Where Do Asteroids Come From?

An artists impression of an asteroid belt. Credit: NASA

[/caption]Where do asteroids come from? Most of them are grouped in the main belt, but that is not the only asteroid field in the solar system. There are actually four sets of asteroids grouped into different fields: the main belt, Trojans, scattered disc, and the Kuiper belt. To understand where do asteroids come from, you need to know the theory on how they were formed.

Most scientists agree that all of the asteroids are the result of the the big bang. After the initial turmoil, large asteroids collided together and through the process known as accretion planets and dwarf planets were formed. The planets and dwarfs grew large enough to develop gravity and became rounded and able to sustain their own gravity. Asteroids continued to collide and destroy each other until we have the elliptical and other odd shaped, pock-marked solar objects that we have today. Here is a little information to help you understand where do asteroids come from today.

The asteroid field known as the main belt is a large collection of objects that are in orbit between Jupiter and Mars. The largest known asteroid in the belt is Ceres which accounts for 27% of the belts’ total mass. Ceres is also the only asteroid in the belt that is classified as a dwarf planet. Vesta, Hygeia, and Pallas are the other of the four largest bodies in the asteroid field. There have been several space missions that have crossed the field. The asteroids are far enough apart that traversing it is easily done. The Dawn space mission to the next to visit the main belt and will visit two of the largest bodies, hopefully it will be able to help reclassify Vesta as a dwarf planet.

The Kuiper belt is populated with thousands of icy bodies. The only one that is currently designated as a dwarf planet is the former planet Pluto. That may change in the near future since there are at least two bodies in the belt that are larger than Pluto. Our ability to send spacecraft that far out is what is holding us back right now.

The Trojans asteroid field, originally referred to the Trojan asteroids, orbits around Jupiter’s 4th and 5th Lagrangian points. Subsequently objects have been found orbiting the same Lagrangian points of Neptune and Mars. The word Trojan, in astronomy, refers to a natural satellite that shares an orbit with a larger planet or moon, but does not collide with it because it orbits around one of the two Lagrangian points of stability.

The scattered disc asteroid field is a subset of the Kuiper belt. Because their orbits take them well beyond 100AU from the Sun they are the coldest objects in the Solar System. Due to its unstable nature, astronomers now consider the scattered disc to be the place of origin for most periodic comets. Many of the objects in the Oort cloud are thought to have originated in the scattered disc.

Answering the question: ”Where do asteroids come from?” is pretty easy, but it is ambiguous at the same time. What we have are mostly theories and few definite facts. Things get even more blurry as you study different asteroids and find that some from different belts have somehow inter-mixed. Ah, the beauty of astronomy!

There is some good info on the asteroid belt here. NASA has a good piece on KBO’s. Here on Universe Today there is an article on the possibility of an alien asteroid belt and the Milky Ways’ own asteroid belts.

Reference:
Wikipedia

Solar System Orbits

Take a look at the Solar System from above, and you can see that the planets make nice circular orbits around the Sun. But dwarf planet’s Pluto’s orbit is very different. It’s highly elliptical, traveling around the Sun in a squashed circle. And Pluto’s orbit is highly inclined, traveling at an angle of 17-degrees. This strange orbit gives Pluto some unusual characteristics, sometimes bringing it within the orbit of Neptune. Credit: NASA

[/caption]
One of the International Astronomical Union’s (IAU) requirements for a celestial body to be classified as a planet (or a dwarf planet) is that it orbits the Sun. All of the planets have different orbits, which affect many of the planets’ other characteristics.

Since Pluto became a dwarf planet, Mercury is the planet with the most eccentric orbit. The eccentricity of an orbit is the measurement of how different the orbit is from a circular shape. If an orbit is a perfect circle, its eccentricity is zero. As the orbit becomes more elliptical, the eccentricity increases. Mercury’s orbit ranges from 46 million kilometers from the Sun to 70 million kilometers from the Sun.

Venus, which is right next to Mercury, has the least eccentric orbit of any of the planet in the Solar System. Its orbit ranges between 107 million km and 109 million km from the Sun and has an eccentricity of .007 giving it a nearly perfect circle for its orbit.

