How Do Volcanoes Erupt?

Cleveland Volcano Eruption
The 2006 Cleveland Volcano Eruption viewed from space. Credit: NASA

Volcanoes come in many shapes and sizes, ranging from common cinder cone volcanoes that build up from repeated eruptions and lava domes that pile up over volcanic vents to broad shield volcanoes and composite volcanoes. Though they differ in terms of structure and appearance, they all share two things. On the one hand, they are all awesome forces of nature that both terrify and inspire.

On the other, all volcanic activity comes down to the same basic principle. In essence, all eruptions are the result of magma from beneath the Earth being pushed up to the surface where it erupts as lava, ash and rock. But what mechanisms drive this process? What is it exactly that makes molten rock rise from the Earth’s interior and explode onto the landscape?

To understand how volcanoes erupt, one first needs to consider the structure of the Earth. At the very top is the lithosphere, the outermost layers of the Earth that consists of the upper mantle and crust. The crust makes up a tiny volume of the Earth, ranging from 10 km in thickness on the ocean floor to a maximum of 100 km in mountainous regions. It is cold and rigid, and composed primarily of silicate rock.

The Earth's layers, showing the Inner and Outer Core, the Mantle, and Crust. Credit: discovermagazine.com
The Earth’s layers, showing the Inner and Outer Core, the Mantle, and Crust. Credit: discovermagazine.com

Beneath the crust, the Earth’s mantle is divided into sections of varying thickness based on their seismology. These consist of the upper mantle, which extends from a depth of 7 – 35 km (4.3 to 21.7 mi)) to 410 km (250 mi); the transition zone, which ranges from 410–660 km (250–410 mi); the lower mantle, which ranges from 660–2,891 km (410–1,796 mi); and the core–mantle boundary, which is ~200 km (120 mi) thick on average.

In the mantle region, conditions change drastically from the crust. Pressures increase considerably and temperatures can reach up to 1000 °C, which makes the rock viscous enough that it behaves like a liquid. In short, it experiences elastically on time scales of thousands of years or greater. This viscous, molten rock collects into vast chambers beneath the Earth’s crust.

Since this magma is less dense than the surrounding rock, it ” floats” up to the surface, seeking out cracks and weaknesses in the mantle. When it finally reaches the surface, it explodes from the summit of a volcano. When it’s beneath the surface, the molten rock is called magma. When it reaches the surface, it erupts as lava, ash and volcanic rocks.

The Earth's Tectonic Plates. Credit: msnucleus.org
The Earth’s Tectonic Plates. Credit: msnucleus.org

With each eruption, rocks, lava and ash build up around the volcanic vent. The nature of the eruption depends on the viscosity of the magma. When the lava flows easily, it can travel far and create wide shield volcanoes. When the lava is very thick, it creates a more familiar cone volcano shape (aka. a cinder cone volcano). When the lava is extremely thick, it can build up in the volcano and explode (lava domes).

Another mechanism that drives volcanism is the motion the crust undergoes. To break it down, the lithosphere is divided into several plates, which are constantly in motion atop the mantle. Sometimes the plates collide, pull apart, or slide alongside each other; resulting in convergent boundaries, divergent boundaries, and transform boundaries. This activity is what drives geological activity, which includes earthquakes and volcanoes.

In the case of the former, subduction zones are often the result, where the heavier plate slips under the lighter plate – forming a deep trench. This subduction changes the dense mantle into buoyant magma, which rises through the crust to the Earth’s surface. Over millions of years, this rising magma creates a series of active volcanoes known as a volcanic arc.

Cross-section of a volcano. Credit: 3dgeography.co.uk/#!
Cross-section of a volcano. Credit: 3dgeography.co.uk

In short, volcanoes are driven by pressure and heat in the mantle, as well as tectonic activity that leads to volcanic eruptions and geological renewal. The prevalence of volcanic eruptions in certain regions of the world – such as the Pacific Ring of Fire – also has a profound impact on the local climate and geography. For example, such regions are generally mountainous, have rich soil, and periodically experience the formation of new landmasses.

We have written many articles about volcanoes here at Universe Today. Here’s What are the Different Types of Volcanoes?, What are the Different Parts of a Volcano?, 10 Interesting Facts About Volcanoes?, What is the Pacific Ring of Fire?, Olympus Mons: The Largest Volcano in the Solar System.

Want more resources on the Earth? Here’s a link to NASA’s Human Spaceflight page, and here’s NASA’s Visible Earth.

We have also recorded an episode of Astronomy Cast about Earth, as part of our tour through the Solar System – Episode 51: Earth.

How Far Can You Travel?

How Far Can You Travel?

In a previous article, I talked about how you can generate artificial gravity by accelerating at 9.8 meters per second squared. Do that and you pretty much hit the speed of light, then you decelerate at 1G and you’ve completed an epic journey while enjoying comfortable gravity on board at the same time. It’s a total win win.

What I didn’t mention how this acceleration messes up time for you and people who aren’t traveling with you. Here’s the good news. If you accelerate at that pace for years, you can travel across billions of light years within a human lifetime.

Here’s the bad news, while you might experience a few decades of travel, the rest of the Universe will experience billions of years. The Sun you left will have died out billions of years ago when you arrive at your destination.

Welcome to the mind bending implications of constantly accelerating relativistic spaceflight.

With many things in physics, we owe our understanding of relativistic travel to Einstein. Say it with me, “thanks Einstein.”

The effect of time dilation is negligible for common speeds, such as that of a car or even a jet plane, but it increases dramatically when one gets close to the speed of light.
The effect of time dilation is negligible for common speeds, such as that of a car or even a jet plane, but it increases dramatically when one gets close to the speed of light.

It works like this. The speed of light is always constant, no matter how fast you’re going. If I’m standing still and shine a flashlight, I see light speed away from me at 300,000 km/s. And if you’re traveling at 99% the speed of light and shine a flashlight, you’ll see light moving away at 300,000 km/s.

But from my perspective, standing still, you look as if you’re moving incredibly slowly. And from your nearly light-speed perspective, I also appear to be moving incredibly slowly – it’s all relative. Whatever it takes to make sure that light is always moving at, well, the speed of light.

This is time dilation, and you’re actually experiencing it all the time, when you drive in cars or fly in an airplane. The amount of time that elapses for you is different for other people depending on your velocity. That amount is so minute that you’ll never notice it, but if you’re traveling at close to the speed of light, the differences add up pretty quickly.

But it gets even more interesting than this. If you could somehow build a rocket capable of accelerating at 9.8 meters/second squared, and just went faster and faster, you’d hit the speed of light in about a year or so, but from your perspective, you could just keep on accelerating. And the longer you accelerate, the further you get, and the more time that the rest of the Universe experiences.

The really strange consequence, though, is that from your perspective, thanks to relativity, flight times are compressed.

I’m using the relativistic star ship calculator at convertalot.com. You should give it a try too.

Proxima Centauri. Credit: ESA/Hubble & NASA
Proxima Centauri. Credit: ESA/Hubble & NASA

For starters, let’s fly to the nearest star, 4.3 light-years away. I accelerate halfway at a nice comfortable 1G, then turn around and decelerate at 1G. It only felt like 3.5 years for me, but back on Earth, everyone experienced almost 6 years. At the fastest point, I was going about 95% the speed of light.

Let’s scale this up and travel to the center of the Milky Way, located about 28,000 light-years away. From my perspective, only 20 years have passed by. But back on Earth, 28,000 years have gone by. At the fastest point, I was going 99.9999998 the speed of light.

Let’s go further, how about to the Andromeda Galaxy, located 2.5 million light-years away. The trip only takes me 33 years to accelerate and decelerate, while Earth experienced 2.5 million years. See how this works?

