Watch Live Webcast: Space Warps

Hubble Space Telescope image shows Einstein ring of one of the SLACS gravitational lenses, with the lensed background galaxy enhanced in blue. A. Bolton (UH/IfA) for SLACS and NASA/ESA.

Want to join the hunt for new galaxies? During a special G+ Hangout today, June 5, a team of astronomers will share how you can help them find faint and distant galaxies by joining a search they’ve called “Space Warps.” This is a new project from the Zooniverse. The team of astronomers will discuss gravitational lensing, a strange phenomenon that actually makes it possible for us to see a galaxy far away and otherwise hidden by clusters of galaxies in front of them. They will also answer your questions about their ongoing search for distant galaxies, what this reveals about the cosmos, and how astronomers are beginning to fill out our picture of the universe.

You can watch in the window below, and the webcast starts at 21:00 UTC (2:00 p.m. PDT, 5:00 pm EDT). You can take part in thise live Google+ Hangout, and have your questions answered by submitting them before or during the webcast. Email questions to [email protected] or send a message on Twitter with the hashtag #KavliAstro.

If you miss it live, you can watch the replay below, as well.

The participants:
• ANUPREETA MORE is a co-Principal Investigator of Space Warps and a postdoctoral fellow at the Kavli Institute for the Physics and Mathematics of the Universe at the University of Tokyo.
• PHILIP MARSHALL is a researcher at the Kavli Institute for Particle Astrophysics and Cosmology at Stanford University and SLAC.
• ARFON SMITH is Director of Citizen Science at the Adler Planetarium in Chicago and Technical Lead of Zooniverse (www.zooniverse.org).

You can also get more info at the Kavli Foundation, and visit the Space Warps website here.

ALMA Eyes Most Distant Star-forming Galaxy

This schematic image represents how light from a distant galaxy is distorted by the gravitational effects of a nearer foreground galaxy, which acts like a lens and makes the distant source appear distorted, but brighter, forming characteristic rings of light, known as Einstein rings. An analysis of the distortion has revealed that some of the distant star-forming galaxies are as bright as 40 trillion Suns, and have been magnified by the gravitational lens by up to 22 times. Credit: ALMA (ESO/NRAO/NAOJ), L. Calçada (ESO), Y. Hezaveh et al.

Let’s turn down the lights and set the stage… We’re moving off through space, looking not only at distant galaxies, but the incredibly distant past. Once upon a time astronomers assumed that star formation began in massive, bright galaxies as a concentrated surge. Now, new observations taken with the Atacama Large Millimeter/submillimeter Array (ALMA) are showing us that these deluges of stellar creation may have begun much earlier than they thought.

According to the latest research published in today’s edition of the journal, Nature, and in the Astrophysical Journal, researchers have revealed fascinating discoveries taken with the new international ALMA observatory – which celebrates its inauguration today. Among its many achievements, ALMA has given us a look even deeper into space – showing us ancient galaxies which may be billions of light years distant. The observations of these starburst galaxies show us that stars were created in a frenzy out of huge deposits of cosmic gas and dust.

Loading player…

“The more distant the galaxy, the further back in time one is looking, so by measuring their distances we can piece together a timeline of how vigorously the Universe was making new stars at different stages of its 13.7 billion year history,” said Joaquin Vieira (California Institute of Technology, USA), who led the team and is lead author of the paper in the journal Nature.

Just how did these observations come about? Before ALMA, an international team of researchers employed the US National Science Foundation’s 10-metre South Pole Telescope (SPT ) to locate these distant denizens and then homed in on them to take a closer look at the “stellar baby boom” during the Universe’s beginning epoch. What they found surprised them. Apparently star forming galaxies are even more distant than previously suspected… their onslaught of stellar creation beginning some 12 billion years ago. This time frame places the Universe at just under 2 billion years old and the star formation explosion occurring some billion years sooner than astronomers assumed. The ALMA observations included two galaxies – the “most distant of their kind ever seen” – that contained an additional revelation. Not only did their distance break astronomical records, but water molecules have been detected within them.

However, two galaxies aren’t the only score for ALMA. The research team took on 26 galaxies at wavelengths of around three millimetres. The extreme sensitivity of this cutting edge technology utilizes the measurement of light wavelengths – wavelengths produced by the galaxy’s gas molecules and stretched by the expansion of the Universe. By carefully measuring the “stretch”, astronomers are able to gauge the amount of time the light has taken to reach us and refine its point in time.

“ALMA’s sensitivity and wide wavelength range mean we could make our measurements in just a few minutes per galaxy – about one hundred times faster than before,” said Axel Weiss (Max-Planck-Institut für Radioastronomie in Bonn, Germany), who led the work to measure the distances to the galaxies. “Previously, a measurement like this would have been a laborious process of combining data from both visible-light and radio telescopes.”

