each year.
“ALMA enabled us to solve this conundrum because it gives us information about the velocity of the gas in the galaxies, which makes it possible to disentangle the various components, revealing the classic signature of a galaxy merger,” said ESO’s Director of Science and coauthor of the new study, Rob Ivison. “This beautiful study catches a galaxy merger red handed as it triggers an extreme starburst.”
The findings have been published in the Aug. 26 issue of Astronomy & Astrophysics and is available online.
On a summer night, high above our heads, where the Northern Crown and Herdsman meet, a titanic new galaxy is being born 4.5 billion light years away. You and I can’t see it, but astronomers using the Hubble Space Telescope released photographs today showing the merger of two enormous elliptical galaxies into a future heavyweight adorned with a dazzling string of super-sized star clusters.
The two giants, each about 330,000 light years across or more than three times the size of the Milky Way, are members of a large cluster of galaxies called SDSS J1531+3414. They’ve strayed into each other’s paths and are now helpless against the attractive force of gravity which pulls them ever closer.
Galactic mergers are violent events that strip gas, dust and stars away from the galaxies involved and can alter their appearances dramatically, forming large gaseous tails, glowing rings, and warped galactic disks. Stars on the other hand, like so many pinpoints in relatively empty space, pass by one another and rarely collide.
Elliptical galaxies get their name from their oval and spheroidal shapes. They lack the spiral arms, rich reserves of dust and gas and pizza-like flatness that give spiral galaxies like Andromeda and the Milky Way their multi-faceted character. Ellipticals, although incredibly rich in stars and globular clusters, generally appear featureless.
But these two monster ellipticals appear to be different. Unlike their gas-starved brothers and sisters, they’re rich enough in the stuff needed to induce star formation. Take a look at that string of blue blobs stretching across the center – astronomers call it a great example of ‘beads on a string’ star formation. The knotted rope of gaseous filaments with bright patches of new star clusters stems from the same physics which causes rain or water from a faucet to fall in droplets instead of streams. In the case of water, surface tension makes water ‘snap’ into individual droplets; with clouds of galactic gas, gravity is the great congealer.
Nineteen compact clumps of young stars make up the length of this ‘string’, woven together with narrow filaments of hydrogen gas. The star formation spans 100,000 light years, about the size of our galaxy, the Milky Way. Astronomers still aren’t sure if the gas comes directly from the galaxies or has condensed like rain from X-ray-hot halos of gas surrounding both giants.
The blue arcs framing the merger have to do with the galaxy cluster’s enormous gravity, which warps the fabric of space like a lens, bending and focusing the light of more distant background galaxies into curvy strands of blue light. Each represents a highly distorted image of a real object.
Simulation of the Milky Way-Andromeda collision 4 billion years from now
Four billion years from now, Milky Way residents will experience a merger of our own when the Andromeda Galaxy, which has been heading our direction at 300,000 mph for millions of years, arrives on our doorstep. After a few do-si-dos the two galaxies will swallow one another up to form a much larger whirling dervish that some have already dubbed ‘Milkomeda’. Come that day, perhaps our combined galaxies will don a string a blue pearls too.
While this image isn’t as deep as the Hubble Deep Field, this 14-hour exposure by the Hubble Space Telescope shows objects around a billion times fainter than what can be seen with the human eyes alone. Astronomers say this image also offers a remarkable depth of field that lets us see more than halfway to the edge of the observable Universe.
As well, this image also provides an extraordinary cross-section of the Universe in both distance and age, showing objects at different distances and stages in cosmic history, and ranges from some of our nearest neighbors to objects seen in the early years of the Universe.
Most of the galaxies visible here are members of a huge cluster called CLASS B1608+656, which lies about five billion light-years away. But the field also contains other objects, both significantly closer and far more distant, including quasar QSO-160913+653228 which is so distant its light has taken nine billion years to reach us, two thirds of the time that has elapsed since the Big Bang.
Since the Hubble Deep Field combined 10 days of exposure and the eXtreme Deep Field, or XDF was assembled by combining ten years of observations (with over 2 million seconds of exposure time), this image at 14 hours of exposure may seem “small.” But it shows the power of the Hubble Space Telescope.
Also of note is that this image was “found” in the Hubble Hidden Treasures vault — where members of the public are able to search Hubble’s science for the best overlooked images that have never been seen by a general audience. This image of CLASS B1608+656 has been well-studied by scientists over the years, but this is the first time it has been published in full online.
Take a zooming view through the image in the video below and read more about this image here.
There have been a lot of attempts over the years to figure out the mass of a neutrino (a type of elementary particle). A new analysis not only comes up with a number, but also combines that with a new understanding of the universe’s evolution.
The research team investigated the mass further after observing galaxy clusters with the Planck observatory, a space telescope with the European Space Agency. As the researchers examined the cosmic microwave background (the afterglow of the Big Bang), they saw a difference between their observations and other predictions.