The Andromeda Galaxy. Credit: NASA/JPL-Caltech/WISE Team
The Andromeda Galaxy. Credit: NASA/JPL-Caltech/WISE Team

I promised I’d blow your mind, and here it is. If you wanted to travel at a constant 1G acceleration and then deceleration to the very edge of the observable Universe. That’s a distance of 13.8 billion light-years away; you would only experience a total of 45 years. Of course, once you got there, you’d have a very different observable Universe, and billions of years of expansion and dark energy would have pushed the galaxies much further away from you.

Some galaxies will have fallen over the cosmic horizon, where no amount of time would ever let you reach them.

If you wanted to travel 100 trillion light years away, you could make the journey in 62 years. By the time you arrived, the Universe would be vastly different. Most of the stars would have died a long time ago, the Universe would be out of usable hydrogen. You would have have left a living thriving Universe trillions of years in the past. And you could never get back.

Our good friends over at Kurzgesagt  covered a very similar topic, discussing the limits of humanity’s exploration of the Universe. It’s wonderful and you should watch it right now.

Of course, creating a spacecraft capable of constant 1G acceleration requires energies we can’t even imagine, and will probably never acquire. And even if you did it, the Universe you enjoy would be a distant memory. So don’t get too excited about fast forwarding yourself trillions of years into the future.

What is the Highest Place on Earth?

Mt. Chimborazo, located in Equator, is technically the highest point on Earth. Sorry, Everest! Credit: gerdbreitenbach.de

Whenever the question is asked, what is the highest point on planet Earth?, people naturally assume that the answer is Mt. Everest. In fact, so embedded is the notion that Mt. Everest is the highest point on the world that most people wouldn’t even think twice before answering. And even when we talk of other huge mountains in the Solar System (like Mars’ Olympus Mons), we invariably compare them to Mt. Everest.

But in truth, Everest does not hold the record for being the highest point on Earth. Due to the nature of our planet – which is not shaped like a perfect sphere but an oblate spheroid (i.e. a sphere that bulges at the center) – points that are located along the equator are farther away than those located at the poles. When you factor this in, Everest and the Himalayas find themselves falling a bit short!

Earth as a Sphere:

The understanding that Earth is spherical is believed to have emerged during the 6th century BCE in ancient Greece. While Pythagoras is generally credited with this theory, it is equally likely that it emerged on its own as a result of travel between Greek settlements – where sailors noticed changes in what stars were visible at night based on differences in latitudes.

Earth - Western Hemisphere
Planet Earth, as seen from space above the Western Hemisphere. Credit: Reuters

By the 3rd century BCE, the idea of a spherical Earth began to become articulated as a scientific matter. By measuring the angle cast by shadows in different geographical locations, Eratosthenes – a Greek astronomer from Hellenistic Libya (276–194 BCE) – was able to estimate Earth’s circumference within a 5% – 15% margin of error. With the rise of the Roman Empire and their adoption of Hellenistic astronomy, the view of a spherical Earth became widespread throughout the Mediterranean and Europe.

This knowledge was preserved thanks to the monastic tradition and Scholasticism during the Middle Ages. By the Renaissance and the Scientific Revolution (mid 16th – late 18th centuries), the geological and heliocentric views of Earth became accepted as well. With the advent of modern astronomy, precise methods of measurement, and the ability to view Earth from space, our models of its true shape and dimensions have come to be refined considerably.

Modern Models of the Earth:

To clarify matters a little, the Earth is neither a perfect sphere, nor is it flat. Sorry Galileo, and sorry Flat-Earthers (not sorry!), but it’s true. As already noted, it is an oblate spheroid, which is a result of the rotation of the Earth. Basically, its spin results in a flattening at the poles and a bulging at its equatorial. This is true for many bodies in the Solar System (such as Jupiter and Saturn) and even rapidly-spinning stars like Altair.

Data from the Earth2014 global relief model, with distances in distance from the geocentre denoted by color. Credit: Geodesy2000
Data from the Earth2014 global relief model, with distances from the geocenter represented in color. Credit: Geodesy2000

Based on some of the latest measurements, it is estimated that Earth has a polar radius (i.e. from the middle of Earth to the poles) of 6,356.8 km, whereas its equatorial radius (from the center to the equator) is 6,378.1 km. In short, objects located along the equator are 22 km further away from the center of the Earth (geocenter) than objects located at the poles.

Naturally, there are some deviations in the local topography where objects located away from the equator are closer or father away from the center of the Earth than others in the same region. The most notable exceptions are the Mariana Trench – the deepest place on Earth, at 10,911 m (35,797 ft) below local sea level – and Mt. Everest, which is 8,848 meters (29,029 ft) above local sea level. However, these two geological features represent a very minor variation when compared to Earth’s overall shape – 0.17% and 0.14% respectively.

Highest Point on Earth:

To be fair, Mt. Everest is one of the highest points on Earth, with its peak ascending to an altitude of 8,848 meters (29,029 ft) above sea level. However, due to its location within the Himalayan Mountain Chain in Nepal, some 27° and 59 minutes north of the equator, it is actually lower than mountains located in Ecuador.

It is here, where the land is dominated by the Andes mountain chain, that the highest point on planet Earth is located. Known as Mt. Chiborazo, the peak of this mountain reaches an attitude of 6,263.47 meters (20,549.54 ft) above sea level. But because it is located just 1° and 28 minutes south of the equator (at the highest point of the planet’s bulge), it receives a natural boost of about 21 km.

Mount Everest from Kalapatthar. Photo: Pavel Novak
Mount Everest, imaged from Kalapatthar. Credit: Pavel Novak

In terms of how far they are from the geocenter, Everest lies at a distance of 6,382.3 kilometers (3,965.8 miles) from the center of the Earth while Chimborazo reaches to a distance of 6,384.4 kilometers (3,967.1 miles). That’s a difference of about 2.1 km (1.3 miles), which may not seem like much. But if we’re talking about rankings and titles, it pays to be specific.

Naturally, there are those who would stress that Mt. Everest is still the tallest mountain, measured from base to peak. Unfortunately, here too, they would be incorrect. That prize goes to Mauna Kea, a dormant volcano located on the island of Hawaii. Measuring 10,206 meters (33,484 ft) from base to summit, it is the highest mountain in the world. However, since its base is several thousand meters below seat level, we only see the top 4,207 m (13,802 ft) of it.

But if one were to say that Everest was tallest mountain based on its altitude, they would be correct. In terms of its summit’s elevation above sea level, Everest is ranked as being as the tallest mountain in the world. And when it comes to the sheer difficulty of ascending it, Everest will always be ranked no. 1, both in the records books and in the hearts of climbers everywhere!

We have written many interesting articles about the Earth and mountains here at Universe Today. Here’s Planet Earth, What is the Earth’s Diameter?, The Rotation of the Earth, and Mountains: How Are They Formed?

For more information, be sure to check out NASA’s Visible Earth, and “Highest Mountain in the World” at Geology.com.

Astronomy Cast also has a great episode on the subject – Episode 51: Earth.

What is the Surface Temperature of Neptune?

Reconstruction of Voyager 2 images showing the Great Black spot (top left), Scooter (middle), and the Small Black Spot (lower right). Credit: NASA/JPL

Our Solar System is a fascinating place. Between its eight planets and many dwarf planets, there are some serious differences in terms of orbit, composition, and temperature. Whereas conditions within the inner Solar System, where planets are terrestrial in nature, can get pretty hot, planets that orbit beyond the Frost Line – where it is cold enough that volatiles (i.e. water, ammonia, methane, CO and CO²) condense into solids – can get mighty cold!

It is in this environment that we find Neptune, the Solar System’s most distance (and hence most cold) planet. While this gas/ice giant has no “surface” to speak of, Earth-based research and flybys have been conducted that have managed to obtain accurate measurements of the temperature in the planet’s upper atmosphere. All told, the planet experiences temperatures that range from approximately 55 K (-218 °C; -360 °F) to 72 K (-200 °C; -328 °F), making it the coldest planet in the Solar System.