For the most part, ALMA’s observations would be sufficient to determine the distance, but the team also included ALMA’s data with the Atacama Pathfinder Experiment (APEX) and ESO’s Very Large Telescope for a select few galaxies. At the present time, astronomers are only employing a small segment of ALMA’s capabilities – just 16 of the 66 massive antennae – and focusing on brighter galaxies. When ALMA is fully functional, it will be able to zero in on even fainter targets. However, the researchers weren’t about to miss any opportunities and utilized gravitational lensing to aid in their findings.

This montage combines data from ALMA with images from the NASA/ESA Hubble Space Telescope, for five distant galaxies. The ALMA images, represented in red, show the distant, background galaxies, being distorted by the gravitational lens effect produced by the galaxies in the foreground, depicted in the Hubble data in blue. The background galaxies appear warped into rings of light known as Einstein rings, which encircle the foreground galaxies. Credit:ALMA (ESO/NRAO/NAOJ), J. Vieira et al.
This montage combines data from ALMA with images from the NASA/ESA Hubble Space Telescope, for five distant galaxies. The ALMA images, represented in red, show the distant, background galaxies, being distorted by the gravitational lens effect produced by the galaxies in the foreground, depicted in the Hubble data in blue. The background galaxies appear warped into rings of light known as Einstein rings, which encircle the foreground galaxies. Credit:ALMA (ESO/NRAO/NAOJ), J. Vieira et al.

“These beautiful pictures from ALMA show the background galaxies warped into multiple arcs of light known as Einstein rings, which encircle the foreground galaxies,” said Yashar Hezaveh (McGill University, Montreal, Canada), who led the study of the gravitational lensing. “We are using the massive amounts of dark matter surrounding galaxies half-way across the Universe as cosmic telescopes to make even more distant galaxies appear bigger and brighter.”

Just how bright is bright? According to the news release, the analysis of the distortion has shown that a portion of these far-flung, star-forming galaxies could be as bright as 40 trillion Suns… then magnified up to 22 times more through the aid of gravitational lensing.

“Only a few gravitationally lensed galaxies have been found before at these submillimetre wavelengths, but now SPT and ALMA have uncovered dozens of them.” said Carlos De Breuck (ESO), a member of the team. “This kind of science was previously done mostly at visible-light wavelengths with the Hubble Space Telescope, but our results show that ALMA is a very powerful new player in the field.”

“This is an great example of astronomers from around the world collaborating to make an amazing discovery with a state-of-the-art facility,” said team member Daniel Marrone (University of Arizona, USA). “This is just the beginning for ALMA and for the study of these starburst galaxies. Our next step is to study these objects in greater detail and figure out exactly how and why they are forming stars at such prodigious rates.”

Bring the house lights back up, please. As ALMA peers ever further into the past, maybe one day we’ll catch our own selves… looking back.

NASA Finds a Space Invader

The image of a spiral galaxy has been stretched and mirrored by gravitational lensing into a shape similar to that of a simulated alien from the classic 1970s computer game Space Invaders Credit: NASA, ESA, and the Hubble Heritage/ESA-Hubble Collaboration

Pew pew! NASA has found a Space Invader, but they won’t be activating any laser cannons to shoot it down. If you remember the classic 1970s computer game “Space Invaders,” you’ll quickly see the resemblance of the game’s pixelated alien to this actual image from the Hubble Space Telescope. This strange-looking object is really a mirage created by the gravitational field of a foreground cluster of galaxies warping space and distorting the background images of more distant galaxies.

Here, Abell 68, a massive cluster of galaxies, acts as a natural lens in space to brighten and magnify the light coming from very distant background galaxies. Just like a fun house mirror, lensing creates a fantasy landscape of arc-like images and mirror images of background galaxies. The foreground cluster is 2 billion light-years away, and the lensed images come from galaxies far behind it.

This image was taken in infrared light by Hubble’s Wide Field Camera 3, and combined with near-infrared observations from Hubble’s Advanced Camera for Surveys.

Aliens from the Space Invaders game. Via HelloComputer.
Aliens from the Space Invaders game. Via HelloComputer.

The image was found as part of Hubble’s Hidden Treasures image processing competition, and was spotted by Nick Rose.

You can still play the Space Aliens game (just search for it online), or you might want to try this huge version:

Source: NASA

Now Even Further: Ancient Galaxy is Latest Candidate for Most Distant

It seems that every few months or so comes a new discovery of a new “most distant galaxy ever found.” It’s not really a surprise that new benchmarks are reached with such an amazing frequency as our telescopes get better and astronomers refine their techniques for observing faraway and ancient objects. This latest “most distant” is pretty interesting in that it was found by combining observations from two space telescopes – Hubble and Spitzer – as well as using massive galaxy clusters as gravitational lenses to magnify the distant galaxy behind them. It’s also extremely small and may not even be a fully developed galaxy at the time we are seeing it.