“We observe fewer galaxy clusters than we would expect from the Planck results and there is a weaker signal from gravitational lensing of galaxies than the CMB would suggest. A possible way of resolving this discrepancy is for neutrinos to have mass. The effect of these massive neutrinos would be to suppress the growth of dense structures that lead to the formation of clusters of galaxies,” the researchers stated.
Neutrinos are a tiny piece of matter (along with other particles such as quarks and electrons). The challenge is, they’re hard to observe because they don’t react very easily to matter. Originally believed to be massless, newer particle physics experiments have shown that they do indeed have mass, but how much was not known.
There are three different flavors or types of neutrinos, and previous analysis suggested the sum was somewhere above 0.06 eV (less than a billionth of a proton’s mass.) The new result suggests it is closer to 0.320 +/- 0.081 eV, but that still has to be confirmed by further study. The researchers arrived at that by using the Planck data with “gravitational lensing observations in which images of galaxies are warped by the curvature of space-time,” they stated.
“If this result is borne out by further analysis, it not only adds significantly to our understanding of the sub-atomic world studied by particle physicists, but it would also be an important extension to the standard model of cosmology which has been developed over the last decade,” the researchers stated.
When we think of gravity, we typically think of it as a force between masses. When you step on a scale, for example, the number on the scale represents the pull of the Earth’s gravity on your mass, giving you weight. It is easy to imagine the gravitational force of the Sun holding the planets in their orbits, or the gravitational pull of a black hole. Forces are easy to understand as pushes and pulls.
But we now understand that gravity as a force is only part of a more complex phenomenon described the theory of general relativity. While general relativity is an elegant theory, it’s a radical departure from the idea of gravity as a force. As Carl Sagan once said, “Extraordinary claims require extraordinary evidence,” and Einstein’s theory is a very extraordinary claim. But it turns out there are several extraordinary experiments that confirm the curvature of space and time.
The key to general relativity lies in the fact that everything in a gravitational field falls at the same rate. Stand on the Moon and drop a hammer and a feather, and they will hit the surface at the same time. The same is true for any object regardless of its mass or physical makeup, and this is known as the equivalence principle.
Since everything falls in the same way regardless of its mass, it means that without some external point of reference, a free-floating observer far from gravitational sources and a free-falling observer in the gravitational field of a massive body each have the same experience. For example, astronauts in the space station look as if they are floating without gravity. Actually, the gravitational pull of the Earth on the space station is nearly as strong as it is at the surface. The difference is that the space station (and everything in it) is falling. The space station is in orbit, which means it is literally falling around the Earth.
This equivalence between floating and falling is what Einstein used to develop his theory. In general relativity, gravity is not a force between masses. Instead gravity is an effect of the warping of space and time in the presence of mass. Without a force acting upon it, an object will move in a straight line. If you draw a line on a sheet of paper, and then twist or bend the paper, the line will no longer appear straight. In the same way, the straight path of an object is bent when space and time is bent. This explains why all objects fall at the same rate. The gravity warps spacetime in a particular way, so the straight paths of all objects are bent in the same way near the Earth.
So what kind of experiment could possibly prove that gravity is warped spacetime? One stems from the fact that light can be deflected by a nearby mass. It is often argued that since light has no mass, it shouldn’t be deflected by the gravitational force of a body. This isn’t quite correct. Since light has energy, and by special relativity mass and energy are equivalent, Newton’s gravitational theory predicts that light would be deflected slightly by a nearby mass. The difference is that general relativity predicts it will be deflected twice as much.
The effect was first observed by Arthur Eddington in 1919. Eddington traveled to the island of Principe off the coast of West Africa to photograph a total eclipse. He had taken photos of the same region of the sky sometime earlier. By comparing the eclipse photos and the earlier photos of the same sky, Eddington was able to show the apparent position of stars shifted when the Sun was near. The amount of deflection agreed with Einstein, and not Newton. Since then we’ve seen a similar effect where the light of distant quasars and galaxies are deflected by closer masses. It is often referred to as gravitational lensing, and it has been used to measure the masses of galaxies, and even see the effects of dark matter.
Another piece of evidence is known as the time-delay experiment. The mass of the Sun warps space near it, therefore light passing near the Sun is doesn’t travel in a perfectly straight line. Instead it travels along a slightly curved path that is a bit longer. This means light from a planet on the other side of the solar system from Earth reaches us a tiny bit later than we would otherwise expect. The first measurement of this time delay was in the late 1960s by Irwin Shapiro. Radio signals were bounced off Venus from Earth when the two planets were almost on opposite sides of the sun. The measured delay of the signals’ round trip was about 200 microseconds, just as predicted by general relativity. This effect is now known as the Shapiro time delay, and it means the average speed of light (as determined by the travel time) is slightly slower than the (always constant) instantaneous speed of light.