Orbital Characteristics:

Of all the planets in the Solar System, Neptune orbits the Sun at the greatest average distance. With a very minor eccentricity (0.0086), it orbits the Sun at an semi-major axis of approximately 30.11 AU (4,504,450,000,000 km), ranging from 29.81 AU (4.459 x 109 km) at perihelion and 30.33 AU (4.537 x 109 km) at aphelion.

Pluto and its cohorts in the icy-asteroid-rich Kuiper Belt beyond the orbit of Neptune. Credit: NASA
Neptune and the icy-asteroid-rich Kuiper Belt that lies beyond its orbit. Credit: NASA

Neptune takes 16 hours 6 minutes and 36 seconds (0.6713 days) to complete a single sidereal rotation, and 164.8 Earth years to complete a single orbit around the Sun. This means that a single day lasts 67% as long on Neptune, whereas a year is the equivalent of approximately 60,190 Earth days (or 89,666 Neptunian days).

Because Neptune’s axial tilt (28.32°) is similar to that of Earth (~23°) and Mars (~25°), the planet experiences similar seasonal changes. Combined with its long orbital period, this means that the seasons last for forty Earth years. In addition, the planets axial tilt also leads to variations in the length of its day, as well as variations in temperature between the northern and southern hemispheres (see below).

“Surface” Temperature:

Due to their composition, determining a surface temperature on gas or ice giants (compared to terrestrial planets or moons) is technically impossible. As a result, astronomers have relied on measurements obtained at altitudes where the atmospheric pressure is equal to 1 bar (or 100 kilo Pascals), the equivalent of air pressure here on Earth at sea level.

In this image, the colors and contrasts were modified to emphasize the planet’s atmospheric features. The winds in Neptune’s atmosphere can reach the speed of sound or more. Neptune’s Great Dark Spot stands out as the most prominent feature on the left. Several features, including the fainter Dark Spot 2 and the South Polar Feature, are locked to the planet’s rotation, which allowed Karkoschka to precisely determine how long a day lasts on Neptune. (Image: Erich Karkoschka)
Color-contrasted photo showing Neptune’s atmospheric features. Credit: Erich Karkoschka

It is here on Neptune, just below the upper level clouds, that pressures reach between 1 and 5 bars (100 – 500 kPa). It is also at this level that temperatures reach their recorded high of 72 K (-201.15 °C; -330 °F). At this temperature, conditions are suitable for methane to condense, and clouds of ammonia and hydrogen sulfide are thought to form (which is what gives Neptune its characteristically dark cyan coloring).

But as with all gas and ice giants, temperatures vary on Neptune due to depth and pressure. In short, the deeper one goes into Neptune, the hotter it becomes. At its core, Neptune reaches temperatures of up to 7273 K (7000 °C; 12632 °F), which is comparable to the surface of the Sun. The huge temperature differences between Neptune’s center and its surface create huge wind storms, which can reach as high as 2,100 km/hour, making them the fastest in the Solar System.

Temperature Anomalies and Variations:

Whereas Neptune averages the coldest temperatures in the Solar System, a strange anomaly is the planet’s south pole. Here, it is 10 degrees K warmer than the rest of planet. This “hot spot” occurs because Neptune’s south pole is currently exposed to the Sun. As Neptune continues its journey around the Sun, the position of the poles will reverse. Then the northern pole will become the warmer one, and the south pole will cool down.

Neptune’s more varied weather when compared to Uranus is due in part to its higher internal heating, which is particularly perplexing for scientists. Despite the fact that Neptune is located over 50% further from the Sun than Uranus, and receives only 40% its amount of sunlight, the two planets’ surface temperatures are roughly equal.

Four images of Neptune taken a few hours apart by the Hubble Space Telescope on June 25-26, 2011. Credit: NASA, ESA and the Hubble Heritage Team (STScI/AURA)
Four images of Neptune taken a few hours apart by the Hubble Space Telescope on June 25-26, 2011. Credit: NASA, ESA and the Hubble Heritage Team (STScI/AURA)

Deeper inside the layers of gas, the temperature rises steadily. This is consistent with Uranus, but oddly enough, the discrepancy is larger. Uranus only radiates 1.1 times as much energy as it receives from the Sun, whereas Neptune radiates about 2.61 times as much. Neptune is the farthest planet from the Sun, yet its internal energy is sufficient to drive the fastest planetary winds seen in the Solar System. The mechanism for this remains unknown.

And while temperatures on Pluto have been recorded as reaching lower – down to 33 K (-240 °C; -400 °F) – Pluto’s status as a dwarf planet mean that it is no longer in the same class as the others. As such, Neptune remains the coldest planet of the eight.

We have written many articles about Neptune here at Universe Today.  Here’s The Gas (and Ice) Giant Neptune, What is the Surface of Neptune Like?, 10 Interesting Facts About Neptune, and The Rings of Neptune.

If you’d like more information on Neptune, take a look at Hubblesite’s News Releases about Neptune, and here’s a link to NASA’s Solar System Exploration Guide to Neptune.

We have recorded an entire episode of Astronomy Cast just about Neptune. You can listen to it here, Episode 63: Neptune.

What is the Difference Between Lava and Magma?

Lava fountain in Hawaii.

Few forces in nature are are impressive or frightening as a volcanic eruption. In an instant, from within the rumbling depths of the Earth, hot lava, steam, and even chunks of hot rock are spewed into the air, covering vast distances with fire and ash. And thanks to the efforts of geologists and Earth scientists over the course of many centuries, we have to come to understand a great deal about them.

However, when it comes to the nomenclature of volcanoes, a point of confusion often arises. Again and again, one of the most common questions about volcanoes is, what is the difference between lava and magma? They are both molten rock, and are both associated with volcanism. So why the separate names? As it turns out, it all comes down to location.

Earth’s Composition:

As anyone with a basic knowledge of geology will tell you, the insides of the Earth are very hot. As a terrestrial planet, its interior is differentiated between a molten, metal core, and a mantle and crust composed primarily of silicate rock. Life as we know it, consisting of all vegetation and land animals, live on the cool crust, whereas sea life inhabits the oceans that cover a large extent of this same crust.

The Earth's layers, showing the Inner and Outer Core, the Mantle, and Crust. Credit: discovermagazine.com
The Earth’s layers, showing the Inner and Outer Core, the Mantle, and Crust. Credit: discovermagazine.com

However, the deeper one goes into the planet, both pressures and temperatures increase considerably. All told, Earth’s mantle extends to a depth of about 2,890 km, and is composed of silicate rocks that are rich in iron and magnesium relative to the overlying crust. Although solid, the high temperatures within the mantle cause pockets of molten rock to form.

This silicate material is less dense than the surrounding rock, and is therefore sufficiently ductile that it can flow on very long timescales. Over time, it will also reach the surface as geological forces push it upwards. This happens as a result of tectonic activity.

Basically, the cool, rigid crust is broken into pieces called tectonic plates. These plates are rigid segments that move in relation to one another at one of three types of plate boundaries. These are known as convergent boundaries, at which two plates come together; divergent boundaries, at which two plates are pulled apart; and transform boundaries, in which two plates slide past one another laterally.

Interactions between these plates are what is what is volcanic activity (best exemplified by the “Pacific Ring of Fire“) as well as mountain-building. As the tectonic plates migrate across the planet, the ocean floor is subducted – the leading edge of one plate pushing under another. At the same time, mantle material will push up at divergent boundaries, forcing molten rock to the surface.

The Earth's Tectonic Plates. Credit: msnucleus.org
The Earth’s Tectonic Plates. Credit: msnucleus.org

Magma:

As already noted, both lava and magma are what results from rock superheated to the point where it becomes viscous and molten. But again, the location is the key. When this molten rock is still located within the Earth, it is known as magma. The name is derived from Greek, which translate to “thick unguent” (a word used to describe a viscous substance used for ointments or lubrication).

It is composed of molten or semi-molten rock, volatiles, solids (and sometimes crystals) that are found beneath the surface of the Earth. This vicious rock usually collects in a magma chamber beneath a volcano, or solidify underground to form an intrusion. Where it forms beneath a volcano, it can then be injected into cracks in rocks or issue out of volcanoes in eruptions. The temperature of magma ranges between 600 °C and 1600 °C.

