What are Gas Giants?

The outer planets of our Solar System at approximately relative sizes. From left, Jupiter, Saturn, Uranus and Neptune. Credit: Lunar and Planetary Institute

Between the planets of the inner and outer Solar System, there are some stark differences. The planets that resides closer to the Sun are terrestrial (i.e. rocky) in nature, meaning that they are composed of silicate minerals and metals. Beyond the Asteroid Belt, however, the planets are predominantly composed of gases, and are much larger than their terrestrial peers.

This is why astronomers use the term “gas giants” when referring to the planets of the outer Solar System. The more we’ve come to know about these four planets, the more we’ve come to understand that no two gas giants are exactly alike. In addition, ongoing studies of planets beyond our Solar System (aka. “extra-solar planets“) has shown that there are many types of gas giants that do not conform to Solar examples. So what exactly is a “gas giant”?

Definition and Classification:

By definition, a gas giant is a planet that is primarily composed of hydrogen and helium. The name was originally coined in 1952 by James Blish, a science fiction writer who used the term to refer to all giant planets. In truth, the term is something of a misnomer, since these elements largely take a liquid and solid form within a gas giant, as a result of the extreme pressure conditions that exist within the interior.

The four gas giants of the Solar System (from right to left): Jupiter, Saturn, Uranus and Neptune. Credit: NASA/JPL

What’s more, gas giants are also thought to have large concentrations of metal and silicate material in their cores. Nevertheless, the term has remained in popular usage for decades and refers to all planets  – be they Solar or extra-solar in nature – that are composed mainly of gases. It is also in keeping with the practice of planetary scientists, who use a shorthand – i.e. “rock”, “gas”, and “ice” – to classify planets based on the most common element within them.

Hence the difference between Jupiter and Saturn on the one and, and Uranus and Neptune on the other. Due to the high concentrations of volatiles (such as water, methane and ammonia) within the latter two – which planetary scientists classify as “ices” – these two giant planets are often called “ice giants”. But since they are composed mainly of hydrogen and helium, they are still considered gas giants alongside Jupiter and Saturn.

Classification:

Today, Gas giants are divided into five classes, based on the classification scheme proposed by David Sudarki (et al.) in a 2000 study. Titled “Albedo and Reflection Spectra of Extrasolar Giant Planets“, Sudarsky and his colleagues designated five different types of gas giant based on their appearances and albedo, and how this is affected by their respective distances from their star.

Class I: Ammonia Clouds – this class applies to gas giants whose appearances are dominated by ammonia clouds, and which are found in the outer regions of a planetary system. In other words, it applies only to planets that are beyond the “Frost Line”, the distance in a solar nebula from the central protostar where volatile compounds – i.e. water, ammonia, methane, carbon dioxide, carbon monoxide – condense into solid ice grains.

These cutaways illustrate interior models of the giant planets. Jupiter is shown with a rocky core overlaid by a deep layer of metallic hydrogen. Credit: NASA/JPL

Class II: Water Clouds – this applies to planets that have average temperatures typically below 250 K (-23 °C; -9 °F), and are therefore too warm to form ammonia clouds. Instead, these gas giants have clouds that are formed from condensed water vapor. Since water is more reflective than ammonia, Class II gas giants have higher albedos.

Class III: Cloudless – this class applies to gas giants that are generally warmer – 350 K (80 °C; 170 °F) to 800 K ( 530 °C; 980 °F) – and do not form cloud cover because they lack the necessary chemicals. These planets have low albedos since they do not reflect as much light into space. These bodies would also appear like clear blue globes because of the way methane in their atmospheres absorbs light (like Uranus and Neptune).

Class IV: Alkali Metals – this class of planets experience temperatures in excess of 900 K (627 °C; 1160 °F), at which point Carbon Monoxide becomes the dominant carbon-carrying molecule in their atmospheres (rather than methane). The abundance of alkali metals also increases substantially, and cloud decks of silicates and metals form deep in their atmospheres. Planets belonging to Class IV and V are referred to as “Hot Jupiters”.

Class V: Silicate Clouds – this applies to the hottest of gas giants, with temperatures above 1400 K (1100 °C; 2100 °F), or cooler planets with lower gravity than Jupiter. For these gas giants, the silicate and iron cloud decks are believed to be high up in the atmosphere. In the case of the former, such gas giants are likely to glow red from thermal radiation and reflected light.

Artist’s concept of “hot Jupiter” exoplanet, a gas giant that orbits very close to its star. Credit: NASA/JPL-Caltech)

Exoplanets:

The study of exoplanets has also revealed a wealth of other types of gas giants that are more massive than the Solar counterparts (aka. Super-Jupiters) as well as many that are comparable in size. Other discoveries have been a fraction of the size of their solar counterparts, while some have been so massive that they are just shy of becoming a star. However, given their distance from Earth, their spectra and albedo have cannot always be accurately measured.

As such, exoplanet-hunters tend to designate extra-solar gas giants based on their apparent sizes and distances from their stars. In the case of the former, they are often referred to as “Super-Jupiters”, Jupiter-sized, and Neptune-sized. To date, these types of exoplanet account for the majority of discoveries made by Kepler and other missions, since their larger sizes and greater distances from their stars makes them the easiest to detect.

In terms of their respective distances from their sun, exoplanet-hunters divide extra-solar gas giants into two categories: “cold gas giants” and “hot Jupiters”. Typically, cold hydrogen-rich gas giants are more massive than Jupiter but less than about 1.6 Jupiter masses, and will only be slightly larger in volume than Jupiter. For masses above this, gravity will cause the planets to shrink.

Exoplanet surveys have also turned up a class of planet known as “gas dwarfs”, which applies to hydrogen planets that are not as large as the gas giants of the Solar System. These stars have been observed to orbit close to their respective stars, causing them to lose atmospheric mass faster than planets that orbit at greater distances.

For gas giants that occupy the mass range between 13 to 75-80 Jupiter masses, the term “brown dwarf” is used. This designation is reserved for the largest of planetary/substellar objects; in other words, objects that are incredibly large, but not quite massive enough to undergo nuclear fusion in their core and become a star. Below this range are sub-brown dwarfs, while anything above are known as the lightest red dwarf (M9 V) stars.

An artist’s conception of a T-type brown dwarf. Credit: Tyrogthekreeper/Wikimedia Commons

Like all things astronomical in nature, gas giants are diverse, complex, and immensely fascinating. Between missions that seek to examine the gas giants of our Solar System directly to increasingly sophisticated surveys of distant planets, our knowledge of these mysterious objects continues to grow. And with that, so is our understanding of how star systems form and evolve.

We have written many interesting articles about gas giants here at Universe Today. Here’s The Planet Jupiter, The Planet Saturn, The Planet Uranus, The Planet Neptune, What are the Jovian Planets?, What are the Outer Planets of the Solar System?, What’s Inside a Gas Giant?, and Which Planets Have Rings?

For more information, check out NASA’s Solar System Exploration.

Astronomy Cast also has some great episodes on the subject. Here’s Episode 56: Jupiter to get you started!

Sources:

Messier 53 – the NGC 5024 Globular Cluster

Messier 53, as imaged by the Hubble Space Telescope. Credit: ESA/Hubble & NASA

Welcome back to Messier Monday! In our ongoing tribute to the great Tammy Plotner, we take a look at globular cluster known as Messier 53!

During the 18th century, famed French astronomer Charles Messier noted the presence of several “nebulous objects” in the night sky. Having originally mistaken them for comets, he began compiling a list of these objects so others would not make the same mistake he did. In time, this list (known as the Messier Catalog) would come to include 100 of the most fabulous objects in the night sky.

One of these objects is Messier 53, a globular cluster located in the northern Coma Berenices constellation. Located about 58,000 light years from the Solar System, it is almost equidistant from Galactic Center (about 60,000 light years). As Messier Objects go, it is relatively easy to find since it lies in the same area of the sky as Arcturus, the fourth brightest star in the night sky.

Description:

Heading towards us at a speed of 112 kilometers per second, globular cluster M53 is one of the furthest distant globular clusters in our Milky Way halo and lay almost equally distant between our solar system and the galactic center. This 220 light year diameter ball of stars in tightly compacted towards its core – where low metal is the name of the game and RR Lyra type variable stars once ruled. But recent studies have found that there are some new kids on the block. The blue stragglers…

Messier 53, as imaged by the Hubble Space Telescope. Credit: ESA/Hubble & NASA

According to G. Beccari (et al) the population of these definitely appears to violate standard theories of stellar evolution. And there not just a few blues… There’s a whole host of them. As Beccari noted in a 2008 study:

“We used a proper combination of high-resolution and wide-field multiwavelength observations collected at three different telescopes (HST, LBT, and CFHT) to probe the blue straggler star (BSS) population in the globular cluster M53. Almost 200 BSSs have been identified over the entire cluster extension. We have also used this database to construct the radial star density profile of the cluster; this is the most extended and accurate radial profile ever published for this cluster, including detailed star counts in the very inner region. A deviation from the model is noted in the most external region of the cluster. This feature needs to be further investigated in order to address the possible presence of a tidal tail in this cluster.”