Earth also has a relatively circular orbit with an eccentricity of .017. Earth has a perihelion of 147 million kilometers; the perihelion is the closest point to the Sun in an object’s orbit. Our planet has an aphelion of 152 million kilometers. An aphelion is the furthest point from the Sun in an object’s orbit.

Mars has one of the most eccentric orbits in our Solar System at .093. Its perihelion is 207 million kilometers, and it has an aphelion of 249 million kilometers.

Jupiter has a perihelion of 741 million kilometers and an aphelion of 778 million kilometers. Its eccentricity is .048. Jupiter takes 11.86 years to orbit the Sun. Although this seems a long time compared to the time our own planet takes to orbit, it is only a fraction of the time of some of the other planets’ orbits.

Saturn is 1.35 billion kilometers at its perihelion and 1.51 billion kilometers from the Sun at its furthest point. It has an eccentricity of .056. Since it was first discovered in 1610, Saturn has only orbited the Sun 13 times because it takes 29.7 years to orbit once.

Uranus is 2.75 billion miles from the Sun at its closest point and 3 billion miles from the Sun at its aphelion. It has an eccentricity of .047 and takes 84.3 years to orbit the Sun. Uranus has such an extreme axial tilt (97.8°) that rotates on its side. This causes radical changes in seasons.

Neptune is the furthest planet from the Sun with a perihelion of 4.45 billion kilometers and an aphelion of 4.55 billion kilometers. It has an eccentricity of .009, which is almost as low as Venus’ eccentricity. It takes Neptune 164.8 years to orbit the Sun.

Universe Today has articles on orbits of the planets and asteroid orbits.

For more information, check out articles on an overview of the Solar System and new planet orbits backwards.

Astronomy Cast has episodes on all the planets including Mercury.

References:
NASA: Transits of Mercury
NASA: Solar System Math
NASA: Mars, You’re So Complicated
NASA Solar System Exploration

Structure of the Universe

Galaxy cluster Abell 85, seen by Chandra, left, and a model of the growth of cosmic structure when the Universe was 0.9 billion, 3.2 billion and 13.7 billion years old (now). Credit: Chandra

[/caption]The large-scale structure of the Universe is made up of voids and filaments, that can be broken down into superclusters, clusters, galaxy groups, and subsequently into galaxies. At a relatively smaller scale, we know that galaxies are made up of stars and their constituents, our own Solar System being one of them.

By understanding the hierarchical structure of things, we are able to gain a clearer visualization of the roles each individual component plays and how they fit into the larger picture. For example, if we go down to the world of the very small, we know that molecules can be chopped down into atoms; atoms into protons, electrons, and neutrons; then the protons and neutrons into quarks and so on.

But what about the very large? What is the large-scale structure of the universe? What exactly are superclusters and filaments and voids? Let’s start by looking at galaxy groupings and move on to even larger structures.

Although there are some galaxies that are found to stray away by their lonesome, most of them are actually bundled into groups and clusters. Groups are smaller, usually made up of less than 50 galaxies and can have diameters up to 6 million light-years. In fact, the group in which our Milky Way is a member of is made up of only a little over 40 galaxies.

Generally speaking, clusters are bunches of 50 to 1,000 galaxies that can have diameters of up to 2-10 megaparsecs. One very peculiar property of clusters is that the velocities of their galaxies are supposed to be too high for gravity alone to keep them bunched together … and yet they are.

The idea that dark matter exists starts at this scale of structure. Dark matter is believed to provide the gravitational force that keeps them all bunched up.

A great number of groups, clusters and individual galaxies can come together to form the next larger structure – superclusters. Superclusters are among the largest structures ever to be discovered in the universe.

The largest single structure to be identified is the Sloan Great Wall, a vast sheet of galaxies that span a length of 500 million light-years, a width of 200 million light-years and a thickness of only 15 million light-years.

Due to the limitations of today’s measuring devices, there is a maximum level to which we can zoom out. At that level, we see a universe made up of mainly two components. There are the threadlike structures known as filaments that are made up of isolated galaxies, groups, clusters and superclusters. And then there are vast empty bubbles of empty space called voids.

You can read more about structure of the universe here in Universe Today. Want to read about the cosmic void: could we be in the middle of it? We’ve also written about probing the large scale structure of the universe.