Magma is also known to exist on other terrestrial planets in the Solar System (i.e. Mercury, Venus and Mars) as well as certain moons (Earth’s Moon and Jupiter’s moon Io). In addition to stable lava tubes being observed on Mercury, the Moon and Mars, powerful volcanoes have been observed on Io that are capable of sending lava jets 500 km (300 miles) into space.

Igneous rock (aka. "fire rock") is formed from cooled and solidified magma. Credit: geologyclass.org
Igneous rock (aka. “fire rock”) is formed from cooled and solidified lava. Credit: geologyclass.org

Lava:

When magma reaches the surface and erupts from a volcano, it officially becomes lava. There are actually different kinds of lava depending on its thickness or viscosity. Whereas the thinnest lava can flow downhill for many kilometers (thus creating a gentle slope), thicker lavas will pile up around a  volcanic vent and hardly flow at all. The thickest lava doesn’t even flow, and just plugs up the throat of a volcano, which in some cases cause violent explosions.

The term lava is usually used instead of lava flow. This describes a moving outpouring of lava, which occurs when a non-explosive effusive eruption takes place. Once a flow has stopped moving, the lava solidifies to form igneous rock. Although lava can be up to 100,000 times more viscous than water, lava can flow over great distances before cooling and solidifying.

The word “lava” comes from Italian, and is probably derived from the Latin word labes which means “a fall” or “slide”. The first use in connection with a volcanic event was apparently in a short written account by Franscesco Serao, who observed the eruption of Mount Vesuvius between May 14th and June 4th, 1737. Serao described “a flow of fiery lava” as an analogy to the flow of water and mud down the flanks of the volcano following heavy rain.

Such is the difference between magma and lava. It seems that in geology, as in real estate, its all about location!

We have written many articles about volcanoes here at Universe Today. Here’s What is Lava?, What is the Temperature of Lava?, Igneous Rocks: How Are They Formed?, What Are The Different Parts Of A Volcano? and Planet Earth.

Want more resources on the Earth? Here’s a link to NASA’s Human Spaceflight page, and here’s NASA’s Visible Earth.

We have also recorded an episode of Astronomy Cast about Earth, as part of our tour through the Solar System – Episode 51: Earth.

The Orbit of Jupiter. How Long is a Year on Jupiter?

Jupiter and Io. Image Credit: NASA/JPL
Jupiter and Io. Image Credit: NASA/JPL

When it comes to the other planets that make up our Solar System, some pretty stark differences become apparent. In addition to being different in terms of their sizes, composition and atmospheres from Earth, they also differ considerably in terms of their orbits. Whereas those closest to the Sun have rapid transits, and therefore comparatively short years, those farther away can take many Earth to complete a single orbit.

This is certainly the case when it comes to Jupiter, the Solar System largest and most massive planet. Given its considerable distance from the Sun, Jupiter spends the equivalent of almost twelve Earth years completing a single circuit of our Sun. Orbiting at this distance is part of what allows Jupiter to maintain its gaseous nature, and led to its formation and peculiar composition.

Orbit and Resonance:

Jupiter orbits the Sun at an average distance (semi-major axis) of 778,299,000 km (5.2 AU), ranging from 740,550,000 km (4.95 AU) at perihelion and 816,040,000 km (5.455 AU) at aphelion. At this distance, Jupiter takes 11.8618 Earth years to complete a single orbit of the Sun. In other words, a single Jovian year lasts the equivalent of 4,332.59 Earth days.

However, Jupiter’s rotation is the fastest of all the Solar System’s planets, completing a rotation on its axis in slightly less than ten hours (9 hours, 55 minutes and 30 seconds to be exact. Therefore, a single Jovian year lasts 10,475.8 Jovian solar days. This orbital period is two-fifths that of Saturn, which means that the two largest planets in our Solar System form a 5:2 orbital resonance.

Seasonal Changes:

With an axial tilt of just 3.13 degrees, Jupiter also has one of the least inclined orbits of any planet in the Solar System. Only Mercury and Venus have more vertical axes, with a tilt of 0.03° and 2.64° respectively. As a result, Jupiter does not experience seasonal changes the way the other planets do – particularly Earth (23.44°), Mars (25.19°) and Saturn (26.73°).

As a result, temperatures do not vary considerably between the northern or southern hemispheres during the course of its orbit. Measurements taken from the top of Jupiter’s clouds (which is considered to be the surface) indicate that surface temperatures vary between 165 K and 112 K (-108 °C and -161 °C). However, temperatures vary considerably due to depth, increasing drastically as one ventures closer to the core.

Formation:

Jupiter’s composition and position in the Solar System are interrelated. According to Nebular Theory, the Sun and all the planets of our Solar System began as a giant cloud of molecular gas and dust (called a solar nebula). Then, about 4.57 billion years ago, something happened that caused the cloud to collapse, which could have been the result of anything from a passing star to shock waves from a supernova.

Young stars have a disk of gas and dust around them called a protoplanetary disk. Out of this disk planets are formed, and the presence of water ice in the disc affects where different types of planets form. Credit: NASA/JPL-Caltech
Young stars have a disk of gas and dust around them called a protoplanetary disk. Out of this disk planets are formed, and the presence of water ice in the disc affects where different types of planets form. Credit: NASA/JPL-Caltech

From this collapse, pockets of dust and gas began to collect into denser regions. As the denser regions pulled in more and more matter, conservation of momentum caused them to begin rotating, while increasing pressure caused them to heat up. Since temperatures across this protoplanetary disk were not uniform, this caused different materials to condense at different temperatures, leading to different types of planets forming.

The dividing line for the different planets in our solar system is known as the “Frost Line”, a point in the Solar System beyond which volatiles (such as water, ammonia, methane, carbon dioxide and carbon monoxide) are able to exist in a frozen state. As a result, planets like Jupiter, which are located beyond the Frost Line, condensed out of denser materials first (like silicate rock and minerals), then were able to accumulate gases in a liquid state.

In addition to ensuring that Jupiter was able to become the massive gas giant it is today, its distance from the Sun is also what makes its orbital period much longer than that of Earth’s.

We have written many articles about Jupiter here at Universe Today. Here’s The Gas Giant Jupiter, Ten Interesting Facts About Jupiter, Jupiter Compared to Earth, How Long Does it Take to get to Jupiter?, Could We Terraform Jupiter?

If you’d like more information on Jupiter, check out Hubblesite’s News Releases about Jupiter. And here’s an article about Jupiter on the NASA Solar System Exploration Guide.

We have also recorded an episode of Astronomy Cast about Jupiter. You can listen here, Episode 56: Jupiter.

What is the Closest Planet to Earth?

At a closest average distance of 41 million km (25,476,219 mi), Venus is the closest planet to Earth. Credit: NASA/JPL/Magellan

A common question when looking at the Solar System and Earth’s place in the grand scheme of it is “which planet is closest to Earth?” Aside from satisfying a person’s general curiosity, this question is also of great importance when it comes to space exploration. And as humanity contemplates mounting manned missions to neighboring planets, it also becomes one of immense practicality.

If, someday, we hope to explore, settle, and colonize other worlds, which would make for the shortest trip? Invariable, the answer is Venus. Often referred to as “Earth’s Twin“, Venus has many similarities to Earth. It is a terrestrial planet, it orbits within the Sun’s habitable zone, and it has an atmosphere that is believed to have once been like Earth’s. Combined with its proximity to us, its little wonder we consider it our twin.

Venus’ Orbit:

Venus orbits the Sun at an average distance (semi-major axis) of 108,208,000 km (0.723 AUs), ranging between 107,477,000 km (0.718 AU) at perihelion and 108,939,000 km (0.728 AU) at aphelion. This makes Venus’ orbit the least eccentric of all the planets in the Solar System. In fact, with an eccentricity of less than 0.01, its orbit is almost circular.