Is this possible? Then take a closer look into this research. One where a millisecond pulsar was discovered inside. As S.R. Kulkarni (et al) indicated in a 1991 study:

“Millisecond pulsars are conventionally assumed to be spun up through the action of binary companions, although some subsequently lose their companions and appear as isolated pulsars. Such objects should therefore be more numerous in dense stellar systems. We report here the surprising discovery of two pulsars in low-density globular clusters: one is a single 10-ms pulsar (1639+36) in M13 (NGC 6205), the other a 33-ms pulsar (1310+18) in a 256-d binary in M53 (NGC 5024). Their ages, inferred from their luminosities and constraints on their period derivatives, seem to be 10 9 years, significantly greater than previously reported ages ( ! 10 8 years) of cluster pulsars. The implied birth rate is inconsistent with the conventional two-body tidal capture model, suggesting that an alternative mechanism such as tidal capture between primordial binaries and a reservoir of (hundreds of) primordial neutron stars may dominate the production of tidal binaries in such clusters. The period derivative of PSR1639+36 is surprisingly small, and may be corrupted by acceleration due to the mean gravitational potential of the cluster.”

The Messier 53 globular star cluster. Credit: Ole Nielsen

History of Observation:

This globular cluster was first discovered on February 3, 1775 by Johann Elert Bode, but independently recovered on February 26, 1777 by Charles Messier who writes:

“Nebula without stars discovered below & near Coma Berenices, a little distant from the star 42 in that constellation, according to Flamsteed. This nebula is round and conspicuous. The Comet of 1779 was compared directly with this nebula, & M. Messier has reported it on the chart of that comet, which will be included in the volume of the Academy for 1779. Observed again April 13, 1781: It resembles the nebula which is below Lepus [M79].”

Sir William Herschel would revisit M53, but he did not publish his findings when studying Messier objects. Very seldom did Herschel wax poetic in his writings, but of this particular object he said: “A cluster of very close stars; one of the most beautiful objects I remember to have seen in the heavens. The cluster appears under the form of a solid ball, consisting of small stars, quite compressed into one blaze of light, with a great number of loose ones surrounding it, and distinctly visible in the general mass.”

He would return again in later years to include in his notes: “From what has been said it is obvious that here the exertion of a clustering power has brought the accumulation and artificial construction of these wonderful celestial objects to the highest degree of mysterious perfection.”

The Messier 53 globular cluster. Credit: NASA/ESA/Hubble

Although it did not touch Sir John Herschel quite so much, M53 also engaged Admiral Smyth who wrote:

“A globular cluster, between Berenice’s tresses and the Virgin’s left hand, with a coarse pair of telescopic stars in the sf [south following, SE] quadrant, and a single one in the sp [south preceding, SW]. This is a brilliant mass of minute stars, from the 11th to the 15th magnitude, and from thence to gleams of star-dust, with stragglers to the np [north preceding, NW], and pretty diffused edges. From the blaze at the centre, it is evidently a highly compressed ball of stars, whose law of aggregation into so dense and compact a mass, is utterly hidden from our imperfect senses. It was enrolled by Messier in 1774 as No. 53, and resolved into stars by Sir W. Herschel. The contemplation of so beautiful an object, cannot but set imagination to work, though the mind may be soon lost in astonishment at the stellar dispositions of the great Creator and Maintainer. Thus, in reasoning by analogy, these compressed globes of stars confound conjecture as to the models in which the mutual attractions are prevented from causing the universal destruction of their system. Sir John Herschel thinks, that no pressure can be propagated through a cluster of discrete stars; whence it would follow, that the permanence of its form must be maintained in a way totally different from that which our reasoning suggest. Before quitting this interesting ball of innumerable worlds, I may mention that it was examined by Sir John Herschel, with Mr. Baily, in the 20-foot reflector; and that powerful instrument showed the cluster with curved appendages of stars, like the short claws of a crab running out from the main body. A line through Delta and Epsilon Virginis, northward, meeting another drawn from Arcturus to Eta Bootis, unite upon this wonderful assemblage; or it is also easily found by its being about 1 deg northeast of 42 Comae Berenices, the alignment of which is already given.”

Locating Messier 53:

M53 can be easily found just about a degree northeast of 42 Alpha Comae Berenices, a visual binary star. To located Alpha, draw a mental line from Arcturus via Eta Bootis where you’ll see it about a fist width west. Alternately you can starhop from Gamma Viginis to Delta and on to Epsilon where you can locate M53 approximately 4 fingerwidths to the north/northeast.

To see this small globular cluster in binoculars will require dark skies and it will appear very small, like a large, out of focus star. In small telescopes it will appear almost cometary – and thus why Messier cataloged these objects! However, with telescopes approaching the 6″ range, resolution will begin and larger telescopes will shatter this gorgeous globular cluster. Requires dark skies.

The location of Messier 53 in the northern Coma Berenices constellation. Credit: IAU and Sky & Telescope magazine (Roger Sinnott & Rick Fienberg)

A ball of worlds… What a unique description! May you enjoy your observations as well!

And here are the quick facts on this Messier Object to help you get started!

Object Name: Messier 53
Alternative Designations: M53, NGC 5024
Object Type: Class V Globular Cluster
Constellation: Coma Berenices
Right Ascension: 13 : 12.9 (h:m)
Declination: +18 : 10 (deg:m)
Distance: 58.0 (kly)
Visual Brightness: 7.6 (mag)
Apparent Dimension: 13.0 (arc min)

We have written many interesting articles about Messier Objects here at Universe Today. Here’s Tammy Plotner’s Introduction to the Messier Objects, , M1 – The Crab Nebula, M8 – The Lagoon Nebula, and David Dickison’s articles on the 2013 and 2014 Messier Marathons.

Be to sure to check out our complete Messier Catalog. And for more information, check out the SEDS Messier Database.

Sources:

Messier 52 – the NGC 7654 Open Star Cluster

The location of the Messier 52 open star cluster, located in the direction of the southern constellation Cassiopeia. Credit: Wikisky

Welcome back to Messier Monday! We continue our tribute to our dear friend, Tammy Plotner, by looking at the open star cluster of Messier 52. Enjoy!

In the 18th century, while searching the night sky for comets, French astronomer Charles Messier kept noting the presence of fixed, diffuse objects in the night sky. In time, he would come to compile a list of approximately 100 of these objects, with the purpose of making sure that astronomers did not mistake them for comets. However, this list – known as the Messier Catalog – would go on to serve a more important function.

One of these objects is Messier 52, an open star cluster that can seen in proximity to the northern constellation Cassiopeia. Located about 5000 light years from Earth, this star cluster is easily spotted in the night sky because of its association with Cassiopeia’s familiar W-shape. It can viewed with binocular and telescopes, and will appears as a hazy, nebulous patch of light.

Description:

Located roughly 5000 light years away, this 35 million year old cluster of stars has around 200 members – one of which is a very peculiar Of star. According to A.K. Pandy (et al), M52 is an interesting cluster in which to study star formation history. As they stated in their 2001 study:

“The colour magnitude diagrams show a large age spread in the ages. Star formation was biased towards relatively higher masses during the early phase of star formation whereas most of the low mass stars of the cluster were formed during the later phase. The star formation seems to have been a gradual process that proceeded sequentially in mass and terminated with the formation of most massive stars.”

The Messier 52 open star cluster. Credit: Wikisky

Indeed, M52 has been very studied for its star structure, including a search for variables. As S.L. Kim (et al), wrote in a 2000 study:

“We have performed a long-term project of CCD photometry of open clusters. Its primary goal is to search for variable stars, in particular short-period (less than a few days) pulsating stars such as Delta Sct, Gamma Dor, and slowly pulsating B-type stars (SPBs). These pulsating stars are recognized as important objects in studying stellar structure and testing evolution theory of intermediate-mass main sequence stars. Thus these clusters are ideal targets to investigate whether Gamma Dor type variability occurs in old open clusters or not.”

And it’s not just the structure they’re looking at – but the time frame in which they formed. As Anil K. Pandey wrote in her 2001 study:

“The distribution of stars in NGC 7654 indicates that the star formation within the cluster is not coeval and has an age spread -50 Myr. We found that star formation took place sequentially in the sense that low mass stars formed first. The star formation history in NGC 7654 supports the conventional picture of star formation in cluster where ‘low mass stars’ form first and star formation continues over a long period of time. The star formation within the cluster terminates with the formation of most massive stars in the cluster.”

History of Observation:

M52 was an original discovery of Charles Messier, captured on the night of September 7th, 1774. As he wrote in his notes at the time:

“Cluster of very small stars, mingled with nebulosity, which can be seen only with an achromatic telescope. It was when he observed the Comet which appeared in this year that M. Messier saw this cluster, which was close to the comet on the 7th of September 1774; it is below the star d Cassiopeiae: that star was used to determine both the cluster of stars and the comet.”