While this galaxy, named MACS0647-JD, appears as a diminutive blob in the new images, astronomers say it offers a peek back into a time when the universe was just 3 percent of its present age of 13.7 billion years. This newly discovered galaxy was observed 420 million years after the Big Bang, and its light has traveled 13.3 billion years to reach Earth.

“This object may be one of many building blocks of a galaxy,” said Dan Coe of the Space Telescope Science Institute, lead author of a new paper on the observations. “Over the next 13 billion years, it may have dozens, hundreds, or even thousands of merging events with other galaxies and galaxy fragments.”

The discovery comes from the Cluster Lensing And Supernova Survey with Hubble (CLASH), a program that combines the power of space telescopes with the natural zoom of gravitational lensing to reveal distant galaxies in the early Universe. Observations with Spitzer’s infrared eyes allowed for confirmation of this object.

The light from MACS0647-JD was magnified by a massive galaxy cluster named MACS J0647+7015, and without the cluster’s magnification powers, astronomers would not have seen the remote galaxy. Because of gravitational lensing, the CLASH research team was able to observe three magnified images of MACS0647-JD with the Hubble telescope. The cluster’s gravity boosted the light from the faraway galaxy, making the images appear about eight, seven, and two times brighter than they otherwise would that enabled astronomers to detect the galaxy more efficiently and with greater confidence.

“This cluster does what no manmade telescope can do,” said Marc Postman, also from STScI. “Without the magnification, it would require a Herculean effort to observe this galaxy.”

MACS0647-JD is just a fraction of the size of our Milky Way galaxy, and is so small it may not even be a fully formed galaxy. Data show the galaxy is less than 600 light-years wide. Based on observations of somewhat closer galaxies, astronomers estimate that a typical galaxy of a similar age should be about 2,000 light-years wide. For comparison, the Large Magellanic Cloud, a dwarf galaxy companion to the Milky Way, is 14,000 light-years wide. Our Milky Way is 150,000 light-years across.

Loading player…

The galaxy was observed with 17 filters, spanning near-ultraviolet to near-infrared wavelengths, using Hubble’s Wide Field Camera 3 (WFC3) and Advanced Camera for Surveys (ACS). Coe discovered the galaxy in February while poring over a catalogue of thousands of gravitationally lensed objects found in Hubble observations of 17 clusters in the CLASH survey. But the galaxy appeared only in the two reddest filters.

“So either MACS0647-JD is a very red object, only shining at red wavelengths, or it is extremely distant and its light has been ‘redshifted’ to these wavelengths, or some combination of the two,” Coe said. “We considered this full range of possibilities.”

The CLASH team identified multiple images of eight galaxies lensed by the galaxy cluster. Their positions allowed the team to produce a map of the cluster’s mass, which is primarily composed of dark matter. Dark matter is an invisible form of matter that makes up the bulk of the universe’s mass. “It’s like a big puzzle,” said Coe. “We have to arrange the mass in the cluster so that it deflects the light of each galaxy to the positions observed.” The team’s analysis revealed that the cluster’s mass distribution produced three lensed images of MACS0647-JD at the positions and relative brightness observed in the Hubble image.

Coe and his collaborators spent months systematically ruling out these other alternative explanations for the object’s identity, including red stars, brown dwarfs, and red (old or dusty) galaxies at intermediate distances from Earth. They concluded that a very distant galaxy was the correct explanation.

Redshift is a consequence of the expansion of space over cosmic time. Astronomers study the distant universe in near-infrared light because the expansion of space stretches ultraviolet and visible light from galaxies into infrared wavelengths. Coe estimates MACS0647-JD has a redshift of 11, the highest yet observed.

Images of the galaxy at longer wavelengths obtained with the Spitzer Space Telescope played a key role in the analysis. If the object were intrinsically red, it would appear bright in the Spitzer images. Instead, the galaxy barely was detected, if at all, indicating its great distance. The research team plans to use Spitzer to obtain deeper observations of the galaxy, which should yield confident detections as well as estimates of the object’s age and dust content.

MACS0647-JD galaxy, however, may be too far away for any current telescope to confirm the distance based on spectroscopy, which spreads out an object’s light into thousands of colors. Nevertheless, Coe is confident the fledgling galaxy is the new distance champion based on its unique colors and the research team’s extensive analysis. “All three of the lensed galaxy images match fairly well and are in positions you would expect for a galaxy at that remote distance when you look at the predictions from our best lens models for this cluster,” Coe said.