Earth and Venus' orbit compared. Credit: Sky and Telescope
Earth and Venus’ orbit compared. Credit: Sky and Telescope

When Venus lies between Earth and the Sun, it experiences what is known as an inferior conjunction. It is at this point that it makes its closest approach to Earth (and that of any planet) with an average distance of 41 million km (25,476,219 mi). On average, Venus achieves an inferior conjunction with Earth every 584 days.

And because of the decreasing eccentricity of Earth’s orbit, the minimum distances will become greater over the next tens of thousands of years. So not only is it Earth’s closest neighbor (when it makes its closest approach), but it will continue to get cozier with us as time goes on!

Venus vs. Mars:

As Earth’s other neighbor, Mars also has a “close” relationship with Earth. Orbiting our Sun at an average distance of 227,939,200 km (1.52 AU), Mars’ highly eccentric orbit (0.0934) takes it from a distance of 206,700,000 km (1.38 AU) at perihelion to 249,200,000 km (1.666 AU) at aphelion. This makes its orbit one of the more eccentric in our Solar System, second only to Mercury

For Earth and Mars to be at their closest, both planets needs to be on the same side of the Sun, Mars needs to be at its closest distance from the Sun (perihelion), and Earth needs to be at its farthest (aphelion). This is known as opposition, a time when Mars appears as one of the brightest objects in the sky (as a red star), rivaling that of Venus or Jupiter.

The eccentricity in Mars' orbit means that it is . Credit: NASA
The eccentricity in Mars’ orbit means that it is . Credit: NASA

But even at this point, the distance between Mars and Earth ranges considerably. The closest approach to take place occurred back in 2003, when Earth and Mars were only 56 million km (3,4796,787 mi) apart. And this was the closest they’d been in 50,000 years. The next closest approach will take place on July 27th, 2018, when Earth and Mars will be at a distance of 57.6 million km (35.8 mi) from each other.

It has also been estimated that the closest theoretical approach would take place at a distance of 54.6 million km (33.9 million mi). However, no such approach has been documented in all of recorded history. One would be forced to wonder then why so much of humanity’s exploration efforts (past, present and future) are aimed at Mars. But when one considers just how horrible Venus’ environment is in comparison, the answer becomes clear.

Exploration Efforts:

The study and exploration of Venus has been difficult over the years, owing to the combination of its dense atmosphere and harsh surface environment. Its surface has been imaged only in recent history, thanks to the development of radar imaging. However, many robotic spacecraft and even a few landers have made the journey and discovered much about Earth’s closest neighbor.

The first attempts were made by the Soviets in the 1960s through the Venera Program. Whereas the first mission (Venera-1) failed due to loss of contact, the second (Venera-3) became the first man-made object to enter the atmosphere and strike the surface of another planet (on March 1st, 1966). This was followed by the Venera-4 spacecraft, which launched on June 12th, 1967, and reached the planet roughly four months later (on October 18th).

The first color pictures taken of the surface of Venus by the Venera-13 space probe. Credit: NASA
The first color pictures taken of the surface of Venus by the Venera-13 space probe. Credit: NASA

NASA conducted similar missions under the Mariner program. The Mariner 2 mission, which launched on December 14th, 1962, became the first successful interplanetary mission and passed within 34,833 km (21,644 mi) of Venus’ surface. Between the late 60s and mid 70s, NASA conducted  several more flybys using Mariner probes – such as the Mariner 5 mission on Oct. 19th, 1967 and the Mariner 10 mission on Feb. 5th, 1974.

The Soviets launched six more Venera probes between the late 60s and 1975, and four additional missions between the late 70s and early  80s. Venera-5, Venera-6, and Venera-7 all entered Venus’ atmosphere and returned critical data to Earth. Venera 11 and Venera 12 detected Venusian electrical storms; and Venera 13 and Venera 14 landed on the planet and took the first color photographs of the surface. The program came to a close in October 1983, when Venera 15 and Venera 16 were placed in orbit to conduct mapping of the Venusian terrain with synthetic aperture radar.

By the late seventies, NASA commenced the Pioneer Venus Project, which consisted of two separate missions. The first was the Pioneer Venus Orbiter, which inserted into an elliptical orbit around Venus (Dec. 4th, 1978) to study its atmosphere and map the surface. The second, the Pioneer Venus Multiprobe, released four probes which entered the atmosphere on Dec. 9th, 1978, returning data on its composition, winds and heat fluxes.

Pioneer Venus
Artist’s impression of NASA’s Pioneer Venus Orbiter in orbit around Venus. Credit: NASA

In 1985, the Soviets participated in a collaborative venture with several European states to launch the Vega Program. This two-spacecraft initiative was intended to take advantage of the appearance of Halley’s Comet in the inner Solar System, and combine a mission to it with a flyby of Venus. While en route to Halley on June 11th and 15th, the two Vega spacecraft dropped Venera-style probes into Venus’ atmosphere to map its weather.

NASA’s Magellan spacecraft was launched on May 4th, 1989, with a mission to map the surface of Venus with radar. In the course of its four and a half year mission, Magellan provided the most high-resolution images to date of the planet, was able to map 98% of the surface and 95% of its gravity field. In 1994, at the end of its mission, Magellan was sent to its destruction into the atmosphere of Venus to quantify its density.

Venus was observed by the Galileo and Cassini spacecraft during flybys on their respective missions to the outer planets, but Magellan was the last dedicated mission to Venus for over a decade. It was not until October of 2006 and June of 2007 that the MESSENGER probe would conduct a flyby of Venus (and collect data) in order to slow its trajectory for an eventual orbital insertion of Mercury.

The Venus Express, a probe designed and built by the European Space Agency, successfully assumed polar orbit around Venus on April 11th, 2006. This probe conducted a detailed study of the Venusian atmosphere and clouds, and discovered an ozone layer and a swirling double-vortex at the south pole before concluding its mission in December of 2014. Since December 7th, 2015, Japan’s Akatsuki has been in a highly elliptical Venusian orbit.

Because of its hostile surface and atmospheric conditions, Venus has proven to be a tough nut to crack, despite its proximity to Earth. In spite of that, NASA, Roscosmos, and India’s ISRO all have plans for sending additional missions to Venus in the coming years to learn more about our twin planet. And as the century progresses, and if certain people get their way, we may even attempt to send human colonists there!

We have written many articles about Earth and its closest neighbor here at Universe Today. Here’s The Planet Venus, Venus: 50 Years Since Our First Trip, And We’re Going Back, Interesting Facts About Venus, Exploring Venus By Airship, Colonizing Venus With Floating Cities, and How Do We Terraform Venus?

If you’d like more info on Earth, check out NASA’s Solar System Exploration Guide on Earth. And here’s a link to NASA’s Earth Observatory.

Astronomy Cast also has an interesting episode on the subject. Listen here, Episode 50: Venus.

How Does Light Travel?

Light moves at different wavelengths, represented here by the different colors seen in a prism. Credit: NASA and ESA

Ever since Democritus – a Greek philosopher who lived between the 5th and 4th century’s BCE – argued that all of existence was made up of tiny indivisible atoms, scientists have been speculating as to the true nature of light. Whereas scientists ventured back and forth between the notion that light was a particle or a wave until the modern era, the 20th century led to breakthroughs that showed us that it behaves as both.

These included the discovery of the electron, the development of quantum theory, and Einstein’s Theory of Relativity. However, there remains many unanswered questions about light, many of which arise from its dual nature. For instance, how is it that light can be apparently without mass, but still behave as a particle? And how can it behave like a wave and pass through a vacuum, when all other waves require a medium to propagate?

Theory of Light to the 19th Century:

During the Scientific Revolution, scientists began moving away from Aristotelian scientific theories that had been seen as accepted canon for centuries. This included rejecting Aristotle’s theory of light, which viewed it as being a disturbance in the air (one of his four “elements” that composed matter), and embracing the more mechanistic view that light was composed of indivisible atoms.