Atlas Image mosaic of Messier 52, as part of the Two Micron All Sky Survey (2MASS). Credit: UMass/UPAC/Caltech/NASA/NSF

Sir William Herschel would also observe M52, but he would keep his notes private. As he wrote on August 29th, 1873:

“All resolved into innumerable small stars without any suspicion of nebulosity. 7 ft., 57. In the sweeper, 30, shews nebulosity, the stars being too obscure to be distinguished with its light tho’ considerable.” and again on December 23, 1805: “Review. Large 10 feet. This is a cluster of pretty condensed stars of different sizes. It is situated in a very rich part of the heavens and can hardly be called insulated, it may only be a very condensed part of the Milky Way which is here much divided and scattered. It is however so far drawn together with some accumulation that it may be called a cluster of the third order.”

Herschel’s son John would also add it to the General Catalog a few years later with less descriptive narrative, but it was Admiral Smyth who described M52’s beauty best when he said:

“An irregular cluster of stars between the head of Cepheus and his daughter’s throne; it lies north-west-by-west of Beta Cassiopeiae, and one third of the way towards Alpha Cephei. This object assumes somewhat of a triangular form, with an orange-tinted 8th-mag star at its vertex, giving it the resemblance of a bird with outspread wings. It is preceded by two stars of 7th and 8th magnitudes, and followed by another of similar brightness; and the field is one of singular beauty under a moderate magnifying power. While these were under examination, one of those bodies called falling stars passed through the outliers. This phenomenon was so unexpected and sudden as to preclude attention to it; but it appeared to be followed by a train of glittering and very minute spangles.”

May it glitter and spangle for you!

The location of Messier 52 in proximity to the constellation Cassiopeia. Credit: IAU and Sky & Telescope magazine (Roger Sinnott & Rick Fienberg)

Locating Messier 52:

In the rich star cluster fields of Cassiopeia, M52 is distinctive for its size and brightness. It’s not hard to find! Begin by identifying the W-shape of Cassiopeia and focus on its two brightest stars – Alpha and Beta. Because this constellation is circumpolar, remembering to look at the side that has the brightest stars or the steepest angle, will help you remember how to find this great open cluster. Now, just draw a mental line between Alpha, the lower star, and Beta, the upper.

Extend that line into space about the same distance and aim your binoculars or finderscope there. In binoculars M52 will show clearly as a beginning to resolve star cloud and a hazy patch in a telescope finderscope. Even the smallest of telescopes can expect resolution from this multi-magnitude beauty and the more aperture you apply, the more stars you will see. M52 is well suited to urban or light polluted skies and stands up well to fairly moonlit conditions and hazy skies.

Object Name: Messier 52
Alternative Designations: M52, NGC 7654
Object Type: Open Galactic Star Cluster
Constellation: Cassiopeia
Right Ascension: 23 : 24.2 (h:m)
Declination: +61 : 35 (deg:m)
Distance: 5.0 (kly)
Visual Brightness: 7.3 (mag)
Apparent Dimension: 13.0 (arc min)

We have written many interesting articles about Messier Objects here at Universe Today. Here’s Tammy Plotner’s Introduction to the Messier ObjectsM1 – The Crab Nebula, and David Dickison’s articles on the 2013 and 2014 Messier Marathons.

Be to sure to check out our complete Messier Catalog. And for more information, check out the SEDS Messier Database.

Sources:

Where Will the Space Launch System Take Us? Preparing For The Most Powerful Rocket Ever Built

Where Will the Space Launch System Take Us? Preparing For The Most Powerful Rocket Ever Built
Where Will the Space Launch System Take Us? Preparing For The Most Powerful Rocket Ever Built

NASA is in an awkward in-between time right now. Since the beginning of the space age, the agency has had the ability to send its astronauts into space. The first American to go to space, Alan Shepard, did a suborbital launch on board a Mercury Redstone rocket in 1961.

Then the rest of the Mercury astronauts went on Atlas rockets, and then the Gemini astronauts flew on various Titan rockets. NASA’s ability to hurl people and their equipment into space took a quantum leap with the enormous Saturn V rocket used in the Apollo program.

It’s difficult to properly comprehend just how powerful the Saturn V was, so I’ll give you some examples of things this monster could launch. A single Saturn V could blast 122,000 kilograms or 269,000 pounds into low-Earth orbit, or send 49,000 kilograms or 107,000 pounds on a transfer orbit to the Moon.

Instead of continuing on with the Saturn program, NASA decided to shift gears and build the mostly reusable space shuttle. Although it was shorter than the Saturn V, the space shuttle with its twin external solid rocket boosters could put 27,500 kilograms or 60,000 pounds into Low Earth orbit. Not too bad.

And then, in 2011, the space shuttle program wrapped up. And with it, the United States’ ability to launch humans into the space. And most importantly, to send astronauts to the continuously inhabited International Space Station. That task has fallen to Russian rockets until the US builds back the capability for human spaceflight.

Space Shuttle Columbia launching on its maiden voyage on April 12th, 1981. Credit: NASA

Since the cancellation of the shuttle, NASA’s workforce of engineers and rocket scientists has been developing the next heavy lift vehicle in NASA’s line up: the Space Launch System.

The SLS looks like a cross between a Saturn V and the space shuttle. It has the same familiar solid rocket boosters, but instead of the space shuttle orbiter and its orange external fuel tank, the SLS has the central Core Stage. It has 4 of the space shuttle’s RS-25 Liquid Oxygen engines.

Although two shuttle orbiters were lost in disasters, these engines and their liquid oxygen and liquid hydrogen performed perfectly for 135 flights. NASA knows how to use them, and how to use them safely.

The very first configuration of the SLS, known as the Block 1, should have the ability to put about 70 metric tonnes into Low Earth Orbit. And that’s just the beginning, and it’s just an estimate. Over time, NASA will increase its capabilities and launch power to match more and more ambitious missions and destinations. With more launches, they’ll get a better sense of what this thing is capable of.

After the Block 1 is launching, NASA will develop the Block 1b, which puts a much larger upper stage on top of the same core stage. This upper stage will have a larger fairing and more powerful second stage engines, capable of putting 97.5 metric tonnes into low Earth orbit.

Graphic shows all the dome, barrel, ring and engine components used to assemble the five major structures of the core stage of NASA’s Space Launch System (SLS) in Block 1 configuration. Credits: NASA/MSFC

Finally, there’s the Block 2, with an even larger launch fairing, and more powerful upper stage. It should blast 143 tonnes into low Earth orbit. Probably. NASA is developing this version as a 130 tonne-class rocket.

With this much launch capacity, what could be done with it? What kinds of missions become possible on a rocket this powerful?

The main goal for SLS is to send humans out, beyond low Earth orbit. Ideally to Mars in the 2030s, but it could also go to asteroids, the Moon, whatever you like. And as you’ll read later on in this article, it could send some amazing scientific missions out there too.

The very first flight for SLS, called Exploration Mission 1, will be to put the new Orion crew module into a trajectory that takes it around the Moon. In a very similar flight to Apollo 8. But there won’t be any humans, just the unmanned Orion module and a bunch of cubesats coming along for the ride. Orion will spend about 3 weeks in space, including about 6 days in a retrograde orbit around the Moon.

NASA’s Orion spacecraft. Credit: NASA

If all goes well, the first use of the SLS with the Orion crew module will happen some time in 2019. But also, don’t be surprised if it gets pushed back, that’s the name of the game.

After Exploration Mission 1, there’s be EM-2, which should happen a few years after that. This’ll be the first time humans get into an Orion crew module and take a flight to space. They’ll spend 21 days in a lunar orbit, and deliver the first component of the future Deep Space Gateway, which will be the subject of a future article.

From there, the future is unclear, but SLS will provide the capability to put various habitats and space stations into cislunar space, opening up the future of human space exploration of the Solar System.

Now you know where SLS is probably headed. But the key to this hardware is that it gives NASA raw capability to put humans and robots into space. Not just here on Earth, but way across the Solar System. New space telescopes, robotic explorers, rovers, orbiters and even human habitats.

In a recent study called “The Space Launch System Capabilities for Beyond Earth Missions,” a team of engineers mapped out what the SLS should be capable of putting into the Solar System.

For example, Saturn is a difficult planet to reach, and it order to get there, NASA’s Cassini spacecraft needed to do several gravitational slingshots around Earth and one past Jupiter. It took almost 7 years to get to Saturn.

SLS could send missions to Saturn on more direct trajectory, cutting the flight time down to just 4 years. Block 1 could send 2.7 tonnes to Saturn, while Block 1b could loft 5.1 tonnes.

An artist’s interpretation of NASA’s Space Launch System Block 1 configuration with an Orion vehicle. Image: NASA

NASA is considering a mission to Jupiter’s Trojan asteroids. These are a collection of space rocks trapped in Jupiter’s L4/L5 Lagrange points, and could be a fascinating place to study. Once put into the Trojan region, a mission could visit several different asteroids, sampling a vast range of rocks that detail the Solar System’s early history.