The new distance champion is the second remote galaxy uncovered in the CLASH survey, a multi-wavelength census of 25 hefty galaxy clusters with Hubble’s ACS and WFC3. Earlier this year, the CLASH team announced the discovery of a galaxy that existed when the universe was 490 million years old, 70 million years later than the new record-breaking galaxy. So far, the survey has completed observations for 20 of the 25 clusters.

The team hopes to use Hubble to search for more dwarf galaxies at these early epochs. If these infant galaxies are numerous, then they could have provided the energy to burn off the fog of hydrogen that blanketed the universe, a process called re-ionization. Re-ionization ultimately made the universe transparent to light.

Read the team’s paper (pdf).

Sources: HubbleSite, ESA Hubble

Early Galaxy Found from the Cosmic ‘Dark Ages’

In the big image at left, the many galaxies of a massive cluster called MACS J1149+2223 dominate the scene. Gravitational lensing by the giant cluster brightened the light from the newfound galaxy, known as MACS 1149-JD, some 15 times. At upper right, a partial zoom-in shows MACS 1149-JD in more detail, and a deeper zoom appears to the lower right. Image credit: NASA/ESA/STScI/JHU

Take a close look at the pixelated red spot on the lower right portion of the image above, as it might be the oldest thing humanity has ever seen. This is a galaxy from the very early days of the Universe, and the light from the primordial galaxy traveled approximately 13.2 billion light-years before reaching the Spitzer and Hubble space telescopes. The telescopes — and the astronomers using them — had a little help from a gravitational lens effect to be able to see such a faint and distant object, which was shining way back when our Universe was just 500 million years old.

“This galaxy is the most distant object we have ever observed with high confidence,” said Wei Zheng, a principal research scientist in the department of physics and astronomy at Johns Hopkins University in Baltimore who is lead author of a new paper appearing in Nature. “Future work involving this galaxy, as well as others like it that we hope to find, will allow us to study the universe’s earliest objects and how the dark ages ended.”

This ancient and distant galaxy comes from an important time in the Universe’s history — one which astronomers know little about – the early part of the epoch of reionization, when the Universe began to move from the so-called cosmic dark ages. During this period, the Universe went from a dark, starless expanse to a recognizable cosmos full of galaxies. The discovery of the faint, small galaxy opens a window onto the deepest, most remote epochs of cosmic history.

“In essence, during the epoch of reionization, the lights came on in the universe,” said paper co-author Leonidas Moustakas, from JPL.

Because both the Hubble and Spitzer telescopes were used in this observation, this newfound galaxy, named MACS 1149-JD, was imaged in five different wavebands. As part of the Cluster Lensing And Supernova Survey with Hubble Program, the Hubble Space Telescope registered the newly described, far-flung galaxy in four visible and infrared wavelength bands. Spitzer measured it in a fifth, longer-wavelength infrared band, placing the discovery on firmer ground.

Objects at these extreme distances are mostly beyond the detection sensitivity of today’s largest telescopes. To catch sight of these early, distant galaxies, astronomers rely on gravitational lensing, where the gravity of foreground objects warps and magnifies the light from background objects. A massive galaxy cluster situated between our galaxy and MACS 1149-JD magnified the newfound galaxy’s light, brightening the remote object some 15 times and bringing it into view.

Astronomers use redshift to describe cosmic distances, and the ancient but newly-found galaxy has a redshift, of 9.6. The term redshift refers to how much an object’s light has shifted into longer wavelengths as a result of the expansion of the universe.

Based on the Hubble and Spitzer observations, astronomers think the distant galaxy was less than 200 million years old when it was viewed. It also is small and compact, containing only about 1 percent of the Milky Way’s mass. According to leading cosmological theories, the first galaxies indeed should have started out tiny. They then progressively merged, eventually accumulating into the sizable galaxies of the more modern universe.

The epoch of reionization refers to the period in the history of the Universe during which the predominantly neutral intergalactic medium was ionized by the emergence of the first luminous sources, and these first galaxies likely played the dominant role in lighting up the Universe. By studying reionization, astronomers can learn about the process of structure formation in the Universe, and find the evolutionary links between the smooth matter distribution at early times revealed by cosmic microwave background studies, and the highly structured Universe of galaxies and clusters of galaxies at redshifts of 6 and below.

This epoch began about 400,000 years after the Big Bang when neutral hydrogen gas formed from cooling particles. The first luminous stars and their host galaxies emerged a few hundred million years later. The energy released by these earliest galaxies is thought to have caused the neutral hydrogen strewn throughout the Universe to ionize, or lose an electron, a state that the gas has remained in since that time.

The paper is available here (pdf document).