There’s more about it at NASA. Here are a couple of sources there:

Here are two episodes at Astronomy Cast that you might want to check out as well:

Sources: NASA WMAP, NASA: Sheets and Voids

Fate of the Universe

Images of three galaxies from the Galaxy Zoo (top) and STAGES surveys (bottom) show examples of how the newly discovered population of red spiral galaxies on the outskirts of crowded regions in the Universe may be a missing link in our understanding of galaxy evolution.

[/caption]What is the ultimate fate of our universe? A Big Crunch? A Big Freeze? A Big Rip? or a Big Bounce? Measurements made by WMAP or the Wilkinson Microwave Anisotropy Probe favor a Big Freeze. But until a deeper understanding of dark energy is established, the other three still cannot be totally ignored.

Ever since scientists proved the Big Bang to be the most plausible cosmological theory, and since it only focused more on how it might have all began, their attention started to shift to how the Universe would end. Thus, all 4 theories mentioned above (Big Crunch, Big Freeze, etc.) are actually offshoots of the Big Bang.

The Big Crunch predicts that, after having expanded to its maximum size, the Universe will finally collapse into itself to form the greatest black hole ever.

On the opposite side of the coin, the Big Freeze foretells of a universe that will continue to stretch forever, distributing heat evenly in the process until none is left to be usable enough. Hence, it is also known as the Heat Death.

A more dramatic version of the Big Freeze is the Big Rip. In this scenario, the Universe’s rate of expansion will increase substantially so that everything in it, down to the smallest atom, will be ripped apart.

In a cyclic or oscillatory model of the Universe, there will be no end … for matter and energy, that is. But for us and the Universe that we know of, there will definitely be a conclusion. In an oscillatory model, the Big Bang and Big Crunch form a pair known as the Big Bounce. Essentially, such a universe would simply expand and contract (or bounce) forever.

For astronomers to determine what the ultimate fate of the Universe should be, they would need to know certain information. Its density is supposedly one of the most telling.

You see, if its density is found to be less than the critical density, then only a Big Freeze or a Big Rip would be possible. On the other hand, if it is greater than the said critical value, then a Big Crunch or Big Bounce would most likely ensue.

The most accurate measurements on the cosmic microwave background radiation (CMBR), which is also the most persuasive evidence of the Big Bang, shows a universe having a density virtually equal to the critical density. The measurements also exhibit the characteristics of a flat universe. Right now, it looks like all gathered data indicate that a Big Crunch or a Big Bounce is highly unlikely to occur.

To render finality to these findings however, scientists will need to know the exact behavior of dark energy. Is its strength increasing? Is it diminishing? Is it constant? Only by answering these will they know the ultimate fate of the Universe.

We’ve got a few articles that touch on the fate the universe here in Universe Today. Here are two of them:

NASA also has some more:

Tired eyes? Let your ears help you learn for a change. Here are some episodes from Astronomy Cast that just might suit your taste:

Sources: NASA, Hubblesite

Radius of the Planets

Size of the planets compared.

[/caption]

One way to measure the size of the planets is by radius. Radius is the measurement from the center of an object to the edge of it.

Mercury is the smallest planet with a radius of only 2,440 km at its equator. Mercury is not that much larger than the Moon, and it is actually smaller than some of our Solar System’s larger satellites, such as Titan. Despite Mercury’s small size, it is actually dense with higher gravity than you would expect for its size.

Venus has a radius of 6,052 kilometers, which is only a few hundred kilometers smaller than Earth’s radius. Most planets have a radius that is different at the equator than it is at the poles because the planets spin so fast that they flatten out at the poles. Venus has the same diameter at the poles and at the equator though because it spins so slowly.

Earth is the largest of the four inner planets with a radius of 6,378 kilometers at the equator. This is over two times larger than the radius of Mercury. The radius between the poles is 21.3 km less than the radius at the equator because the planet has flattened slightly since it only takes 24 hours to rotate.

Mars is a surprisingly small planet with a radius of 3,396 kilometers at the equator and 3,376 kilometers at the poles. This means that Mars’ radius is only about half of Earth’s radius.

Jupiter is the largest of all the planets. It has a radius of 71,492 kilometers at the equator and a radius of 66,854 kilometers at the poles. This is a difference of 4,638 kilometers, which is almost twice Mercury’s radius. Jupiter has a radius at the equator 11.2 times Earth’s equatorial radius.