The Block 1 could put almost 3.97 tonnes into these orbits, while the Block 1b could do 7.59 tonnes. That’s 6 times the capability of an Atlas V. A mission like this would have a cruise time of 10 years.

In a previous video, we talked about future Uranus and Neptune missions, and how a single SLS could send spacecraft to both planets simultaneously.

Another idea that I really like is an inflatable habitat from Bigelow Aerospace. The BA-2100 module would be a fully self-contained space habitat. No need for other modules, this monster would be 65 to 100 tonnes, and would go up in a single launch of SLS. Once inflated, it would contain 2,250 cubic meters, which is almost 3 times the total living space of the International Space Station.

One of the most exciting missions, to me, is a next generation space telescope. Something that would be the true spiritual successor to the Hubble Space Telescope. There are a few proposals in the works right now, but the idea I like best is the LUVOIR telescope, which would have a mirror that measures 16 meters across.

The SLS Block 1b could put 36.9 tonnes into Sun-Earth Lagrange Point 2. Really there’s nothing else out there that could put this much mass into that orbit.

Just for comparison, Hubble has a mirror of 2.4 meters across, and James Webb is 6.5. With LUVOIR, you would have 10 times more resolution than James Webb, and 300 times more power than Hubble. But like Hubble, it would be capable of seeing the Universe in visible and other wavelengths.

A telescope like this could directly image the event horizons of supermassive black holes, see right to the edge of the observable Universe and watch the first galaxies forming their first stars. It could directly observe planets orbiting other stars and help us determine if they have life on them.

An artist's illustration of a 16 meter segmented mirror space telescope. There are no actual images of LUVOIR because the design hasn't been finalized yet. Image: Northrop Grumman Aerospace Systems & NASA/STScI
An artist’s illustration of a 16 meter segmented mirror space telescope. There are no actual images of LUVOIR because the design hasn’t been finalized yet. Image: Northrop Grumman Aerospace Systems & NASA/STScI

Seriously, I want this telescope.

At this point, I know this is going to set off a big argument about NASA versus SpaceX versus other private launch providers. That’s fine, I get it. And the Falcon Heavy is expected to launch later this year, bringing heavy lift launch capabilities at an affordable price. It’ll be able to loft 54,000 kilograms, which is less than the SLS Block 1, and almost a third of the capability of the Block 2. Blue Origins has its New Glenn, there are heavier rockets in the works from United Launch Alliance, Arianespace, the Russian Space Agency, and even the Chinese. The future of heavy lift has never been more exciting.

If SpaceX does get the Interplanetary Transport Ship going, with 300 tonnes into orbit on a reusable rocket. Well then, everything changes. Everything.

Until then, I’m still looking forward to the SLS.

What Is the Name Of Our Galaxy?

The band of light (the Milky Way) that is visible in the night sky, showing the stellar disk of our galaxy. Credit: Bob King

Since prehistoric times, human beings have looked up at at the night sky and pondered the mystery of the band of light that stretches across the heavens. And while theories have been advanced since the days of Ancient Greece as to what it could be, it was only with the birth of modern astronomy that scholars have come come to know precisely what it is – i.e. countless stars at considerable distances from Earth.

The term “Milky Way”, a term which emerged in Classical Antiquity to describe the band of light in the night sky, has since gone on to become the name for our galaxy. Like many others in the known Universe, the Milky Way is a barred, spiral galaxy that is part of the Local Group – a collection of 54 galaxies. Measuring 100,000 – 180,000 light-years in diameter, the Milky Way consists of between 100 and 400 billion stars.

Structure:

The Milky Way consists of a Galactic Center that is shaped like a bar and a Galactic Disk made up of spiral arms, all of which is surrounded by the Halo – which is made up of old stars and globular clusters. The Center, also known as “the bulge”,  is a dense concentration of mostly old stars that measures about 10,000 light years in radius. This region is also the rotational center of the Milky Way.

Illustration of the supermassive black hole at the center of the Milky Way. Credit: NRAO/AUI/NSF
Illustration of the supermassive black hole at the center of the Milky Way. Credit: NRAO/AUI/NSF

The Galactic Center is also home to an intense radio source named Sagittarius A*, which is believed to have a supermassive black hole (SMBH) at its center. The presence of this black hole has been discerned due to the apparent gravitational influence it has on surrounding stars. Astronomers estimate that it has a mass of between 4.1. and 4.5 million Solar masses.

Outside the barred bulge at the Galactic Center is the Galactic Disk of the Milky Way. This consists of stars, gas and dust which is organized into four spiral arms. These arms typically contain a higher density of interstellar gas and dust than the Galactic average, as well as a greater concentration of star formation. While there is no consensus on the exact structure or extent of these spiral arms, they are commonly grouped into two or four different arms.

In the case of four arms, this is based on the traced paths of gas and younger stars in our galaxy, which corresponds to the Perseus Arm, the Norma and Outer Arm, the Scutum-Centaurum Arm, and the Carina-Sagittarius Arm. There are also at least two smaller arms, which include the Cygnus Arm and the Orion Arm. Meanwhile, surveys based on the presence of older stars show only two major spirals arms – the Perseus arm and the Scutum–Centaurus arm.

Beyond the Galactic Disk is the Halo, which is made up of old stars and globular clusters – 90% of which lie within 100,000 light-years (30,000 parsecs) from the Galactic Center. Recent evidence provided by X-ray observatories indicates that in addition to this stellar halo, the Milky way also has a halo of hot gas that extends for hundreds of thousands of light years.

Artist’s conception of the spiral structure of the Milky Way with two major stellar arms and a bar. Credit: NASA/JPL-Caltech/ESO/R. Hurt

Size and Mass:

The Galactic Disk of the Milky Way Galaxy is approximately 100,000 light years in diameter and about 1,000 light years thick. It is estimated to contain between 100 and 400 billion stars, though the exact figure depends on the number of very low-mass M-type (aka. red dwarf) stars. This is difficult to determine because these stars also have low-luminosity compared to other class.

The distance from the Sun to the Galactic Center is estimated to be between 25,000 to 28,000 light years (7,600 to 8,700 parsecs). The Galactic Center’s bar (aka. its “bulge”)  is thought to be about 27,000 light-years in length and is composed primarily of red stars, all of which are thought to be ancient. The bar is surrounded by the ‘5-kpc ring’, a region that contains much of the galaxy’s molecular hydrogen and where star-formation is most intense.

The Galactic Disk has a diameter of between 70,000 and 100,000 light-years. It does not have a sharp edge, a radius beyond which there are no stars. However, the number of stars drops slowly with distance from the center. Beyond a radius of roughly 40,000 light years, the number of stars drops much faster the farther you get from the center.

Location of the Solar System:

The Solar System is located near the inner rim of the Orion Arm, a minor spiral arm located between the Carina–Sagittarius Arm and the Perseus Arm. This arm measures some 3,500 light-years (1,100 parsecs) across,  approximately 10,000 light-years (3,100 parsecs) in length, and is at a distance of about 25,400 to 27,400 light years (7.78 to 8.4 thousand parsecs) from the Galactic Center.

History of Observation:

Our galaxy was named because of the way the haze it casts in the night sky resembled spilled milk. This name is also quite ancient. It is translation from the Latin “Via Lactea“, which in turn was translated from the Greek for Galaxias, referring to the pale band of light formed by stars in the galactic plane as seen from Earth.

Persian astronomer Nasir al-Din al-Tusi (1201–1274) even spelled it out in his book Tadhkira: “The Milky Way, i.e. the Galaxy, is made up of a very large number of small, tightly clustered stars, which, on account of their concentration and smallness, seem to be cloudy patches. Because of this, it was likened to milk in color.”

Astronomers had long suspected the Milky Way was made up of stars, but it wasn’t proven until 1610, when Galileo Galilei turned his rudimentary telescope towards the heavens and resolved individual stars in the band across the sky. With the help of telescopes, astronomers realized that there were many, many more stars in the sky, and that all of the ones that we can see are a part of the Milky Way.

In 1755, Immanuel Kant proposed that the Milky Way was a large collection of stars held together by mutual gravity. Just like the Solar System, this collection would be rotating and flattened out as a disk, with the Solar System embedded within it. Astronomer William Herschel (discoverer of Uranus) tried to map its shape in 1785, but he didn’t realize that large portions of the galaxy are obscured by gas and dust, which hide its true shape.

It wasn’t until the 1920s, when Edwin Hubble provided conclusive evidence that the spiral nebulae in the sky were actually whole other galaxies, that the true shape of our galaxy was known. Thenceforth, astronomers came to understand that the Milky Way is a barred, spiral galaxy, and also came to appreciate how big the Universe truly is.

The Milky Way is appropriately named, being the vast and cloudy mass of stars, dust and gas it is. Like all galaxies, ours is believed to have formed from many smaller galaxies colliding and combining in the past. And in 3 to 4 billion years, it will collide with the Andromeda Galaxy to form an even larger mass of stars, gas and dust. Assuming humanity still exists by then (and survives the process) it should make for some interesting viewing!