Source: JPL

Effects of Einstein’s Elusive Gravitational Waves Observed

Chandra data (above, graph) on J0806 show that its X-rays vary with a period of 321.5 seconds, or slightly more than five minutes. This implies that the X-ray source is a binary star system where two white dwarf stars are orbiting each other (above, illustration) only 50,000 miles apart, making it one of the smallest known binary orbits in the Galaxy. According to Einstein's General Theory of Relativity, such a system should produce gravitational waves - ripples in space-time - that carry energy away from the system and cause the stars to move closer together. X-ray and optical observations indicate that the orbital period of this system is decreasing by 1.2 milliseconds every year, which means that the stars are moving closer at a rate of 2 feet per year.
Potential stellar collision. Credit: Chandra

Two white dwarfs similar to those in the system SDSS J065133.338+284423.37 spiral together in this illustration from NASA. Credit: D. Berry/NASA GSFC

Locked in a spiraling orbital embrace, the super-dense remains of two dead stars are giving astronomers the evidence needed to confirm one of Einstein’s predictions about the Universe.

A binary system located about 3,000 light-years away, SDSS J065133.338+284423.37 (J0651 for short) contains two white dwarfs orbiting each other rapidly — once every 12.75 minutes. The system was discovered in April 2011, and since then astronomers have had their eyes — and four separate telescopes in locations around the world — on it to see if gravitational effects first predicted by Einstein could be seen.

According to Einstein, space-time is a structure in itself, in which all cosmic objects — planets, stars, galaxies — reside. Every object with mass puts a “dent” in this structure in all dimensions; the more massive an object, the “deeper” the dent. Light energy travels in a straight line, but when it encounters these dents it can dip in and veer off-course, an effect we see from Earth as gravitational lensing.

Einstein also predicted that exceptionally massive, rapidly rotating objects — such as a white dwarf binary pair — would create outwardly-expanding ripples in space-time that would ultimately “steal” kinetic energy from the objects themselves. These gravitational waves would be very subtle, yet in theory, observable.

Read: Astronomy Without a Telescope: Gravitational Waves

What researchers led by a team at The University of Texas at Austin have found is optical evidence of gravitational waves slowing down the stars in J0651. Originally observed in 2011 eclipsing each other (as seen from Earth) once every six minutes, the stars now eclipse six seconds sooner. This equates to a predicted orbital period reduction of about 0.25 milliseconds each year.*

“These compact stars are orbiting each other so closely that we have been able to observe the usually negligible influence of gravitational waves using a relatively simple camera on a 75-year-old telescope in just 13 months,” said study lead author J.J. Hermes, a graduate student at The University of Texas at Austin.

Based on these measurements, by April 2013 the stars will be eclipsing each other 20 seconds sooner than first observed. Eventually they will merge together entirely.

Although this isn’t “direct” observation of gravitational waves, it is evidence inferred by their predicted effects… akin to watching a floating lantern in a dark pond at night moving up and down and deducing that there are waves present.

“It’s exciting to confirm predictions Einstein made nearly a century ago by watching two stars bobbing in the wake caused by their sheer mass,” said Hermes.

As of early last year NASA and ESA had a proposed mission called LISA (Laser Interferometer Space Antenna) that would have put a series of 3 detectors into space 5 million km apart, connected by lasers. This arrangement of precision-positioned spacecraft could have detected any passing gravitational waves in the local space-time neighborhood, making direct observation possible. Sadly this mission was canceled due to FY2012 budget cuts for NASA, but ESA is moving ahead with developments for its own gravitational wave mission, called eLISA/NGO — the first “pathfinder” portion of which is slated to launch in 2014.

The study was submitted to Astrophysical Journal Letters on August 24. Read more on the McDonald Observatory news release here.

Inset image: simulation of binary black holes causing gravitational waves – C. Reisswig, L. Rezzolla (AEI); Scientific visualization – M. Koppitz (AEI & Zuse Institute Berlin)

*The difference in the eclipse time is noted as six seconds even though the orbital period decay of the two stars is only .25 milliseconds/year because of a pile-up effect of all the eclipses observed since April 2011. The measurements made by the research team takes into consideration the phase change in the J0651 system, which experiences a piling effect — similar to an out-of-sync watch — that increases relative to time^2 and is therefore a larger and easier number to detect and work with. Once that was measured, the actual orbital period decay could be figured out.

Mysterious Arc of Light Spotted with Spitzer Telescope

From a JPL press release:

Seeing is believing, except when you don’t believe what you see. Astronomers using NASA’s Hubble Space Telescope have found a puzzling arc of light behind an extremely massive cluster of galaxies residing 10 billion light-years away. The galactic grouping, discovered by NASA’s Spitzer Space Telescope, was observed as it existed when the universe was roughly a quarter of its current age of 13.7 billion years.