Saturn has an equatorial radius of 60,268 kilometers and a radius of 54,364 kilometers at the poles making it the second largest planet in our Solar System. The difference between its two radiuses is a little more than twice the radius of Mercury.

Uranus has an equatorial radius of 25,559 kilometers and a radius of 24,973 kilometers at the poles. Although this is much smaller than Jupiter’s radius, it is around four times the size of Earth’s radius.

Neptune’s equatorial radius of 24,764 kilometers makes it the smallest of the four outer planets. The planet has a radius of 24,341 kilometers at the poles. Neptune’s radius is almost four times the size of Earth’s radius, but it is only about a third of Jupiter’s radius.

Universe Today has articles on the radius of Neptune and the size of the planets.

If you are looking for more information, check out NASA’s Solar System exploration page, and here’s a link to NASA’s Solar System Simulator.

Astronomy Cast has an episode on Venus and more on all the planets.

Volume of the Planets

Planets and other objects in our Solar System. Credit: NASA.

[/caption]

There are a number of measurements that astronomers use, including mass, surface area, diameter, and radius, to determine the the size of the planets. Volume is one measurement of the size of a planet. It is a measurement of how much three-dimensional space an object occupies. The volumes of the planets, along with other measurements, help astronomers discover the physical composition of the planets in addition to other information about them.

Mercury is the littlest planet in our Solar System with the smallest volume of any planet. It has a volume of 6.083 x 1010 cubic kilometers, which is only 5.4% of Earth’s volume.

Venus is only slightly smaller than Earth with a volume of 9.38 x 1011 km3. That is 86% of the Earth’s volume. This may not seem like Venus is that close in size to our planet,  but Venus is closer in size to Earth than any other planet is.

Earth is the largest of the four inner planets, although it is nothing compared to the gas giants. Earth has a volume of 1.08 x 1012 cubic kilometers.

Mars is actually a rather small planet with a volume of 1.6 x 1011 cubic kilometers. While that is larger than Mercury’s volume and pretty big in general, it is only 15% of Earth’s volume. You could put over six planets the size of Mars inside the Earth.

The largest planet in our Solar System, Jupiter’s size is astounding. Jupiter has a volume of 1.43 x 1015 cubic kilometers. To show what this number means, you could fit 1321 Earths inside of Jupiter. It is hard to imagine how large that actually is.

Saturn is the second largest planet in the Solar System. It has a volume of 8.27 x 1014 cubic km. Although it is only a fraction of the size of Jupiter, you could fit 764 Earths inside of the gas giant.

Uranus is a large planet with a volume of 6.833 x 1013 cubic kilometers. You could fit a little more than 63 Earths inside of Uranus, but like the other gas giants, it is not very dense. Comprised mostly of gas, the planet is only about 14.5 times more massive than Earth is.

Neptune is the smallest gas giant in our Solar System, but it is still much larger than any of the inner planets. Neptune has a volume of 6.3 x 1013 cubic kilometers, which is equal to about 57 Earths. Even though Neptune’s volume is much greater than the Earth’s is, the gravity on Neptune is only about 14% greater than it is on Earth. This is due to the gas giant’s small mass.

Universe Today has articles on size of the planets and mass of the planets.

Check out an overview of the Solar System and all about the planets.

Astronomy Cast has an episode on Jupiter and episodes on all the planets.

What are Planetoids?

Planetoid is another term for asteroids, which are also called minor planets. Planetoids are small celestial bodies that orbit the Sun. Planets are simply defined as asteroids, but the term asteroid is not well defined either. In 2006, The International Astronomical Union (IAU) defined it as  a “small Solar System body” (SSSB), which does not really tell us anything either. Webster’s Dictionary defines an asteroid as, “any of the thousands of small planets ranging from 1,000 km (621 mi) to less than one km (0.62 mi) in diameter, with orbits usually between those of Mars and Jupiter; minor planet; planetoid.”