We have written many interesting articles about the Milky Way here at Universe Today. Here’s 10 Interesting Facts About the Milky Way, How Big is the Milky Way?, Why is our Galaxy Called the Milky Way?, What is the Closest Galaxy to the Milky Way?, Where is the Earth in the Milky Way?, The Milky Way has Only Two Spiral Arms, and It’s Inevitable: Milky Way, Andromeda Galaxy Heading for Collision.

If you’d like more info on galaxies, check out Hubblesite’s News Releases on Galaxies, and here’s NASA’s Science Page on Galaxies.

We’ve also recorded an episode of Astronomy Cast about the Milky Way. Listen here, Episode 99: The Milky Way.

Sources:

The Crater Constellation

The Crater Constellation relative to others in the south sky. Credit: go-astronomy.com

Welcome to another edition of Constellation Friday! Today, in honor of the late and great Tammy Plotner, we take a look at “The Cup” – the Crater constellation. Enjoy!

In the 2nd century CE, Greek-Egyptian astronomer Claudius Ptolemaeus (aka. Ptolemy) compiled a list of all the then-known 48 constellations. This treatise, known as the Almagest, would be used by medieval European and Islamic scholars for over a thousand years to come, effectively becoming astrological and astronomical canon until the early Modern Age

One of these constellation is Crater (aka. “The Cup”), an asterism located in the Southern Hemisphere. This small constellation is located south of the ecliptic plane, with no bright marker stars. As part of the Hercules family, it is bordered by the constellations of Leo, Sextans, Hydra, Corvus and Virgo. Today, it is one of the 88 modern constellations recognized by the International Astronomical Union.

Name and Meaning:

In Greek mythology, Crater represents the Cup of Apollo – the god of the skies – which is due to its chalice-like configuration. The cup is being held up by the Raven – Corvus – another figure in Greek mythology. The tale, much like many mythological stories, is a sad one, and begins with the Raven being sent to fetch water for his master, Apollo.

Unfortunately, Corvus (the Raven) was distracted as he became tempted by a fig, and then waited too long for it to ripen. When he realized his mistake, he returned sorrowfully to Apollo with his cup (Crater) and brought along the serpent Hydra in his claws as well. Angry, Apollo tossed all three into the sky for all eternity, where they became part of the starry firmament.

Corvus, Crater and other constellations seen around Hydra. From Urania's Mirror (1825). Credit: US Library of Congress
Corvus, Crater and other constellations seen around Hydra. From Urania’s Mirror (1825). Credit: US Library of Congress

History of Observation:

The Crater constellation comes to us from Classical Antiquity and was recorded by Ptolemy in his 2nd-century CE tract the Almagest. However, it was also recognized by Chinese astronomers, where the stars associated with it were viewed as being part the Vermillion Bird of the South (Nan Fang Zhu Que). Along with the some of the stars from Hydra, they depict the Red Bird’s wings.

Notable Objects:

Crater has only a few bright stars associated with it and no Messier Objects. The brightest, Delta Crateris, is an orange giant located approximately 196 light yeas from Earth. The star is also known as Labrum (Latin for “the lip”), due to the fact that it was sometimes associated with the story of the Holy Grail.

Next is Alpha Crateris, an orange giant located approximately 174 light-years from Earth which is 80 times more luminous than our Sun. It is also known as Alkes, derived from the Arabic word alkas, which means “the cup”. Then there’s Beta Crateris, a white sub-giant that is located approximately 266 light years from Earth. This star is also known by the name Al Sharasif, which means “the ribs” in Arabic.

In terms of Deep Sky Objects, Crater has no associated Messier Objects, but a few galaxies can be found in its region of the night sky. These include the Crater 2 dwarf galaxy, a satellite galaxy of the Milky Way that is located approximately 380,000 light years from Earth. There’s also the spiral galaxy known as NGC 3511, which has a slight bar and is seen from Earth nearly edge-on.

The spiral galaxy NGC 3887, located in the constellation Crater. Credit: NASA (Wikisky)

There’s also the NGC 3887 and NGC 2981 spiral galaxies, and the RX J1131 quasar, which is located 6 billion light years away from Earth. Interestingly, the black hole at the center of this quasar was the first to have its spin directly measured by astronomers.

Finding Crater:

Crater is visible at latitudes between +65° and -90° and is best seen at culmination during the month of April. It is comprised of only 4 main stars, and 12 stars with Bayer/Flamsteed designations. In order to spot these stars, observers should begin by looking for the Alpha star (the “a” shape on their star map) with binoculars.

Situated some 174 light-years from Earth, Alpha Crateris (the star’s official designation) is a spectral class K1 star – an orange giant that’s a little different from the rest. This is because Alkes is a “high velocity” star, which means it moves far faster than the stars around it. Another thing that sets it apart is its high metal content, which according to some researchers, it may have picked up when it came from the inner, metal-rich part of the Galaxy.

Artist's impression of Alkes - aka. Alpha Crateris. Credit: constellation-guide.com
Artist’s impression of Alkes – aka. Alpha Crateris – a K1 orange giant star in the Crater constellation. Credit: constellation-guide.com

Next, observers should look to Beta Crateris (the “B” shape on the map) which also goes by the name of Al Sharasif. This star is not an ordinary one either. For starters, Al Sharasif is about 265 light-years from our solar system, and it’s a white sub-giant star. To boot, it also has a low mass, white dwarf companion – which is why astronomers classify it as a Sirius-like system.

Next up is Delta Crateris – the “8” symbol on the map – which is an orange giant, spectral class K0III star with an apparent magnitude of 3.56. In time, this star will become an even larger giant, eventually turning into a Mira-type variable star before ending its life as a white dwarf. Oddly enough, Labrum has a very low metal content compared to its Crater-neighbors, containing about 40% as much iron as our own Sun.

At this point, observers with telescopes and have a look at Gamma Crateris – the “Y” shape on the map. Gamma Crateris is a fixed binary white dwarf star with an easy separation of 5.2″. Gamma itself is 89 light-years for Earth, which is rather hard to believe when you try to seek out the 9.5 stellar magnitude companion that accompanies it.

Although this is a disparate double star, it is still quite fun and easy to spot with a small telescope. For a challenge, try Iota Crateris – a close binary star with an 11th magnitude companion that’s only separated by 1.4″. Psi Crateris is an even closer binary. Both stars are within a half magnitude of each other, but the separation is only 0.2″.

Artist's impression of white dwarf binary pair CSS 41177. Image: Andrew Taylor.
Artist’s impression of white dwarf binary pair, a type of star system that describes Gamma Crateris. Credit: Andrew Taylor.

Next up is R Crateris, a variable star that can be observed with binoculars, and which is located at RA 10 56 Dec -17 47. You will notice it by its lovely red color and its nice change of magnitude, which goes from 8 to 9.5 in a period of about 160 days. And then there’s SZ Crateris, a magnitude 8.1 variable star. It is a nearby star system located about 44 light years from the Sun and is known as Gliese 425 – which in the past was known as Abt’s Star.

While there’s no brighter deep sky objects for binoculars or small telescopes, there are a couple of challenging galaxies in the Crater constellation that are well suited to a large aperture. Let’s start with the brightest – elliptical galaxy NGC 3962 – which is easy to spot (like all elliptical galaxies), though there’s not much detail to be seen. Even if it is not terribly exciting to behold, it is on the Herschel 400 observing list.

And then there’s NGC 3887 (11h47.1 -16 51), a nice spiral galaxy that’s only slightly fainter. It has two faint stars which accompany it and a stellar nucleus which occasionally makes an appearance and provides an opportunity for some very interesting viewing. Both of these galaxies are in the slightly fainter range, both being just under magnitude 11.

Credit: IAU and Sky & Telescope magazine (Roger Sinnott & Rick Fienberg)
List of the stars that appear in the Crater constellation. Credit: IAU and Sky & Telescope magazine/Roger Sinnott & Rick Fienberg

Observers who are skilled with telescopes should also keep and eye out for NGC 3511 (11h03.4 -23 05), a spiral galaxy of magnitude 11.5. It is joined in the same field of view by NGC 3513, a barred spiral galaxy that is a full magnitude dimmer. People with larger telescopes should also take a crack at spotting NGC 3672 (11h25.0 -09 48), a faint spiral galaxy that nevertheless has nice halo and a bright, apparent nucleus.

And last, but not least, there is NGC 3981 (11h56.1 -19 54), a beautifully inclined, magnitude 12 spiral galaxy that has a bright nucleus, and which sometimes shows some spiral galaxy structure when observing conditions are right.

Drink up… the “Cup” is waiting!

We have written many interesting articles about the constellation here at Universe Today. Here is What Are The Constellations?What Is The Zodiac?, and Zodiac Signs And Their Dates.

Be sure to check out The Messier Catalog while you’re at it!

For more information, check out the IAUs list of Constellations, and the Students for the Exploration and Development of Space page on Canes Venatici and Constellation Families.

Sources:

What is the Weather Like on Mercury?