The giant arc is the stretched shape of a more distant galaxy whose light is distorted by the monster cluster’s powerful gravity, an effect called gravitational lensing. The trouble is, the arc shouldn’t exist.

“When I first saw it, I kept staring at it, thinking it would go away,” said study leader Anthony Gonzalez of the University of Florida in Gainesville, whose team includes researchers from NASA’s Jet Propulsion Laboratory, Pasadena, Calif. “According to a statistical analysis, arcs should be extremely rare at that distance. At that early epoch, the expectation is that there are not enough galaxies behind the cluster bright enough to be seen, even if they were ‘lensed,’ or distorted by the cluster. The other problem is that galaxy clusters become less massive the further back in time you go. So it’s more difficult to find a cluster with enough mass to be a good lens for gravitationally bending the light from a distant galaxy.”

Galaxy clusters are collections of hundreds to thousands of galaxies bound together by gravity. They are the most massive structures in our universe. Astronomers frequently study galaxy clusters to look for faraway, magnified galaxies behind them that would otherwise be too dim to see with telescopes. Many such gravitationally lensed galaxies have been found behind galaxy clusters closer to Earth.

The surprise in this Hubble observation is spotting a galaxy lensed by an extremely distant cluster. Dubbed IDCS J1426.5+3508, the cluster is the most massive found at that epoch, weighing as much as 500 trillion suns. It is 5 to 10 times larger than other clusters found at such an early time in the history of the universe. The team spotted the cluster in a search using NASA’s Spitzer Space Telescope in combination with archival optical images taken as part of the National Optical Astronomy Observatory’s Deep Wide Field Survey at the Kitt Peak National Observatory, Tucson, Ariz. The combined images allowed them to see the cluster as a grouping of very red galaxies, indicating they are far away.

This unique system constitutes the most distant cluster known to “host” a giant gravitationally lensed arc. Finding this ancient gravitational arc may yield insight into how, during the first moments after the Big Bang, conditions were set up for the growth of hefty clusters in the early universe.

The arc was spotted in optical images of the cluster taken in 2010 by Hubble’s Advanced Camera for Surveys. The infrared capabilities of Hubble’s Wide Field Camera 3 helped provide a precise distance, confirming it to be one of the farthest clusters yet discovered.

Once the astronomers determined the cluster’s distance, they used Hubble, the Combined Array for Research in Millimeter-wave Astronomy (CARMA) radio telescope, and NASA’s Chandra X-ray Observatory to independently show that the galactic grouping is extremely massive.

“The chance of finding such a gigantic cluster so early in the universe was less than one percent in the small area we surveyed,” said team member Mark Brodwin of the University of Missouri-Kansas City. “It shares an evolutionary path with some of the most massive clusters we see today, including the Coma cluster and the recently discovered El Gordo cluster.”

An analysis of the arc revealed that the lensed object is a star-forming galaxy that existed 10 billion to 13 billion years ago. The team hopes to use Hubble again to obtain a more accurate distance to the lensed galaxy.

The team’s results are described in three papers, which will appear online today and will be published in the July 10, 2012 issue of The Astrophysical Journal. Gonzalez is the first author on one of the papers; Brodwin, on another; and Adam Stanford of the University of California at Davis, on the third. Daniel Stern and Peter Eisenhardt of JPL are co-authors on all three papers.

Lead image caption: These images, taken by NASA’s Hubble Space Telescope, show an arc of blue light behind an extremely massive cluster of galaxies residing 10 billion light-years away. Image credit: NASA/ESA/University of Florida, Gainsville/University of Missouri-Kansas City/UC Davis

Hubble Captures Giant Lensed Galaxy Arc

Thanks to the presence of a natural "zoom lens" in space, this is a close-up look at the brightest distant "magnified" galaxy in the universe known to date. Credit: NASA, ESA, J. Rigby (NASA Goddard Space Flight Center), K. Sharon (Kavli Institute for Cosmological Physics, University of Chicago), and M. Gladders and E. Wuyts (University of Chicago)

[/caption]

Less than a year ago, the Hubble Space Telescope’s Wide Field Camera 3 captured an amazing image – a giant lensed galaxy arc. Gravitational lensing produces a natural “zoom” to observations and this is a look at one of the brightest distant galaxies so far known. Located some 10 billion light years away, the galaxy has been magnified as a nearly 90-degree arc of light against the galaxy cluster RCS2 032727-132623 – which is only half the distance. In this unusual case, the background galaxy is over three times brighter than typically lensed galaxies… and a unique look back in time as to what a powerful star-forming galaxy looked like when the Universe was only about one third its present age.

