It's Time for a Gravitational Wave Observatory in the Southern Hemisphere

Map of current and planned gravitational wave observatories. Credit: Caltech/MIT/LIGO Lab

What’s true for optical astronomy is also true for gravitational wave astronomy: the more observatories you have, the better your view of the sky. This is why the list of active gravitational wave observatories is growing. But so far they are all in the Northern Hemisphere. As a recent article on the arXiv points out, that means we are missing out on a good number of gravitational events.

Continue reading “It's Time for a Gravitational Wave Observatory in the Southern Hemisphere”

Pulsars Detected the Background Gravitational Hum of the Universe. Now Can They Detect Single Mergers?

How can array of pulsars can pinpoint binary black holes. Credit: Carl Knox/OzGrav

Current gravitational wave observatories have two significant limitations. The first is that they can only observe powerful gravitational bursts such as the mergers of black holes and neutron stars. The second is that they can only observe these mergers for wavelengths on the order of hundreds to thousands of kilometers. This means we can only observe stellar mass mergers. Of course, there’s a lot of interesting gravitational astronomy going on at other wavelengths and noise levels, which has motivated astronomers to get clever. One of these clever ideas is to use pulsars as a telescope.

Continue reading “Pulsars Detected the Background Gravitational Hum of the Universe. Now Can They Detect Single Mergers?”

Want to Find Colliding Black Holes? Check the Disks Around Quasars

This illustration shows the merger of two black holes and the gravitational waves that ripple outward as the black holes spiral toward each other. Could black holes like these (which represent those detected by LIGO on Dec. 26, 2015) collide in the dusty disk around a quasar's supermassive black hole explain gravitational waves, too? Credit: LIGO/T. Pyle
This illustration shows the merger of two supermassive black holes and the gravitational waves that ripple outward as the black holes spiral toward each other. Credit: LIGO/T. Pyle

The universe is awash in gravitational waves. The collisions of massive objects such as black holes and neutron stars generate many of them. Now astronomers are wondering about the environments where these catastrophic events occur. It turns out they might need to look at quasars.

Continue reading “Want to Find Colliding Black Holes? Check the Disks Around Quasars”

Did the Pulsar Timing Array Actually Detect Colliding Primordial Black Holes?

Illustration of merging black holes and their effect on pulsars and Earth. Credit: Daniëlle Futselaar (artsource.nl) / Max Planck Institute for Radio Astronomy

The universe is filled with gravitational waves. We know this thanks to the North American Nanohertz Observatory for Gravitational Waves (NANOGrav), which recently announced the first observations of long wavelength gravitational waves rippling through the Milky Way. The waves are likely caused by the mergers of supermassive black holes, but can we prove it?

Continue reading “Did the Pulsar Timing Array Actually Detect Colliding Primordial Black Holes?”

After Decades of Observations, Astronomers have Finally Sensed the Pervasive Background Hum of Merging Supermassive Black Holes

In this artist’s interpretation, a pair of supermassive black holes (top left) emits gravitational waves that ripple through the fabric of space-time. Those gravitational waves compress and stretch the paths of radio waves emitted by pulsars (white). Aurore Simonnet for the NANOGrav Collaboration

We’ve become familiar with LIGO/VIRGO’s detections of colliding black holes and neutron stars that create gravitational waves, or ripples in the fabric of space-time. However, the mergers between supermassive black holes – billions of times the mass of the Sun — generate gravitational waves too long to register with these instruments.

But now, after decades of careful observations, astronomers around the world using a different type of gravitational wave detection method have finally gathered enough data to measure what is essentially a gravitational wave background hum of the Universe, mostly from supermassive black holes spiraling toward collision.  