In many ways, this theory had been previewed by atomists of Classical Antiquity – such as Democritus and Lucretius – both of whom viewed light as a unit of matter given off by the sun. By the 17th century, several scientists emerged who accepted this view, stating that light was made up of discrete particles (or “corpuscles”). This included Pierre Gassendi, a contemporary of René Descartes, Thomas Hobbes, Robert Boyle, and most famously, Sir Isaac Newton.

The first edition of Newton's Opticks: or, a treatise of the reflexions, refractions, inflexions and colours of light (1704). Credit: Public Domain.
The first edition of Newton’s Opticks: or, a treatise of the reflexions, refractions, inflexions and colours of light (1704). Credit: Public Domain.

Newton’s corpuscular theory was an elaboration of his view of reality as an interaction of material points through forces. This theory would remain the accepted scientific view for more than 100 years, the principles of which were explained in his 1704 treatise “Opticks, or, a Treatise of the Reflections, Refractions, Inflections, and Colours of Light“. According to Newton, the principles of light could be summed as follows:

  • Every source of light emits large numbers of tiny particles known as corpuscles in a medium surrounding the source.
  • These corpuscles are perfectly elastic, rigid, and weightless.

This represented a challenge to “wave theory”, which had been advocated by 17th century Dutch astronomer Christiaan Huygens. . These theories were first communicated in 1678 to the Paris Academy of Sciences and were published in 1690 in his Traité de la lumière (“Treatise on Light“). In it, he argued a revised version of Descartes views, in which the speed of light is infinite and propagated by means of spherical waves emitted along the wave front.

Double-Slit Experiment:

By the early 19th century, scientists began to break with corpuscular theory. This was due in part to the fact that corpuscular theory failed to adequately explain the diffraction, interference and polarization of light, but was also because of various experiments that seemed to confirm the still-competing view that light behaved as a wave.

The most famous of these was arguably the Double-Slit Experiment, which was originally conducted by English polymath Thomas Young in 1801 (though Sir Isaac Newton is believed to have conducted something similar in his own time). In Young’s version of the experiment, he used a slip of paper with slits cut into it, and then pointed a light source at them to measure how light passed through it.

According to classical (i.e. Newtonian) particle theory, the results of the experiment should have corresponded to the slits, the impacts on the screen appearing in two vertical lines. Instead, the results showed that the coherent beams of light were interfering, creating a pattern of bright and dark bands on the screen. This contradicted classical particle theory, in which particles do not interfere with each other, but merely collide.

The only possible explanation for this pattern of interference was that the light beams were in fact behaving as waves. Thus, this experiment dispelled the notion that light consisted of corpuscles and played a vital part in the acceptance of the wave theory of light. However subsequent research, involving the discovery of the electron and electromagnetic radiation, would lead to scientists considering yet again that light behaved as a particle too, thus giving rise to wave-particle duality theory.

Electromagnetism and Special Relativity:

Prior to the 19th and 20th centuries, the speed of light had already been determined. The first recorded measurements were performed by Danish astronomer Ole Rømer, who demonstrated in 1676 using light measurements from Jupiter’s moon Io to show that light travels at a finite speed (rather than instantaneously).

Prof. Albert Einstein uses the blackboard as he delivers the 11th Josiah Willard Gibbs lecture at the meeting of the American Association for the Advancement of Science in the auditorium of the Carnegie Institue of Technology Little Theater at Pittsburgh, Pa., on Dec. 28, 1934. Using three symbols, for matter, energy and the speed of light respectively, Einstein offers additional proof of a theorem propounded by him in 1905 that matter and energy are the same thing in different forms. (AP Photo)
Prof. Albert Einstein delivering the 11th Josiah Willard Gibbs lecture at the meeting of the American Association for the Advancement of Science on Dec. 28th, 1934. Credit: AP Photo

By the late 19th century, James Clerk Maxwell proposed that light was an electromagnetic wave, and devised several equations (known as Maxwell’s equations) to describe how electric and magnetic fields are generated and altered by each other and by charges and currents. By conducting measurements of different types of radiation (magnetic fields, ultraviolet and infrared radiation), he was able to calculate the speed of light in a vacuum (represented as c).

In 1905, Albert Einstein published “On the Electrodynamics of Moving Bodies”, in which he advanced one of his most famous theories and overturned centuries of accepted notions and orthodoxies. In his paper, he postulated that the speed of light was the same in all inertial reference frames, regardless of the motion of the light source or the position of the observer.

Exploring the consequences of this theory is what led him to propose his theory of Special Relativity, which reconciled Maxwell’s equations for electricity and magnetism with the laws of mechanics, simplified the mathematical calculations, and accorded with the directly observed speed of light and accounted for the observed aberrations. It also demonstrated that the speed of light had relevance outside the context of light and electromagnetism.

For one, it introduced the idea that major changes occur when things move close the speed of light, including the time-space frame of a moving body appearing to slow down and contract in the direction of motion when measured in the frame of the observer. After centuries of increasingly precise measurements, the speed of light was determined to be 299,792,458 m/s in 1975.

Einstein and the Photon:

In 1905, Einstein also helped to resolve a great deal of confusion surrounding the behavior of electromagnetic radiation when he proposed that electrons are emitted from atoms when they absorb energy from light. Known as the photoelectric effect, Einstein based his idea on Planck’s earlier work with “black bodies” – materials that absorb electromagnetic energy instead of reflecting it (i.e. white bodies).

At the time, Einstein’s photoelectric effect was attempt to explain the “black body problem”, in which a black body emits electromagnetic radiation due to the object’s heat. This was a persistent problem in the world of physics, arising from the discovery of the electron, which had only happened eight years previous (thanks to British physicists led by J.J. Thompson and experiments using cathode ray tubes).

At the time, scientists still believed that electromagnetic energy behaved as a wave, and were therefore hoping to be able to explain it in terms of classical physics. Einstein’s explanation represented a break with this, asserting that electromagnetic radiation behaved in ways that were consistent with a particle – a quantized form of light which he named “photons”. For this discovery, Einstein was awarded the Nobel Prize in 1921.

Wave-Particle Duality:

Subsequent theories on the behavior of light would further refine this idea, which included French physicist Louis-Victor de Broglie calculating the wavelength at which light functioned. This was followed by Heisenberg’s “uncertainty principle” (which stated that measuring the position of a photon accurately would disturb measurements of it momentum and vice versa), and Schrödinger’s paradox that claimed that all particles have a “wave function”.

In accordance with quantum mechanical explanation, Schrodinger proposed that all the information about a particle (in this case, a photon) is encoded in its wave function, a complex-valued function roughly analogous to the amplitude of a wave at each point in space. At some location, the measurement of the wave function will randomly “collapse”, or rather “decohere”, to a sharply peaked function. This was illustrated in Schrödinger famous paradox involving a closed box, a cat, and a vial of poison (known as the “Schrödinger Cat” paradox).

In this illustration, one photon (purple) carries a million times the energy of another (yellow). Some theorists predict travel delays for higher-energy photons, which interact more strongly with the proposed frothy nature of space-time. Yet Fermi data on two photons from a gamma-ray burst fail to show this effect. The animation below shows the delay scientists had expected to observe. Credit: NASA/Sonoma State University/Aurore Simonnet
Artist’s impression of two photons travelling at different wavelengths, resulting in different- colored light. Credit: NASA/Sonoma State University/Aurore Simonnet

According to his theory, wave function also evolves according to a differential equation (aka. the Schrödinger equation). For particles with mass, this equation has solutions; but for particles with no mass, no solution existed. Further experiments involving the Double-Slit Experiment confirmed the dual nature of photons. where measuring devices were incorporated to observe the photons as they passed through the slits.

When this was done, the photons appeared in the form of particles and their impacts on the screen corresponded to the slits – tiny particle-sized spots distributed in straight vertical lines. By placing an observation device in place, the wave function of the photons collapsed and the light behaved as classical particles once more. As predicted by Schrödinger, this could only be resolved by claiming that light has a wave function, and that observing it causes the range of behavioral possibilities to collapse to the point where its behavior becomes predictable.