A team of astronomers led by Jane Rigby of NASA’s Goddard Space Flight Center in Greenbelt, Maryland are the parties responsible for this incredible look back into time. It is one of the most detailed looks at an incredibly distant object to date and their results have been accepted for publication in The Astrophysical Journal, in a paper led by Keren Sharon of the Kavli Institute for Cosmological Physics at the University of Chicago. Professor Michael Gladders and graduate student Eva Wuyts of the University of Chicago were also key team members.

“The presence of the lens helps show how galaxies evolved from 10 billion years ago to today. While nearby galaxies are fully mature and are at the tail end of their star-formation histories, distant galaxies tell us about the universe’s formative years. The light from those early events is just now arriving at Earth.” says the team. “Very distant galaxies are not only faint but also appear small on the sky. Astronomers would like to see how star formation progressed deep within these galaxies. Such details would be beyond the reach of Hubble’s vision were it not for the magnification made possible by gravity in the intervening lens region.”

This graphic shows a reconstruction (at lower left) of the brightest galaxy whose image has been distorted by the gravity of a distant galaxy cluster. The small rectangle in the center shows the location of the background galaxy on the sky if the intervening galaxy cluster were not there. The rounded outlines show distinct, distorted images of the background galaxy resulting from lensing by the mass in the cluster. The image at lower left is a reconstruction of what the lensed galaxy would look like in the absence of the cluster, based on a model of the cluster's mass distribution derived from studying the distorted galaxy images. Illustration Credit: NASA, ESA, and Z. Levay (STScI) Science Credit: NASA, ESA, J. Rigby (NASA Goddard Space Flight Center), K. Sharon (Kavli Institute for Cosmological Physics, University of Chicago), and M. Gladders and E. Wuyts (University of Chicago)

But the Hubble isn’t the only eye on the sky examining this phenomenon. A little over 10 years ago a team of astronomers using the Very Large Telescope in Chile also measured and examined the arc and reported the distant galaxy seems to be more than three times brighter than those previously discovered. However, there’s more to the picture than meets the eye. Original images show the magnified galaxy as hugely distorted and it shows itself more than once in the foreground lensing cluster. The challenge was to create a image that was “true to life” and thanks to Hubble’s resolution capabilities, the team was able to remove the distortions from the equation. In this image they found several incredibly bright star-forming regions and through the use of spectroscopy, they hope to better understand them.

Original Story Source: Hubble News Release.

Distant Invisible Galaxy Could be Made Up Entirely of Dark Matter

The gravitational lens B1938+666 as seen in the infrared when observed with the 10-meter Keck II telescope. Credit: D. Lagattuta / W. M. Keck Observatory

[/caption]

Astronomers can’t see it but they know it’s out there from the distortions caused by its gravity. That statement describes dark matter, the elusive substance which scientists have estimated makes up about 25% of our universe and doesn’t emit or absorb light. But it also describes a distant, tiny galaxy located about 10 billion light years from Earth. This galaxy can’t be seen in telescopes, but astronomers were able to detect its presence through the small distortions made in light that passes by it. This dark galaxy is the most distant and lowest-mass object ever detected, and astronomers say it could help them find similar objects and confirm or reject current cosmological theories about the structure of the Universe.

“Now we have one dark satellite [galaxy],” said Simona Vegetti, a postdoctoral researcher at the Massachusetts Institute of Technology, who led the discovery. “But suppose that we don’t find enough of them — then we will have to change the properties of dark matter. Or, we might find as many satellites as we see in the simulations, and that will tell us that dark matter has the properties we think it has.”

This dwarf galaxy is a satellite of a distant elliptical galaxy, called JVAS B1938 + 666. The team was looking for faint or dark satellites of distant galaxies using gravitational lensing, and made their observations with the Keck II telescope on Mauna Kea in Hawaii, along with the telescope’s adaptive optics to limit the distortions from our own atmosphere.

They found two galaxies aligned with each other, as viewed from Earth, and the nearer object’s gravitational field deflected the light from the more distant object (JVAS B1938 + 666) as the light passed through the dark galaxy’s gravitational field, creating a distorted image called an “Einstein Ring.”

Using data from this effect, the mass of the dark galaxy was found to be 200 million times the mass of the Sun, which is similar to the masses of the satellite galaxies found around our own Milky Way. The size, shape and brightness of the Einstein ring depends on the distribution of mass throughout the foreground lensing galaxy.

Current models suggest that the Milky Way should have about 10,000 satellite galaxies, but only 30 have been observed. “It could be that many of the satellite galaxies are made of dark matter, making them elusive to detect, or there may be a problem with the way we think galaxies form,” Vegetti said.