Asteroids – planetoids – were first discovered in 1801, and many more have been discovered since then. Up until 1977, almost all the asteroids discovered were near Jupiter. However, then astronomers began to discover planetoids even farther out and started calling them centaurs and trans-Neptunian objects (TNOs). When a region of space in the outer Solar System filled with celestial bodies was discovered, it was called the Kuiper Belt and the objects in it were called Kuiper Belt Objects (KBOs). The large number of synonyms for planetoids is one reason why keeping these terms straight is so difficult.

Some of the largest planetoids are spherical and look like tiny versions of planets. The smaller ones are irregular in shape though. The objects range in size from around ten meters to hundreds of kilometers in diameter. Objects smaller than ten meters are called meteoroids. Unfortunately, astronomers do not know that much about the materials that make up planetoids. They are believed to be composed of various materials including ice, rock, and different metals.

Most planetoids are in a region called the asteroid belt, which is situated between Mars and Jupiter. There are millions of planetoids in this region. Despite the millions of objects, all of them combined are believed to have a mass of only about 4% of the Moon’s mass. After being discovered, the planetoids are given a temporary designation. If they are officially recognized, they are given a number and maybe a name. The first few planetoids were given symbols just like the planets. All except one of the first fifteen asteroids were given  extremely complex symbols. For example, one symbol was a star with a plant growing out of it. However, that soon ended when astronomers realized that there were many more planetoids. Planetoids, and other celestial bodies, are a subject of study by astronomers who hope to learn more about how the universe was formed from these ancient rocks.

Universe Today has articles on minor planets and planetesimals.

Check out articles on asteroids and planetoids beyond Pluto.

Astronomy Cast has an episode on asteroids.

References:
NASA StarChild: The Asteroid Belt
Planet-Like Body Discovered at Fringes of Our Solar System

Mythology of the Planets

Planets and other objects in our Solar System. Credit: NASA.

[/caption]

Thousands of years ago, ancient civilizations turned to the heavens, marveling at their wonders. These ancient people worshipped various gods and often linked their gods with planets in the sky, which they considered to be “wandering stars.”

Mercury gets its name from the winged messenger of the gods. He was also the god of thievery, commerce, and travel. Most likely, the planet got its name from the rate at which it spins.

Venus was the Roman goddess of love and beauty, so it is a fitting name for this brightly shining planet. The only objects in our Solar System brighter than Venus are the Sun and the Moon. Ancient civilizations thought that Venus was two different objects – the Morning Star and the Evening Star. Other civilizations have also associated the planet with love. The Babylonians called the planet Ishtar after their goddess of womanhood and love.

Earth is the only planet not named after a Roman god or goddess, but it is associated with the goddess Terra Mater (Gaea to the Greeks). In mythology, she was the first goddess on Earth and the mother of Uranus. The name Earth comes from Old English and Germanic. It is derived from “eor(th)e” and “ertha,” which mean “ground.” Other civilizations all over the world also developed terms for our planet.

Mars is named after the Roman god of war. The planet got its name from the fact that it is the color of blood.  Other civilizations also named the planets for its red color.

Jupiter was the Roman king of the gods. Considering that Jupiter is the largest planet in our Solar System, it makes sense that the planet was named after the most important god.

Saturn was named after the Roman god of agriculture and harvest. While the planet may have gotten its name from its golden color, like a field of wheat, it also had to do with its position in the sky. According to mythology, the god Saturn stole the position of king of the gods from his father Uranus. The throne was then stolen by Jupiter.

Uranus was not discovered until the 1800’s, but the astronomers in that time period continued the tradition of naming planets after Roman gods. In mythology, Uranus was the father of Saturn and was at one time the king of the gods.

While Neptune almost ended up being named after one of the astronomers credited with discovering it – Verrier – that was greatly disputed, so it was named after the god of the sea. The name was probably inspired by its blue color.

Pluto is no longer a planet, but it used to be. The dark, cold, former planet was named after the god of the underworld. The first two letters of Pluto are also the initials of the man who predicted  its existence, Percival Lowell.

Universe Today has articles on names of the planets and all the planets.

For more information on the planets check out all about the planets and mythology of the planets.

Astronomy Cast has episodes on all the planets including Saturn.

Surface of the Planets

Planets and other objects in our Solar System. Credit: NASA.

[/caption]

People have been intrigued for centuries by whether life could exist on other planets. While we now know that it is very unlikely that life as we know it could exist on other planets in our Solar System, many people do not know the surface conditions of these various planets.