The development of Quantum Field Theory (QFT) was devised in the following decades to resolve much of the ambiguity around wave-particle duality. And in time, this theory was shown to apply to other particles and fundamental forces of interaction (such as weak and strong nuclear forces). Today, photons are part of the Standard Model of particle physics, where they are classified as boson – a class of subatomic particles that are force carriers and have no mass.

So how does light travel? Basically, traveling at incredible speeds (299 792 458 m/s) and at different wavelengths, depending on its energy. It also behaves as both a wave and a particle, able to propagate through mediums (like air and water) as well as space. It has no mass, but can still be absorbed, reflected, or refracted if it comes in contact with a medium. And in the end, the only thing that can truly divert it, or arrest it, is gravity (i.e. a black hole).

What we have learned about light and electromagnetism has been intrinsic to the revolution which took place in physics in the early 20th century, a revolution that we have been grappling with ever since. Thanks to the efforts of scientists like Maxwell, Planck, Einstein, Heisenberg and Schrodinger, we have learned much, but still have much to learn.

For instance, its interaction with gravity (along with weak and strong nuclear forces) remains a mystery. Unlocking this, and thus discovering a Theory of Everything (ToE) is something astronomers and physicists look forward to. Someday, we just might have it all figured out!

We have written many articles about light here at Universe Today. For example, here’s How Fast is the Speed of Light?, How Far is a Light Year?, What is Einstein’s Theory of Relativity?

If you’d like more info on light, check out these articles from The Physics Hypertextbook and NASA’s Mission Science page.

We’ve also recorded an entire episode of Astronomy Cast all about Interstellar Travel. Listen here, Episode 145: Interstellar Travel.

What Is Air Resistance?

Space Travel
Atlantis Breaks Through the Clouds

Here on Earth, we tend to take air resistance (aka. “drag”) for granted. We just assume that when we throw a ball, launch an aircraft, deorbit a spacecraft, or fire a bullet from a gun, that the act of it traveling through our atmosphere will naturally slow it down. But what is the reason for this? Just how is air able to slow an object down, whether it is in free-fall or in flight?

Because of our reliance on air travel, our enthusiasm for space exploration, and our love of sports and making things airborne (including ourselves), understanding air resistance is key to understanding physics, and an integral part of many scientific disciplines. As part of the subdiscipline known as fluid dynamics, it applies to fields of aerodynamics, hydrodynamics, astrophysics, and nuclear physics (to name a few).

Definition:

By definition, air resistance describes the forces that are in opposition to the relative motion of an object as it passes through the air. These drag forces act opposite to the oncoming flow velocity, thus slowing the object down. Unlike other resistance forces, drag depends directly on velocity, since it is the component of the net aerodynamic force acting opposite to the direction of the movement.

Another way to put it would be to say that air resistance is the result of collisions of the object’s leading surface with air molecules. It can therefore be said that the two most common factors that have a direct effect upon the amount of air resistance are the speed of the object and the cross-sectional area of the object. Ergo, both increased speeds and cross-sectional areas will result in an increased amount of air resistance.

This picture shows a bullet and the air flowing around it, giving visual representation to air resistance. Credits: Andrew Davidhazy/Rochester Institute of Technology
Picture showing a bullet and the air flowing around it, giving visual representation to air resistance. Credits: Andrew Davidhazy/Rochester Institute of Technology

In terms of aerodynamics and flight, drag refers to both the forces acting opposite of thrust, as well as the forces working perpendicular to it (i.e. lift). In astrodynamics, atmospheric drag is both a positive and a negative force depending on the situation. It is both a drain on fuel and efficiency during lift-off and a fuel savings when a spacecraft is returning to Earth from orbit.

Calculating Air Resistance:

Air resistance is usually calculated using the “drag equation”, which determines the force experienced by an object moving through a fluid or gas at relatively large velocity. This can be expressed mathematically as:

F_D\, =\, \tfrac12\, \rho\, v^2\, C_D\, A

In this equation, FD represents the drag force, p is the density of the fluid, v is the speed of the object relative to sound, A is the cross-section area, and CD is the the drag coefficient. The result is what is called “quadratic drag”. Once this is determined, calculating the amount of power needed to overcome the drag involves a similar process, which can be expressed mathematically as:

 P_d = \mathbf{F}_d \cdot \mathbf{v} = \tfrac12 \rho v^3 A C_d

Here, Pd is the power needed to overcome the force of drag, Fd is the drag force, v is the velocity, p is the density of the fluid, v is the speed of the object relative to sound, A is the cross-section area, and Cd is the the drag coefficient. As it shows, power needs are the cube of the velocity, so if it takes 10 horsepower to go 80 kph, it will take 80 horsepower to go 160 kph. In short, a doubling of speed requires an application of eight times the amount of power.

An F-22 Raptor reaching a velocity high enough to achieve a sonic boom. Credit: strangesounds.org
An F-22 Raptor reaching a velocity high enough to achieve a sonic boom. Credit: strangesounds.org

Types of Air Resistance:

There are three main types of drag in aerodynamics – Lift Induced, Parasitic, and Wave. Each affects an objects ability to stay aloft as well as the power and fuel needed to keep it there. Lift induced (or just induced) drag occurs as the result of the creation of lift on a three-dimensional lifting body (wing or fuselage). It has two primary components: vortex drag and lift-induced viscous drag.

The vortices derive from the turbulent mixing of air of varying pressure on the upper and lower surfaces of the body. These are needed to create lift. As the lift increases, so does the lift-induced drag. For an aircraft this means that as the angle of attack and the lift coefficient increase to the point of stall, so does the lift-induced drag.

By contrast, parasitic drag is caused by moving a solid object through a fluid. This type of drag is made up of multiple components, which includes “form drag” and “skin friction drag”. In aviation, induced drag tends to be greater at lower speeds because a high angle of attack is required to maintain lift, so as speed increases this drag becomes much less, but parasitic drag increases because the fluid is flowing faster around protruding objects increasing friction. The combined overall drag curve is minimal at some airspeeds and will be at or close to its optimal efficiency.

Space Shuttle Columbia launching on its maiden voyage on April 12th, 1981. Credit: NASA
Space Shuttle Columbia launching on its maiden voyage on April 12th, 1981. Credit: NASA

Wave drag (compressibility drag) is created by the presence of a body moving at high speed through a compressible fluid. In aerodynamics, wave drag consists of multiple components depending on the speed regime of the flight. In transonic flight – at speeds of Mach 0.5 or greater, but still less than Mach 1.0 (aka. speed of sound) – wave drag is the result of local supersonic flow.

Supersonic flow occurs on bodies traveling well below the speed of sound, as the local speed of air on a body increases when it accelerates over the body. In short, aircraft flying at transonic speeds often incur wave drag as a result. This increases as the speed of the aircraft nears the sound barrier of Mach 1.0, before becoming a supersonic object.

In supersonic flight, wave drag is the result of oblique shockwaves formed at the leading and trailing edges of the body. In highly supersonic flows bow waves will form instead. At supersonic speeds, wave drag is commonly separated into two components, supersonic lift-dependent wave drag and supersonic volume-dependent wave drag.

Understanding the role air frictions plays with flight, knowing its mechanics, and knowing the kinds of power needed to overcome it, are all crucial when it comes to aerospace and space exploration. Knowing all this will also be critical when it comes time to explore other planets in our Solar System, and in other star systems altogether!

We have written many articles about air resistance and flight here at Universe Today. Here’s an article on What Is Terminal Velocity?, How Do Planes Fly?, What is the Coefficient of Friction?, and What is the Force of Gravity?

If you’d like more information on NASA’s aircraft programs, check out the Beginner’s Guide to Aerodynamics, and here’s a link to the Drag Equation.

We’ve also recorded many related episodes of Astronomy Cast. Listen here, Episode 102: Gravity.