Weather on Mercury
Mercury

With the dawning of the Space Age in the 1950s, human beings were no longer confined to studying the Solar planets and other astronomical bodies with Earth-based instruments alone. Instead crewed missions have gone into orbit and to the Moon while robotic missions have traveled to every corner of the Solar System. And in the process, we have learned some interesting things about the planets, planetoids, and asteroids in our Solar neighborhood.

For example, we have learned that all the Solar planets have their own particular patterns and cycles. For instance, even though Mercury is an airless body, it does have a tenuous exosphere and experiences seasons of a sort. And while it is known for being extremely hot, it also experiences extremes of cold, to the point that ice can exist on its surface. While it is by no means what we are used to here on Earth, Mercury still experiences a kind of “weather”.

Mercury’s Atmosphere:

As noted, Mercury has no atmosphere to speak of, owing to its small size and extremes in temperature. However, it does have a tenuous and variable exosphere that is made up of hydrogen, helium, oxygen, sodium, calcium, potassium and water vapor, with a combined pressure level of about 10-14 bar (one-quadrillionth of Earth’s atmospheric pressure).

The Fast Imaging Plasma Spectrometer on board MESSENGER has found that the solar wind is able to bear down on Mercury enough to blast particles from its surface into its wispy atmosphere. Shannon Kohlitz, Media Academica, LLC

It is believed this exosphere was formed from particles captured from the Sun (i.e solar wind) as well as volcanic outgassing and debris kicked into orbit by micrometeorite impacts. In any case, Mercury’s lack of a viable atmosphere is the reason why it is unable to retain heat from the Sun, which leads to extreme variations between night and day for the rocky planet.

Orbital Resonance:

Mercury’s temperature variations are also attributed to its orbital eccentricity of 0.2056, which is the most extreme of any planet in the Solar System. Essentially, its distance from the Sun ranges from 46 million km (29 million mi) at its closest (perihelion) to 70 million km (43 million mi) at its farthest (aphelion). As a result, the side facing the Sun reaches temperatures of up to 700 K (427° C), the side in shadow dips down to 100 K (-173° C).

With an average rotational speed of 10.892 km/h (6.768 mph), Mercury also takes 58.646 days to complete a single rotation. This means that Mercury has a spin-orbit resonance of 3:2, where it completes three rotations on its axis for every two rotations completed around the Sun. This does not, however, mean that three days last the same as two years on Mercury.

The Orbit of Mercury during the year 2006. Credit: Wikipedia Commons/Eurocommuter

In fact, its high eccentricity and slow rotation mean that it takes 176 Earth days for the Sun to return to the same place in the sky (aka. a solar day). In short, a single day on Mercury is twice as long as a single year! Mercury also has the lowest axial tilt of any planet in the Solar System – approximately 0.027 degrees compared to Jupiter’s 3.1 degrees (the second smallest).

Polar Ice:

This low tilt means that the polar regions are constantly in shadow, which leads to another interesting feature about Mercury. Yes, despite how hot its Sun-facing side can become, the existence of water ice and even organic molecules have been confirmed on Mercury’s surface. But this only true at the poles, where the floors of deep craters are never exposed to direct sunlight, and temperatures within them therefore remain below the planetary average.

These icy regions are believed to contain about 1014–1015 kg (1 to 10 billion metric tons, 1.1 to 11 billion US tons) of frozen water, and may be covered by a layer of regolith that inhibits sublimation. The origin of the ice on Mercury is not yet known, but the two most likely sources are from outgassing of water from the planet’s interior or deposition by the impacts of comets.

Mercury transit
The Big Bear Solar Observatory Captures a high-res image of this week’s transit of Mercury across the face of the Sun. Image credit: NJIT/BBSO

When one talks about the “weather” on Mercury, they are generally confined to talking about variations between the Sun-facing side and the night side. Over the course of two years, that weather will remain scorching hot or freezing cold. In that respect, we could say that a single season on Mercury lasts a full four years, and includes a “Midnight Sun” that lasts two years, and a “Polar Night” that lasts the same.

Between its rapid and very eccentric orbit, its slow rotation, and its strange diurnal and annual patterns, Mercury is a very extreme planet with a very extreme environment. It only makes sense that its weather would be similarly extreme. Hey, there’s a reason nobody lives there, at least not yet

We have written many interesting articles about the weather on other planets here at Universe Today. Here’s What is the Weather like on Venus?, What is the Weather Like on Mars?, What is the Weather Like on Jupiter?, What is the Weather Like on Saturn?, What is the Weather Like on Uranus?, and What is the Weather Like on Neptune?

If you’d like more information on Mercury, check out NASA’s Solar System Exploration Guide, and here’s a link to NASA’s MESSENGER Misson Page.

We’ve also recorded an entire episode of Astronomy Cast all about Mercury. Listen here, Episode 49:  Mercury.

Sources:

Messier 51 – the Whirlpool Galaxy

Visible light (left) and infrared image (right) of the Whirlpool Galaxy, taken by NASA’s Hubble Space Telescope. Credit: NASA/ESA/M. Regan & B. Whitmore (STScI), & R. Chandar (U. Toledo)/S. Beckwith (STScI), & the Hubble Heritage Team (STScI/AURA

Welcome back to Messier Monday! In our ongoing tribute to the great Tammy Plotner, we take a look at that swirling, starry customer, the Whirlpool Galaxy!

During the 18th century, famed French astronomer Charles Messier noted the presence of several “nebulous objects” in the night sky. Having originally mistaken them for comets, he began compiling a list of them so that others would not make the same mistake he did. In time, this list (known as the Messier Catalog) would come to include 100 of the most fabulous objects in the night sky.

One of these is the spiral galaxy located in the constellation Canes Venatici known as the Whirlpool Galaxy (aka. Messier 51). Located between 19 and 27 million light-years from the Milky Way, this deep sky object was the very first to be classified as a spiral galaxy. It is also one of the best known galaxies among amateur astronomers, and is easily observable using binoculars and small telescopes.

Description:

Located some 37 million light years away, M51 is the largest member of a small group of galaxies, which also houses M63 and a number of fainter galaxies. To this time, the exact distance of this group isn’t properly known… Even when a 2005 supernova event should have helped astronomers to correctly calculate! As K. Takats stated in a study:

“The distance to the Whirlpool galaxy (M51, NGC 5194) is estimated using published photometry and spectroscopy of the Type II-P supernova SN 2005cs. Both the expanding photosphere method (EPM) and the standard candle method (SCM), suitable for SNe II-P, were applied. The average distance (7.1 +/- 1.2 Mpc) is in good agreement with earlier surface brightness fluctuation and planetary nebulae luminosity function based distances, but slightly longer than the distance obtained by Baron et al. for SN 1994I via the spectral fitting expanding atmosphere method. Since SN 2005cs exhibited low expansion velocity during the plateau phase, similarly to SN 1999br, the constants of SCM were recalibrated including the data of SN 2005cs as well. The new relation is better constrained in the low-velocity regime, that may result in better distance estimates for such SNe.”

Visible light (left) and infrared image (right) of M51, taken by the Kitt Peak National Observatory and NASA’s Spitzer Space Telescope, respectively. Credit: NASA/JPL-Caltech/R. Kennicutt (Univ. of Arizona)/DSS

Of course, one of the most outstanding features of the Whirlpool Galaxy is its beautiful spiral structure – perhaps result of the close interaction between it and its companion galaxy NGC 5195? As S. Beckwith,

“This sharpest-ever image of the Whirlpool Galaxy, taken in January 2005 with the Advanced Camera for Surveys aboard NASA’s Hubble Space Telescope, illustrates a spiral galaxy’s grand design, from its curving spiral arms, where young stars reside, to its yellowish central core, a home of older stars. At first glance, the compact galaxy appears to be tugging on the arm. Hubble’s clear view, however, shows that NGC 5195 is passing behind the Whirlpool. The small galaxy has been gliding past the Whirlpool for hundreds of millions of years. As NGC 5195 drifts by, its gravitational muscle pumps up waves within the Whirlpool’s pancake-shaped disk. The waves are like ripples in a pond generated when a rock is thrown in the water. When the waves pass through orbiting gas clouds within the disk, they squeeze the gaseous material along each arm’s inner edge. The dark dusty material looks like gathering storm clouds. These dense clouds collapse, creating a wake of star birth, as seen in the bright pink star-forming regions. The largest stars eventually sweep away the dusty cocoons with a torrent of radiation, hurricane-like stellar winds, and shock waves from supernova blasts. Bright blue star clusters emerge from the mayhem, illuminating the Whirlpool’s arms like city streetlights.”