A third effect is gravitational waves. If stars warp space around them, then the motion of stars in a binary system should create ripples in spacetime, similar to the way swirling your finger in water can create ripples on the water’s surface. As the gravity waves radiate away from the stars, they take away some of the energy from the binary system. This means that the two stars gradually move closer together, an effect known as inspiralling. As the two stars inspiral, their orbital period gets shorter because their orbits are getting smaller.
For regular binary stars this effect is so small that we can’t observe it. However in 1974 two astronomers (Hulse and Taylor) discovered an interesting pulsar. Pulsars are rapidly rotating neutron stars that happen to radiate radio pulses in our direction. The pulse rate of pulsars are typically very, very regular. Hulse and Taylor noticed that this particular pulsar’s rate would speed up slightly then slow down slightly at a regular rate. They showed that this variation was due to the motion of the pulsar as it orbited a star. They were able to determine the orbital motion of the pulsar very precisely, calculating its orbital period to within a fraction of a second. As they observed their pulsar over the years, they noticed its orbital period was gradually getting shorter. The pulsar is inspiralling due to the radiation of gravity waves, just as predicted.
Finally there is an effect known as frame dragging. We have seen this effect near Earth itself. Because the Earth is rotating, it not only curves spacetime by its mass, it twists spacetime around it due to its rotation. This twisting of spacetime is known as frame dragging. The effect is not very big near the Earth, but it can be measured through the Lense-Thirring effect. Basically you put a spherical gyroscope in orbit, and see if its axis of rotation changes. If there is no frame dragging, then the orientation of the gyroscope shouldn’t change. If there is frame dragging, then the spiral twist of space and time will cause the gyroscope to precess, and its orientation will slowly change over time.
We’ve actually done this experiment with a satellite known as Gravity Probe B, and you can see the results in the figure here. As you can see, they agree very well.
Each of these experiments show that gravity is not simply a force between masses. Gravity is instead an effect of space and time. Gravity is built into the very shape of the universe.
Think on that the next time you step onto a scale.
Discovering life beyond Earth might just be the holy grail of science. And even though we have yet to find evidence for little green men or blobs of bacteria, astronomers continue to search for elusive signs of life.
A novel strategy may help astronomers better target extraterrestrial intelligent life. Dr. Michael Gillon, of the University of Liege in Belgium, proposes an approach that would monitor the regions of nearby stars to search for interstellar communication devices.
The most common method in the search for extraterrestrial intelligence (abbreviated as SETI) is the use of giant radio dishes to scan the stars, listening for possible faint signals coming from distant civilizations.
While the SETI institute has been hard at work since 1959 we haven’t chanced upon a signal yet. But that doesn’t mean we’re alone or that we should stop looking.
Even without a confirmed extraterrestrial signal, most astronomers would argue that recent discoveries have strongly reinforced the hypothesis that extraterrestrial life may just be abundant in the Universe. With the help of the Kepler Space Telescope we have learned that planets are plentiful throughout the Milky Way. With most stars harboring at least one planet, it’s conceivable that a few of those planets will have the right conditions for life.
So why haven’t we detected extraterrestrial intelligent life? Why do we have this glaring Fermi Paradox — the apparent contradiction between the high probability of extraterrestrial civilizations’ existence and the lack of contact with such civilizations?
One hypotheses to explain the famous Fermi Paradox is that self-replicating probes could have explored the whole Galaxy, including our Solar System, but we just haven’t detected them yet. A self-replicating probe is one sent to a nearby planetary system where it would mine raw materials to create a replica of itself that would then head towards other nearby systems, continuing to replicate itself along the way.
While our own technological civilization is less than two hundred years old, we have already sent robotic probes to a large number of bodies in our Solar System and beyond. Our furthest-reaching probe, Voyager 1, just made it to interstellar space. But it took it over 40 years.
“We are still far from being able to build an actual self-replicating interstellar spaceship, but only because our technology is not mature enough, and not because of an obvious physical limitation,” Dr. Gillon told Universe Today.
While we cannot currently send self-replicating probes to the nearest stars in a reasonable amount of time, nothing excludes this as a reachable future project, or a project already completed by extraterrestrial intelligent life.
This study further proposes that probes from neighboring stellar systems could use the stars they orbit as gravitational lenses to communicate efficiently with each other.
The coordination of probes to explore the Galaxy would be very inefficient unless they had the ability to directly communicate with one another. The vastness and structure of the Milky Way makes this seemingly impossible. By the time a signal reached a very distant star it would be highly diluted.
However, any star is massive enough to bend and amplify light. This process, gravitational lensing, is extremely powerful. “It means that the Sun (and any other star) is an antenna much more powerful than we could ever build,” says Dr. Gillon.
Based on this method, interstellar communication devices will exist along the line that connects one star to another. We now know exactly where to look, and even where to send messages.
Could this novel idea provide a new mission for SETI?
“A negative result wouldn’t tell us very much,” explains Dr. Gillon. “But a positive result would represent one of the most important discoveries of all time.”
The paper has been accepted for publication in Acta Astronautica and is available for download here.