Messier 14 (M14) – the NGC 6402 Globular Cluster

Messier 14 with amateur telescope. Credit: Wikipedia Commons/Hewholooks

Welcome back to Messier Monday! Today, in our ongoing tribute to Tammy Plotner, we take a look at the M14 globular cluster!

In the 18th century, French astronomer Charles Messier began cataloging all the “nebulous objects” he had come to find while searching the night sky. Having originally mistook these for comets, he compiled a list these objects in the hopes of preventing future astronomers from making the same mistake. In time, the list would include 100 objects, and would come to be known as the Messier Catalog to posterity.

One of these objects was the globular cluster which he would designate as M14. Located in the southern constellation Ophiuchus, this slightly elliptically-shaped stellar swarm contains several hundred thousand stars, a surprising number of which are variables. Despite these stars not being densely concentrated in the central region, this object is not hard to spot for amateur astronomers that are dedicated to their craft!

Description:

Located some 30,000 light years from Earth and measuring 100 light years in diameter, this globular cluster can be found in the southern Ophiuchus constellation, along with several other Messier Objects. Although it began its life some 13.5 billion years ago, it is far from being done changing. It is still shaking intracluster dust from its shoes.

The constellation Ophiuchis. Credit: iau.org
The constellation Ophiuchis. Credit: iau.org

What this means is that M14, like many globular clusters, contains a good deal of matter that it picked up during its many times orbiting the center of our Galaxy. According to studies done by N. Matsunaga (et al):

“Our goal is to search for emission from the cold dust within clusters. We detect diffuse emissions toward NGC 6402 and 2808, but the IRAS 100-micron maps show the presence of strong background radiation. They are likely emitted from the galactic cirrus, while we cannot rule out the possible association of a bump of emission with the cluster in the case of NGC 6402. Such short lifetime indicates some mechanism(s) are at work to remove the intracluster dust… (and) its impact on the chemical evolution of globular clusters.”

Another thing that makes Messier 14 unusual is the presence of CH stars, such as the one that was discovered in 1997. CH stars are a very specific type of Population II carbon stars that can be identified by CH absorption bands in the spectra. Middle aged and metal poor, these underluminous suns are known to be binaries. Patrick Cote, the chief author of the research team that discovered the star, wrote in their research report to the American Astronomical Society:

“We report the discovery of a probable CH star in the core of the Galactic globular cluster M14 (=NGC 6402 = C1735-032), identified from an integrated-light spectrum of the cluster obtained with the MOS spectrograph on the Canada-France-Hawaii telescope. Both the star’s location near the tip of the red giant branch in the cluster color-magnitude diagram and its radial velocity therefore argue for membership in M14. Since the intermediate-resolution MOS spectrum shows not only enhanced CH absorption but also strong Swan bands of C2, M14 joins Centaurus as the only globular clusters known to contain “classical” CH stars. Although evidence for its duplicity must await additional radial velocity measurements, the CH star in M14 is probably, like all field CH stars, a spectroscopic binary with a degenerate (white dwarf) secondary.”

M14 Globular Cluster. Credit: tcaa.us
M14 Globular Cluster. Credit: tcaa.us

History of Observation:

The first recorded observations of the cluster were made by Charles Messier, who described it as a nebula without stars and catalogued it on June 1st, 1764. As he noted in his catalog:

“In the same night of June 1 to 2, 1764, I have discovered a new nebula in the garb which dresses the right arm of Ophiuchus; on the charts of Flamsteed it is situated on the parallel of the star Zeta Serpentis: that nebula is not considerable, its light is faint, yet it is seen well with an ordinary [non-achromatic] refractor of 3 feet & a half [FL]; it is round, & its diameter can be 2 minutes of arc; above it & very close to it is a small star of the nineth magnitude. I have employed for seeing this nebula nothing but the ordinary refractor of 3 feet & a half with which I have not noticed any star; maybe with a larger instrumentone could perceive one. I have determined the position of that nebula by its passage of the Meridian, comparing it with Gamma Ophiuchi, it has resulted for its right ascension 261d 18? 29?, & for its declination 3d 5? 45? south. I have marked that nebula on the chart of the apparent path of the Comet which I have observed last year [the comet of 1769].”

In 1783, William Herschel observed the cluster and was the first to resolve it into individual stars. As he noted, “With a power of 200, I see it consists of stars. They are better visible with 300. With 600, they are too obscure to be distinguished, though the appearance of stars is still preserved. This seems to be one of the most difficult objects to be resolved. With me, there is not a doubt remaining; but another person, in order to form a judgement, ought previously to go through all the several gradations of nebulae which I have resolved into stars.“

As always, it was Admiral William Henry Smyth who provided the most lengthy and detailed description, which he did in July of 1835:

“A large globular cluster of compressed minute stars, on the Serpent-bearer’s left arm. This fine object is of a lucid white colour, and very nebulous in aspect; which may be partly owing to its being situated in a splendid field of stars, the lustre of which interferes with it. By diminishing the field under high powers, some of the brightest of these attendants are excluded, but the cluster loses its definition. It was discovered by Messier in 1764, and thus described: “A small nebula, no star; light faint; form round; and may be seen with a telescope 3 1/2 feet long.” The mean apparent place is obtained by differentiation from Gamma Ophiuchi, from which it is south-by-west about 6deg 1/2, being nearly midway between Beta Scorpii and the tail of Aquila, and 16deg due south of Rasalhague [Alpha Ophiuchi]. Sir William Herschel resolved this object in 1783, with his 20-foot reflector, and he thus entered it: “Extremely bright, round, easily resolvable; with [magnification] 300 I can see the stars. The heavens are pretty rich in stars of a certain size [magnitude, brightness], but they are larger [brighter] than those in the cluster, and easily to be distinguished from them. This cluster is considerably behind the scattered stars, as some of them are projected upon it.” He afterwards added: “From the observations with the 20-foot telescope, which in 1791 and 1799 had the power of discering stars 75-80 times as far as the eye, the profundity of this cluster must be of the 900th order.” “It resembles the 10th Connoissance des temps [Messier 10], which probably would put on the same appearance as this, were it removed half its distance farther from us.”

Finder Chart for M14 (also shown M10 and M12). Credit: freestarcharts.com
Finder Chart for Messier 14 (also showing M10 and M12). Credit: freestarcharts.com

Locating Messier 14:

Messier 14 can be found by first locating Delta Ophiuchi, which M14 is located at about 21 degrees east and 0.4 degrees north from. It can also be found about one-third of the way from Beta to Eta Ophiuchi. If you know where Messier 10 is, take a look 0.8 degrees north and 10 degrees east of it to find M14. The cluster can also be located along the imaginary line from Cebalrai, an orange giant with an apparent magnitude of 2.76 and the fifth brightest star in Ophiuchus, to Antares, the bright red supergiant located in Scorpius.

With an apparent magnitude of +7.6, M14 can be easily observed with binoculars. For those using small telescopes, the bright center and faint halo can be viewed, whereas 8-inch instruments will reveal the cluster’s elliptical shape. To resolve individual stars, you will need a 12-inch telescope or larger. The best time of year to observe the cluster is in the months of May, June and July.

And here are the quick facts for Messier 15, for your convenience:

Object Name: Messier 14
Alternative Designations: M14, NGC 6402
Object Type: Globular Cluster
Constellation: Ophiuchus
Right Ascension: 17 : 37.6 (h:m)
Declination: -03 : 14 (deg: m)
Distance: 30.3 (kly)
Visual Brightness: 7.6 (mag)
Apparent Dimension: 11.0 (arc minutes)

We have written many interesting articles about Messier Objects here at Universe Today. Here’s Tammy Plotner’s Introduction to the Messier Objects, , M1 – The Crab Nebula, M8 – The Lagoon Nebula, and David Dickison’s articles on the 2013 and 2014 Messier Marathons.

Be to sure to check out our complete Messier Catalog. And for more information, check out the SEDS Messier Database.