Gravitational waves could show what’s happening inside a star as it’s going supernova

A 2-D snapshot of a pair-instability supernovae as the explosion waves are about to break through the star's surface. The tiny disturbances represent fluid instability - in a region where different elements interact and mix. Image Credit: ASIAA/Ken Chen

It’s kind of hard to see inside a star as it’s blowing up, because of the whole “blowing up” part, but gravitational waves – tiny ripples in the fabric of spacetime itself – may help astronomers unlock how the biggest stars die.

Continue reading “Gravitational waves could show what’s happening inside a star as it’s going supernova”

The Moon is an Ideal Spot for a Gravitational Wave Observatory

High-resolution view of the lunar surface (JAXA/SELENE)

In the coming years, multiple space agencies will be sending missions (including astronauts) to the Moon’s southern polar region to conduct vital research. In addition to scouting resources in the area (in preparation for the construction of a lunar base) these missions will also investigate the possibility of conducting various scientific investigations on the far side of the Moon.

However, two prominent scientists (Dr. Karan Jani and Prof. Abraham Loeb) recently published a paper where they argue that another kind of astronomy could be conducted on the far side of the Moon – Gravitational Wave astronomy! As part of NASA’s Project Artemis, they explain how a Gravitational-wave Lunar Observatory for Cosmology (GLOC) would be ideal for exploring GW in the richest and most challenging frequencies.

Continue reading “The Moon is an Ideal Spot for a Gravitational Wave Observatory”

Closest Black Hole Found, Just 1,000 Light-Years From Earth

This artist’s impression shows the orbits of the objects in the HR 6819 triple system. Credit: ESO/L. Calçada

Black holes are invisible to the naked eye, have no locally detectable features, and even light can’t escape them. And yet, their influence on their surrounding environment makes them the perfect laboratory for testing physics under extreme conditions. In particular, they offer astronomers a chance to test Einstein’s Theory of General Relativity, which postulates that the curvature of space-time is altered by the presence of a gravity.

Thanks to a team of astronomers led by the European Southern Observatory (ESO), the closest black hole has just been found! Using the ESO’s La Silla Observatory in Chile, the team found this black hole in a triple system located just 1000 light-years from Earth in the Telescopium constellation. Known as HR 6819, this system can be seen with the naked eye and could one of many “quiet” black holes that are out there.

Continue reading “Closest Black Hole Found, Just 1,000 Light-Years From Earth”

Astronomers Detected a Black Hole Merger With Very Different Mass Objects

Still image from a numerical simulation of an unequal mass binary black hole merger, with parameters consistent with GW190412. [Image credit: N. Fischer, H. Pfeiffer, A. Buonanno (Max Planck Institute for Gravitational Physics), Simulating eXtreme Spacetimes project]

In another first, scientists at the LIGO and Virgo gravitational wave detectors announced a signal unlike anything they’ve ever seen before. While many black hole mergers have been detected thanks to LIGO and Virgo’s international network for detectors, this particular signal (GW190412) was the first where the two black holes had distinctly different masses.

Continue reading “Astronomers Detected a Black Hole Merger With Very Different Mass Objects”

Neutron Star Measures Just 22 Kilometers Across

A typical neutron star with a radius of eleven kilometres is about as large as a medium-sized city. Credit: NASA's Goddard Space Flight Center

How big is a neutron star? These extreme, ultra-dense collapsed stars are fairly small, as far as stellar objects are concerned. Even though they pack the mass of a full-sized star, their size is often compared to the width of a medium-to-large-sized city. For years, astronomers have pegged neutron stars at somewhere between 19-27 km (12 to 17 miles) across. This is quite actually quite precise, given the distances and characteristics of neutrons stars. But astronomers have been working to narrow that down to an even more precise measurement.

An international team of researchers has now done just that. Using data from several different telescopes and observatories, members of the Max Planck Institute for Gravitational Physics, theAlbert Einstein Institute (AEI) have narrowed the size estimates for neutron stars by a factor of two.

Continue reading “Neutron Star Measures Just 22 Kilometers Across”

14% of all the Massive Stars in the Universe are Destined to Collide as Black Holes

This illustration shows the merger of two black holes and the gravitational waves that ripple outward as the black holes spiral toward each other. Could black holes like these (which represent those detected by LIGO on Dec. 26, 2015) collide in the dusty disk around a quasar's supermassive black hole explain gravitational waves, too? Credit: LIGO/T. Pyle
This illustration shows the merger of two supermassive black holes and the gravitational waves that ripple outward as the black holes spiral toward each other. Credit: LIGO/T. Pyle

Einstein’s Theory of General Relativity predicted that black holes would form and eventually collide. It also predicted the creation of gravitational waves from the collision. But how often does this happen, and can we calculate how many stars this will happen to?

A new study from a physicist at Vanderbilt University sought to answer these questions.

Continue reading “14% of all the Massive Stars in the Universe are Destined to Collide as Black Holes”

A Mysterious Burst of Gravitational Waves Came From a Region Near Betelgeuse. But There’s Probably No Connection

Betelgeuse was the first star directly imaged -- besides our own Sun, of course. Image obtained by the Hubble Space Telescope. Credit: Andrea Dupree (Harvard-Smithsonian CfA), Ronald Gilliland (STScI), NASA and ESA

Gravitational waves are caused by calamitous events in the Universe. Neutron stars that finally merge after circling each other for a long time can create them, and so can two black holes that collide with each other. But sometimes there’s a burst of gravitational waves that doesn’t have a clear cause.

Continue reading “A Mysterious Burst of Gravitational Waves Came From a Region Near Betelgeuse. But There’s Probably No Connection”

LIGO Will Squeeze Light To Overcome The Quantum Noise Of Empty Space

The LIGO Hanford Observatory in Washington State. Credit: LIGO Observatory
The LIGO Hanford Observatory in Washington State. Credit: LIGO Observatory

When two black holes merge, they release a tremendous amount of energy. When LIGO detected the first black hole merger in 2015, we found that three solar masses worth of energy was released as gravitational waves. But gravitational waves don’t interact strongly with matter. The effects of gravitational waves are so small that you’d need to be extremely close to a merger to feel them. So how can we possibly observe the gravitational waves of merging black holes across millions of light-years?

Continue reading “LIGO Will Squeeze Light To Overcome The Quantum Noise Of Empty Space”

Hubble Has Looked at the 2017 Kilonova Explosion Almost a Dozen Times, Watching it Slowly Fade Away

An artistic rendering of two neutron stars merging. Credit: NSF/LIGO/Sonoma State/A. Simonnet

In 2017, LIGO (Laser-Interferometer Gravitational Wave Observatory) and Virgo detected gravitational waves coming from the merger of two neutron stars. They named that signal GW170817. Two seconds after detecting it, NASA’s Fermi satellite detected a gamma ray burst (GRB) that was named GRB170817A. Within minutes, telescopes and observatories around the world honed in on the event.

The Hubble Space Telescope played a role in this historic detection of two neutron stars merging. Starting in December 2017, Hubble detected the visible light from this merger, and in the next year and a half it turned its powerful mirror on the same location over 10 times. The result?

The deepest image of the afterglow of this event, and one chock-full of scientific detail.

Continue reading “Hubble Has Looked at the 2017 Kilonova Explosion Almost a Dozen Times, Watching it Slowly Fade Away”

Gravitational Wave Detectors Might be Able to Detect Dark Matter Particles Colliding With Their Mirrors

The early universe. Credit: Tom Abel & Ralf Kaehler (KIPACSLAC)/ AMNH/NASA

The field of astronomy has been revolutionized thanks to the first-ever detection of gravitational waves (GWs). Since the initial detection was made in February of 2016 by scientists at the Laser Interferometer Gravitational-wave Observatory (LIGO), multiple events have been detected. These have provided insight into a phenomenon that was predicted over a century ago by Albert Einstein.

As it turns out, the infrastructure that is used to detect GWs could also help crack another astronomical mystery: Dark Matter! According to a new study by a team of Japanese researchers, laser interferometers could be used to look for Weakly-Interacting Massive Particles (WIMPs), a major candidate particle in the hunt for Dark Matter.

Continue reading “Gravitational Wave Detectors Might be Able to Detect Dark Matter Particles Colliding With Their Mirrors”