Mercury resembles nothing so much as a larger version of the Moon. This planet is so close to the Sun that it is actually difficult to observe. The Hubble Space Telescope cannot look at it because it would permanently damage the lens.

Venus’ atmosphere of thick, toxic clouds hides the planet’s surface from view. Scientists and amateurs alike used to think that the planet was covered with thick forests and flora like tropical rainforests on Earth.  When they were finally able to send probes to the planet, they discovered that Venus’ surface was actually more like a vision of hell with a burning landscape that is dotted with volcanoes.

Mars has very diverse terrain. One of the planet’s most famous features is its canals, which early astronomers believed were “man”-made and contained water. These huge canyons were most likely formed by the planet’s crust splitting. Mars is also famous for its red color, which is iron oxide (rust) dust that covers the surface of the entire planet. The surface of Mars is covered with craters, volcanoes, and plains. The largest volcanoes of any planet are on Mars.

Jupiter is a gas giant, so it has no solid surface just a core of liquid metals. Astronomers have created a definition for the surface – the point at which the atmosphere’s pressure is one bar. This region is the lower part of the atmosphere where there are clouds of ammonia ice.

Saturn is also a gas giant so it has no solid surface only varying densities of gas. Like Jupiter, almost all of Saturn is composed of hydrogen with some helium and other elements in trace amounts.

Uranus and Neptune are also gas giants, but they belong to the subcategory of ice giants because of the “ices” in their atmospheres. Uranus’ surface gets its blue color from the methane in the atmosphere. Methane absorbs light that is red or similar to red on the color spectrum leaving only the light near the blue end of the spectrum visible.

Neptune is also blue due to the methane in its atmosphere. Its “surface” has the fastest winds of any planet in the Solar System at up to 2,100 kilometers per hour.

Universe Today has a number of articles including surface of Mars and surface of Mercury.

Check out NASA’s Solar System exploration page, and here’s a link to NASA’s Solar System Simulator.

Astronomy Cast has an episode on each planet including Earth.

Protoplanets

Protoplanet by Moya

[/caption]

Protoplanets are small celestial objects that are the size of a moon or a bit bigger. They are small planets, like an even smaller version of a dwarf planet. Astronomers believe that these objects form during the creation of a solar system.

The most popular theory of how a solar system is formed says that a giant cloud of molecular dust collapsed, forming one or more stars. Then a cloud of gas forms around the new star. As a result of gravity and other forces, the dust and other particles in this cloud collide and stick together forming larger masses. While some of these objects break apart on impact, a number of them continue to grow. Once they reach a certain size – around a kilometer  – these objects are large enough to attract particles and other small objects with their gravity. They continue to get larger until they form protoplanets. Some protoplanets continue colliding and growing until they form planets while others stay that size.

As the protoplanets grew to become planets, parts of them melted due to radioactivity, gravitational influences, and collisions. Where the objects had melted, the composition of the planets changed. Heavier elements sank, forming the cores of the planets, and lighter objects rose to the surface. This process is called planetary differentiation and explains why planets have heavy cores. Astronomers have discovered that even some asteroids have differentiated, so their cores are heavier than their surfaces.  

Protoplanets used to be highly radioactive due to how they were formed. However, over thousands of years, the radioactivity of these objects has greatly decreased because of radioactive decay. Astronomers are still discovering new protoplanets, and most likely, they will discover many more. With better technology, astronomers are now able to find protoplanets in other star systems. Last year, scientists discovered a protoplanet HL Tau b that will probably turn into an actual planet one day. Astronomers say that will not happen for about a million years though because the protoplanet’s star is also very young. In its final form, HL Tau b will look like Jupiter – a gas giant around the same size as that massive planet. It is hard to believe that thousands of years ago our planets were objects about the size of a moon, which were slowly evolving and growing. Astronomers continue to study protoplanets, the same way they study planetesimals, to find out more about how the Solar System was formed.

Universe Today has articles on Earth-sized planets and planetesimals.

You will also want to check out a new protoplanet and forming gas giants.

Astronomy Cast has an episode on how old the universe is.

References:
When is an Asteroid Not an Asteroid?
From Planetesimals to Terrestrial Planets: Habitable Planet Formation in Binary Star Systems