The dwarf galaxy is a satellite, meaning that it clings to the edges of a larger galaxy. Because it is small and most of the mass of galaxies is not made up of stars but of dark matter, distant objects such as this galaxy may be very faint or even completely dark.

“For several reasons, it didn’t manage to form many or any stars, and therefore it stayed dark,” said Vegetti.

Vegetti and her team plan to use the same method to look for more satellite galaxies in other regions of the Universe, which they hope will help them discover more information on how dark matter behaves.

Their research was published in this week’s edition of Nature.

The team’s paper can be found here.

Sources: Keck Observatory, UC Davis, MIT

First-Ever Image of a Black Hole to be Captured by Earth-Sized Scope

Spitzer telescope view of the galactic center. (NASA/JPL-Caltech/S. Stolovy)

[/caption]

“Sgr A* is the right object, VLBI is the right technique, and this decade is the right time.”

So states the mission page of the Event Horizon Telescope, an international endeavor that will combine the capabilities of over 50 radio telescopes across the globe to create a single Earth-sized telescope to image the enormous black hole at the center of our galaxy. For the first time, astronomers will “see” one of the most enigmatic objects in the Universe.

And tomorrow, January 18, researchers from around the world will convene in Tucson, AZ to discuss how to make this long-standing astronomical dream a reality.

During a conference organized by Dimitrios Psaltis, associate professor of astrophysics at the University of Arizona’s Steward Observatory, and Dan Marrone, an assistant professor of astronomy at the Steward Observatory, astrophysicists, scientists and researchers will gather to coordinate the ultimate goal of the Event Horizon Telescope; that is, an image of Sgr A*’s accretion disk and the “shadow” of its event horizon.

“Nobody has ever taken a picture of a black hole. We are going to do just that.”

– Dimitrios Psaltis, associate professor of astrophysics at the University of Arizona’s Steward Observatory

Sgr A* (pronounced as “Sagittarius A-star”) is a supermassive black hole residing at the center of the Milky Way. It is estimated to contain the equivalent mass of 4 million Suns, packed into an area smaller than the diameter of Mercury’s orbit.

Because of its proximity and estimated mass, Sgr A* presents the largest apparent event horizon size of any black hole candidate in the Universe. Still, its size in the sky is about the same as viewing “a grapefruit on the Moon.”

So what are astronomers expecting to actually “see”?

(Read more: What does a black hole look like?)

A black hole's "shadow", or event horizon. (NASA illustration)

Because black holes by definition are black – that is, invisible in all wavelengths of radiation due to the incredibly powerful gravitational effect on space-time around them – an image of the black hole itself will be impossible. But Sgr A*’s accretion disk should be visible to radio telescopes due to its billion-degree temperatures and powerful radio (as well as submillimeter, near infrared and X-ray) emissions… especially in the area leading up to and just at its event horizon. By imaging the glow of this super-hot disk astronomers hope to define Sgr A*’s Schwarzschild radius – its gravitational “point of no return”.

This is also commonly referred to as its shadow.

The position and existence of Sgr A* has been predicted by physics and inferred by the motions of stars around the galactic nucleus. And just last month a giant gas cloud was identified by researchers with the European Southern Observatory, traveling directly toward Sgr A*’s accretion disk. But, if the EHT project is successful, it will be the first time a black hole will be directly imaged in any shape or form.

“So far, we have indirect evidence that there is a black hole at the center of the Milky Way,” said Dimitrios Psaltis. “But once we see its shadow, there will be no doubt.”

(Read more: Take a trip into our galaxy’s core)

Submillimeter Telescope on Mt. Graham, AZ. (Used with permission from University of Arizona, T. W. Folkers, photographer.)

The ambitious Event Horizon Telescope project will use not just one telescope but rather a combination of over 50 radio telescopes around the world, including the Submillimeter Telescope on Mt. Graham in Arizona, telescopes on Mauna Kea in Hawaii and the Combined Array for Research in Millimeter-wave Astronomy in California, as well as several radio telescopes in Europe, a 10-meter dish at the South Pole and, if all goes well, the 50-radio-antenna capabilities of the new Atacama Large Millimeter Array in Chile. This coordinated group effort will, in effect, turn our entire planet into one enormous dish for collecting radio emissions.

By using long-term observations with Very Long Baseline Interferometry (VLBI) at short (230-450 GHz) wavelengths, the EHT team predicts that the goal of imaging a black hole will be achieved within the next decade.

“What is great about the one in the center of the Milky Way is that is big enough and close enough,” said assistant professor Dan Marrone. “There are bigger ones in other galaxies, and there are closer ones, but they’re smaller. Ours is just the right combination of size and distance.”

Read more about the Tucson conference on the University of Arizona’s news site here, and visit the Event Horizon Telescope project site here.