Continue reading “After Decades of Observations, Astronomers have Finally Sensed the Pervasive Background Hum of Merging Supermassive Black Holes”

After Three Years of Upgrades, LIGO is Fully Operational Again

The Laser Interferometer Gravitational-Wave Observatory is made up of two detectors, this one in Livingston, La., and one near Hanford, Wash. The detectors use giant arms in the shape of an "L" to measure tiny ripples in the fabric of the universe. Credit: Caltech/MIT/LIGO Lab

Have you noticed a lack of gravitational wave announcements the past couple of years? Well, now it is time to get ready for an onslaught, as the Laser Interferometric Gravitational-Wave Observatory (LIGO) starts a new 20-month observation run today, May 24th after a 3-year hiatus.

LIGO has been offline for the last three years, getting some serious new upgrades. One upgrade, called “quantum squeezing,” reduces detector noise to improve its ability to sense gravitational waves.

Astronomers expect this upgrade could double the sensitivity of LIGO. This will allow black hole mergers to be seen more clearly, and it could also allow LIGO to see mergers that are fainter or farther away. Or, perhaps it could even detect new kinds of mergers that have never been seen before.

Continue reading “After Three Years of Upgrades, LIGO is Fully Operational Again”

The Earth's Magnetosphere Could be Used as a Gravitational Wave Observatory

Gravitational signals might allow astronomers to observe early inflation. Credit: NANOGrav/T. Klein

One of the challenges of gravitational wave astronomy is moving its abilities beyond observations of stellar mass mergers. The collision of two black holes or neutron stars releases a tremendous amount of gravitational energy, but even this is a challenge to detect. Gravitational waves do not couple strongly with most matter, so it takes a tremendous amount of sensitive observations to observe. But we are getting better at it, and there are a few proposals that hope to take our observations even further. One example of this is a recent study that looks at utilizing the magnetospheres of Earth and Jupiter.

Continue reading “The Earth's Magnetosphere Could be Used as a Gravitational Wave Observatory”

LISA Will Be a Remarkable Gravitational-Wave Observatory. But There’s a Way to Make it 100 Times More Powerful

Artist's impression of the Laser Interferometer Space Antenna (LISA). Credit: ESA

The first-time detection of Gravitational Waves (GW) by researchers at the Laser Interferometer Gravitational-wave Observatory (LIGO) in 2015 triggered a revolution in astronomy. This phenomenon consists of ripples in spacetime caused by the merger of massive objects and was predicted a century prior by Einstein’s Theory of General Relativity. In the coming years, this burgeoning field will advance considerably thanks to the introduction of next-generation observatories, like the Laser Interferometer Space Antenna (LISA).

With greater sensitivity, astronomers will be able to trace GW events back to their source and use them to probe the interiors of exotic objects and the laws of physics. As part of their Voyage 2050 planning cycle, the European Space Agency (ESA) is considering mission themes that could be ready by 2050 – including GW astronomy. In a recent paper, researchers from the ESA’s Mission Analysis Section and the University of Glasgow presented a new concept that would build on LISA – known as LISAmax. As they report, this observatory could potentially improve GW sensitivity by two orders of magnitude.

Continue reading “LISA Will Be a Remarkable Gravitational-Wave Observatory. But There’s a Way to Make it 100 Times More Powerful”

Gravitational Waves From Pulsars Could Be Used to Probe the Interior of the Sun

A solar flare, as it appears in extreme ultra-violet light. Some stars emit superflares similar to this, but many times brighter and stronger than those from the Sun. Credit: NASA/SFC/SDO
A solar flare, as it appears in extreme ultra-violet light. Some stars emit superflares similar to this, but many times brighter and stronger than those from the Sun. Credit: NASA/SFC/SDO

Gravitational wave astronomy is still in its early stages. So far it has focused on the most energetic and distinct sources of gravitational waves, such as the cataclysmic mergers of black holes and neutron stars. But that will change as our gravitational telescopes improve, and it will allow astronomers to explore the universe in ways previously impossible.

Continue reading “Gravitational Waves From Pulsars Could Be Used to Probe the Interior of the Sun”