But there were more surprises just waiting to be found – like a black hole, surrounded by a ring of dust. What makes it even more odd is a secondary ring crosses the primary ring on a different axis, a phenomenon that is contrary to expectations and a pair of ionization cones extend from the axis of the main dust ring. As H. Ford,

“This image of the core of the nearby spiral galaxy M51, taken with the Wide Field Planetary camera (in PC mode) on NASA’s Hubble Space Telescope, shows a striking , dark “X” silhouetted across the galaxy’s nucleus. The “X” is due to absorption by dust and marks the exact position of a black hole which may have a mass equivalent to one-million stars like the sun. The darkest bar may be an edge-on dust ring which is 100 light-years in diameter. The edge-on torus not only hides the black hole and accretion disk from being viewed directly from earth, but also determines the axis of a jet of high-speed plasma and confines radiation from the accretion disk to a pair of oppositely directed cones of light, which ionize gas caught in their beam. The second bar of the “X” could be a second disk seen edge on, or possibly rotating gas and dust in MS1 intersecting with the jets and ionization cones.”

History of Observation:

The Whirlpool Galaxy was first discovered by Charles Messier on October 13th, 1773 and re-observed again for his records on January 11th, 1774. As he wrote of his discovery in his notes:

“Very faint nebula, without stars, near the eye of the Northern Greyhound [hunting dog], below the star Eta of 2nd magnitude of the tail of Ursa Major: M. Messier discovered this nebula on October 13, 1773, while he was watching the comet visible at that time. One cannot see this nebula without difficulties with an ordinary telescope of 3.5 foot: Near it is a star of 8th magnitude. M. Messier reported its position on the Chart of the Comet observed in 1773 & 1774. It is double, each has a bright center, which are separated 4’35”. The two “atmospheres” touch each other, the one is even fainter than the other.”

It would be his faithful friend and assistant, Pierre Mechain who would discover NGC 5195 on March 21st, 1781. Even though it would be many, many years before it was proven that galaxies were indeed independent systems, historic astronomers were much, much sharper than we gave them credit for. Sir William Herschel would observe M51 many times, but it would be his son John who would be the very first to comment on M51’s scheme:

“This very singular object is thus described by Messier: – “Nebuleuse sans etoiles.” “On ne peut la voir que difficilement avec une lunette ordinaire de 3 1/2 pieds.” “Elle est double, ayant chacune un centre brillant eloigne l’un de l’autre de 4′ 35″. Les deux atmospheres se touchent.” By this description it is evident that the peculiar phenomena of the nebulous ring which encircles the central nucleus had escaped his observation, as might have been expected from the inferior light of his telescopes. My Father describes it in his observations of Messier’s nebulae as a bright round nebula, surrounded by a halo or glory at a distance from it, and accompanied by a companion; but I do not find that the partial subdivision of the ring into two branches throughout its south following limb was noticed by him. This is, however, one of its most remarkable and interesting features. Supposing it to consist of stars, the appearance it would present to a spectator placed on a planet attendant on one of them eccentrically situated towards the north preceding quarter of the central mass, would be exactly similar to that of our Milky Way, traversing in a manner precisely analogous the firmament of large stars, into which the central cluster would be seen projected, and (owing to its distance) appearing, like it, to consist of stars much smaller than those in other parts of the heavens. Can it, then, be that we have here a brother-system bearing a real physical resemblance and strong analogy of structure to our own? Were it not for the subdivision of the ring, the most obvious analogy would be that of the system of Saturn, and the idea of Laplace respecting the formation of that system would be powerfully recalled by this object. But it is evident that all idea of symmetry caused by rotation on an axis must be relinquished, when we consider that the elliptic form of the inner subdivided portion indicates with extreme probability an elevation of that portion above the plane of the rest, so that the real form must be that of a ring split through half its circumference, and having the split portions set asunder at an angle of about 45 deg each to the plane of the other.”

Sketch of M51 by William Parsons, 3rd Earl of Rosse (Lord Rosse) in 1845. Credit: Public Domain

As with other Messier Objects, Admiral Smyth also had some insightful and poetic observations to add. As he wrote of this galaxy in September of 1836:

“We have then an object presenting an amazing display of the uncontrollable energies of the Omnipotence, the contemplation of which compels reason and admiration to yield to awe. On the outermost verge of telescopic reach we perceive a stellar universe similar to that to which we belong, whose vast amplitudes no doubt are peopled with countless numbers of percipient beings; for those beautiful orbs cannot be considered as mere masses of inert matter.

And it is interesting to know that, if there be intelligent existence, an astronomer gazing at our distant universe, will see it, with a good telescope, precisely under the lateral aspect which theirs presents to us. But after all what do we see? Both that wonderful universe, our own, and all which optical assistance has revealed to us, may be only the outliers of a cluster immensely more numerous.

The millions of suns we perceive cannot comprise the Creator’s Universe. There are no bounds to infinitude; and the boldest views of the elder Herschel only placed us as commanding a ken whose radius is some 35,000 times longer than the distance of Sirius from us. Well might the dying Laplace explain: “That which we know is little; that which we know not is immense.”

Lord Rosse would continue on in 1844 with his 6-feet (72-inch) aperture, 53-ft FL “Leviathan” telescope, but he was a man of fewer words.

“The greater part of the observations were made when the eye was affected by lamp-light, which made it difficult to estimate correctly the centre of the nucleus; it was of importance that no time should be unnecessarily spent, and after the lamp had been used a new measure was taken, as it was judged that the object was sufficiently seen. With the brighter stars this would frequently happen before the nucleus was well defined, as all impediments to vision seem to affect nebulae much more than stars the light of which would be estimated as of the same intensity. In the foregoing list the greatest discrepancies are in the measures of bright objects, and this is probably the proper account of it. No stars have been inserted in the sketch which are not in the table of the measurements. The general appearance of the object would have been better given if the minute stars had been put in from the eye-sketch, but it would have created confusion.”

May the stars from this distant island universe fill your eyes!

The Whirlpool Galaxy (Spiral Galaxy M51, NGC 5194), a classic spiral galaxy located in the Canes Venatici constellation, and its companion NGC 5195. Credit: NASA/ESA

Locating Messier 51:

Locating M51 isn’t too hard if you have dark skies, but this particular galaxy is very difficult where light pollution of moonlight is present. To find it, start with Eta UM, the star at the handle of the Big Dipper. In the finderscope or binoculars, you’ll clearly see 24 UM to the southwest. Now, center your optics there and move slowly southwest towards Cor Caroli (Alpha CVn) and you’ll find it!

In locations where skies are clear and dark, it is easy to see spiral structure in even small telescopes, or to make out the galaxy in binoculars – but even a change in sky conditions can hide it from a good location. Rich field telescopes with fast focal lengths to an outstanding job on this galaxy and companion and you may be able to make out the nucleus of both galaxies on a good night from even a bad location.

Object Name: Messier 51
Alternative Designations: M51, NGC 5194, The Whirlpool Galaxy
Object Type: Type Sc Galaxy
Constellation: Canes Venatici
Right Ascension: 13 : 29.9 (h:m)
Declination: +47 : 12 (deg:m)
Distance: 37000 (kly)
Visual Brightness: 8.4 (mag)
Apparent Dimension: 11×7 (arc min)

We have written many interesting articles about Messier Objects here at Universe Today. Here’s Tammy Plotner’s Introduction to the Messier Objects, , M1 – The Crab Nebula, M8 – The Lagoon Nebula, and David Dickison’s articles on the 2013 and 2014 Messier Marathons.

Be to sure to check out our complete Messier Catalog. And for more information, check out the SEDS Messier Database.

Sources:

 

Why Are Planets Round?

Space Image Gallery

The Solar System is a beautiful thing to behold. Between its four terrestrial planets, four gas giants, multiple minor planets composed of ice and rock, and countless moons and smaller objects, there is simply no shortage of things to study and be captivated by. Add to that our Sun, an Asteroid Belt, the Kuiper Belt, and many comets, and you’ve got enough to keep your busy for the rest of your life.

But why exactly is it that the larger bodies in the Solar System are round? Whether we are talking about moon like Titan, or the largest planet in the Solar System (Jupiter), large astronomical bodies seem to favor the shape of a sphere (though not a perfect one). The answer to this question has to do with how gravity works, not to mention how the Solar System came to be.

Formation:

According to the most widely-accepted model of star and planet formation – aka. Nebular Hypothesis – our Solar System began as a cloud of swirling dust and gas (i.e. a nebula). According to this theory, about 4.57 billion years ago, something happened that caused the cloud to collapse. This could have been the result of a passing star, or shock waves from a supernova, but the end result was a gravitational collapse at the center of the cloud.

Due to this collapse, pockets of dust and gas began to collect into denser regions. As the denser regions pulled in more matter, conservation of momentum caused them to begin rotating while increasing pressure caused them to heat up. Most of the material ended up in a ball at the center to form the Sun while the rest of the matter flattened out into disk that circled around it – i.e. a protoplanetary disc.

The planets formed by accretion from this disc, in which dust and gas gravitated together and coalesced to form ever larger bodies. Due to their higher boiling points, only metals and silicates could exist in solid form closer to the Sun, and these would eventually form the terrestrial planets of Mercury, Venus, Earth, and Mars. Because metallic elements only comprised a very small fraction of the solar nebula, the terrestrial planets could not grow very large.

In contrast, the giant planets (Jupiter, Saturn, Uranus, and Neptune) formed beyond the point between the orbits of Mars and Jupiter where material is cool enough for volatile icy compounds to remain solid (i.e. the Frost Line). The ices that formed these planets were more plentiful than the metals and silicates that formed the terrestrial inner planets, allowing them to grow massive enough to capture large atmospheres of hydrogen and helium.

The leftover debris that never became planets congregated in regions such as the Asteroid Belt, the Kuiper Belt, and the Oort Cloud. So this is how and why the Solar System formed in the first place. Why is it that the larger objects formed as spheres instead of say, squares? The answer to this has to do with a concept known as hydrostatic equilibrium.

Hydrostatic Equilibrium:

In astrophysical terms, hydrostatic equilibrium refers to the state where there is a balance between the outward thermal pressure from inside a planet and the weight of the material pressing inward. This state occurs once an object (a star, planet, or planetoid) becomes so massive that the force of gravity they exert causes them to collapse into the most efficient shape – a sphere.

Typically, objects reach this point once they exceed a diameter of 1,000 km (621 mi), though this depends on their density as well. This concept has also become an important factor in determining whether an astronomical object will be designated as a planet. This was based on the resolution adopted in 2006 by the 26th General Assembly for the International Astronomical Union.

In accordance with Resolution 5A, the definition of a planet is:

  1. A “planet” is a celestial body that (a) is in orbit around the Sun, (b) has sufficient mass for its self-gravity to overcome rigid body forces so that it assumes a hydrostatic equilibrium (nearly round) shape, and (c) has cleared the neighborhood around its orbit.
  2. A “dwarf planet” is a celestial body that (a) is in orbit around the Sun, (b) has sufficient mass for its self-gravity to overcome rigid body forces so that it assumes a hydrostatic equilibrium (nearly round) shape [2], (c) has not cleared the neighborhood around its orbit, and (d) is not a satellite.
  3. All other objects, except satellites, orbiting the Sun shall be referred to collectively as “Small Solar-System Bodies”.
Montage of every round object in the solar system under 10,000 kilometers in diameter, to scale. Credit: Emily Lakdawalla/data from NASA /JPL/JHUAPL/SwRI/SSI/UCLA/MPS/DLR/IDA/Gordan Ugarkovic/Ted Stryk, Bjorn Jonsson/Roman Tkachenko

So why are planets round? Well, part of it is because when objects get particularly massive, nature favors that they assume the most efficient shape. On the other hand, we could say that planets are round because that is how we choose to define the word “planet”. But then again, “a rose by any other name”, right?

We have written many articles about the Solar planets for Universe Today. Here’s Why is the Earth Round?, Why is Everything Spherical?, How was the Solar System Formed?, and here’s Some Interesting Facts About the Planets.

If you’d like more info on the planets, check out NASA’s Solar System exploration page, and here’s a link to NASA’s Solar System Simulator.

We’ve also recorded a series of episodes of Astronomy Cast about every planet in the Solar System. Start here, Episode 49: Mercury.

Sources:

 

How Fast is Mach One?

What is Sound
FA-18_Hornet_breaking_sound_barrier_(7_July_1999)_-_filtered

Within the realm of physics, there are certain barriers that human beings have come to recognize. The most well-known is the speed of light, the maximum speed at which all conventional matter and all forms of information in the Universe can travel. This is a barrier that humanity may never be able to push past, mainly because doing so violate one of the most fundamental laws of physics – Einstein’s Theory of General Relativity.

But what about the speed of sound? This is another barrier in physics, but one which humanity has been able to break (several times over in fact). And when it comes to breaking this barrier, scientists use what is known as a Mach Number to represent the flow boundary past the local speed of sound. In other words, pushing past the sound barrier is defined as Mach 1. So how fast do you have to be going to do that?

Definition:

When we hear the term Mach 1 it is easy to assume it is the speed of sound through Earth’s atmosphere. However this term is more loaded than you might think. The truth is that a Mach Number is a ratio rather than an actual direct measurement of speed. And this ratio is due to the fact that the speed of sound varies from one location to the next, owing to differences in temperature and air density.

An F-22 Raptor reaching a velocity high enough to achieve a sonic boom. Credit: strangesounds.org

Mathematically, this can be defined as M = u/c, where M is the Mach number, u is the local flow velocity with respect to the boundaries (i.e. the speed of the object moving through the medium), and c is the speed of sound in that particular medium (i.e. local atmosphere, water, etc).

When the speed of sound is broken, this results in what is known as a “sonic boom”. This is the loud, cracking sound that is associated with the shock waves that are created by an object traveling faster than the local speed of sound. Examples range an aircraft breaking the sound barrier to miniature booms caused by bullets flying by, or the crack of a bullwhip.

Speed of Sound:

Basically, the speed of sound is the distance traveled in a certain amount of time by a sound wave as it propagates through an elastic medium. As already noted, this is not a universal value, but comes down to the composition of the medium and the conditions of that medium.  When we talk of the speed of sound, we refer to the speed of sound in Earth’s atmosphere. But even that is subject to variation.

However, scientists tend to rely on the speed of sound as measured in dry air (i.e. low humidity) and at a temperature of 20 °C (68 °F) as the standard. Under these conditions, the local speed of sound is 343 meters per second (1,235 km/h; 767 mph) – or 1 kilometer in 2.91 s and 1 mile in 4.69 s.

Classifications:

As with most ratios, there are approximations and categories that are used to measure the speed of the object in relation to the sound barrier. This gives us the categories of subsonic, transonic, supersonic, and hypersonic. This categorization system is often used to classify aircraft or spacecraft, the minimum requirement being that most of the craft classified have the ability to approach or exceed the speed of sound.

The Cessna 172, a commercial, propeller-driven aircraft that is classified as subsonic. Credit: Wikipedia Commons/Adrian Pingstone

For aircraft or any object that flies at a speed below the sound barrier, the classification of subsonic applies. This category includes most commuter jets and small commercial aircraft, though some exceptions have been noted (i.e. supersonic commercial jets like the Concorde).

Since these craft never meet or exceed the speed of sound, they will have a Mach number that is less than one and therefore expressed in decimal form – i.e. less than Mach 0.8 (273 m/s; 980 km/h; 609 mph). Typically, these aircraft are propeller-driven and tend to have high aspect-ratio (slender) wings and rounded features.

The designation of transonic applies to a condition of flight where a range of airflow velocities exist around and past the aircraft. These speeds are concurrently below, at, and above the speed of sound, ranging from Mach 0.8 to 1.2 (273-409 m/s; 980-1,470 km/h; 609-914 mph). Transonic aircraft nearly always have swept wings, causing the delay of drag-divergence, and are driven by jet engines.

The next category is supersonic aircraft. These are craft that can move beyond the compression of air that is the “sound barrier.” These craft generally have a Mach number of between 1 and 5 (410–1,702 m/s; 1,470–6,126 km/h; 915-3,806 mph). Aircraft designed to fly at supersonic speeds show large differences in their aerodynamic design because of the radical differences in the behavior of flows above Mach 1.

These include sharp edges, thin wing sections, and tail stabilizers (aka. fins) or canards (forewings) that are capable of adjusting. Craft that typically have this designation include modern fighter jets, spy planes (like the SR-71 Blackbird) and the aforementioned Concorde.

The last category is hypersonic, which applies to aircraft that can exceed the speed of Mach 5 and can achieve speeds as high as Mach 10 (1,702–3,403 m/s; 6,126–12,251 km/h; 3,806–7,680 mph). Very few aircraft can move at such speeds, and tend to be rocket-powered (like the X-15), scramjets (like the X-43, or HyperX), or spacecraft that are in the process of leaving Earth’s atmosphere.

Another example is objects entering the Earth’s atmosphere. These can take the form of spacecraft performing re-entry, or meteorites that have passed through and broken up in Earth’s atmosphere. For example, the meteor that entered the skies above the above the small town of Chelyabinsk, Russia, in February of 2013 was traveling at a speed of about 19.16 ± 0.15 km/s (68,436 – 69,516 km/h; 42,524 – 43,195 mph).

In other words, the meteorite was traveling between Mach 55 and 56 when it hit our atmosphere! Given its tremendous speed, when the meteor reached the skies above Chelyabinsk, it created a sonic boom so powerful that it caused extensive damage to thousand of building in six cities across the region. This damage, which included a lot of exploding windows, resulted in 1,500 people being injured.

So how fast is Mach One? The short answer is that it depends on where you are. But in general, it is a speed that exceeds about 1200 km/h or 750 mph. If you’re capable of going this fast, you will be breaking the sound barrier, and people for miles around will be hearing about it!

We have written many interesting articles about sound here Universe Today. Here’s What is Sound?, What is the Fastest Jet in the World?, What is Air Resistance?, and What Does NASA Sound Like?

For more information, check out NASA’s Article about the Mach Number, and here’s a link to a lesson about the Mach Number.

We’ve recorded an episode of Astronomy Cast all about the space shuttle. Listen here, Episode 127: The US Space Shuttle.

Sources: