During the many thousand years that human beings have been looking up at the stars, our concept of what the Universe looks like has changed dramatically. At one time, the magi and sages of the world believed that the Universe consisted of a flat Earth (or a square one, a zigarrut, etc.) surrounded by the Sun, the Moon, and the stars. Over time, ancient astronomers became aware that some stars did not move like the rest, and began to understand that these too were planets.
In time, we also began to understand that the Earth was indeed round, and came up with rationalized explanations for the behavior of other celestial bodies. And by classical antiquity, scientists had formulated ideas on how the motion of the planets occurred, and how all the heavenly orbs fit together. This gave rise to the Geocentric model of the universe, a now-defunct model that explained how the Sun, Moon, and firmament circled around our planet.
Back in 2008, Richard Branson outlined his vision for Virgin Galactic’s future. Once tourists are taken into Earth orbit, it seems possible that space hotels could be developed for longer stop-overs in space. He then went on to mention that short “sight-seeing” tours to the Moon could be started from these ultimate hotels. If we are to make travel to the Moon routine enough to send tourists there, the trip would need to be as short as possible.
So how long is the commute from the Earth to the Moon anyway? Human beings and machines have made that trip on several occasions. And while some took a very long time, others were astonishingly fast. Let’s review the various missions and methods, and see which offers the most efficient and least time-consuming means of transit.
Here on Earth, we tend to take our atmosphere for granted, and not without reason. Our atmosphere has a lovely mix of nitrogen and oxygen (78% and 21% respectively) with trace amounts of water vapor, carbon dioxide and other gaseous molecules. What’s more, we enjoy an atmospheric pressure of 101.325 kPa, which extends to an altitude of about 8.5 km.
In short, our atmosphere is plentiful and life-sustaining. But what about the other planets of the Solar System? How do they stack up in terms of atmospheric composition and pressure? We know for a fact that they are not breathable by humans and cannot support life. But just what is the difference between these balls of rock and gas and our own?
For starters, it should be noted that every planet in the Solar System has an atmosphere of one kind or another. And these range from incredibly thin and tenuous (such as Mercury’s “exosphere”) to the incredibly dense and powerful – which is the case for all of the gas giants. And depending on the composition of the planet, whether it is a terrestrial or a gas/ice giant, the gases that make up its atmosphere range from either the hydrogen and helium to more complex elements like oxygen, carbon dioxide, ammonia and methane.
Mercury’s Atmosphere:
Mercury is too hot and too small to retain an atmosphere. However, it does have a tenuous and variable exosphere that is made up of hydrogen, helium, oxygen, sodium, calcium, potassium and water vapor, with a combined pressure level of about 10-14 bar (one-quadrillionth of Earth’s atmospheric pressure). It is believed this exosphere was formed from particles captured from the Sun, volcanic outgassing and debris kicked into orbit by micrometeorite impacts.
Because it lacks a viable atmosphere, Mercury has no way to retain the heat from the Sun. As a result of this and its high eccentricity, the planet experiences considerable variations in temperature. Whereas the side that faces the Sun can reach temperatures of up to 700 K (427° C), while the side in shadow dips down to 100 K (-173° C).
Venus’ Atmosphere:
Surface observations of Venus have been difficult in the past, due to its extremely dense atmosphere, which is composed primarily of carbon dioxide with a small amount of nitrogen. At 92 bar (9.2 MPa), the atmospheric mass is 93 times that of Earth’s atmosphere and the pressure at the planet’s surface is about 92 times that at Earth’s surface.
Venus is also the hottest planet in our Solar System, with a mean surface temperature of 735 K (462 °C/863.6 °F). This is due to the CO²-rich atmosphere which, along with thick clouds of sulfur dioxide, generates the strongest greenhouse effect in the Solar System. Above the dense CO² layer, thick clouds consisting mainly of sulfur dioxide and sulfuric acid droplets scatter about 90% of the sunlight back into space.
Another common phenomena is Venus’ strong winds, which reach speeds of up to 85 m/s (300 km/h; 186.4 mph) at the cloud tops and circle the planet every four to five Earth days. At this speed, these winds move up to 60 times the speed of the planet’s rotation, whereas Earth’s fastest winds are only 10-20% of the planet’s rotational speed.
Venus flybys have also indicated that its dense clouds are capable of producing lightning, much like the clouds on Earth. Their intermittent appearance indicates a pattern associated with weather activity, and the lightning rate is at least half of that on Earth.
Earth’s Atmosphere:
Earth’s atmosphere, which is composed of nitrogen, oxygen, water vapor, carbon dioxide and other trace gases, also consists of five layers. These consists of the Troposphere, the Stratosphere, the Mesosphere, the Thermosphere, and the Exosphere. As a rule, air pressure and density decrease the higher one goes into the atmosphere and the farther one is from the surface.
Closest to the Earth is the Troposphere, which extends from the 0 to between 12 km and 17 km (0 to 7 and 10.56 mi) above the surface. This layer contains roughly 80% of the mass of Earth’s atmosphere, and nearly all atmospheric water vapor or moisture is found in here as well. As a result, it is the layer where most of Earth’s weather takes place.
The Stratosphere extends from the Troposphere to an altitude of 50 km (31 mi). This layer extends from the top of the troposphere to the stratopause, which is at an altitude of about 50 to 55 km (31 to 34 mi). This layer of the atmosphere is home to the ozone layer, which is the part of Earth’s atmosphere that contains relatively high concentrations of ozone gas.
Next is the Mesosphere, which extends from a distance of 50 to 80 km (31 to 50 mi) above sea level. It is the coldest place on Earth and has an average temperature of around -85 °C (-120 °F; 190 K). The Thermosphere, the second highest layer of the atmosphere, extends from an altitude of about 80 km (50 mi) up to the thermopause, which is at an altitude of 500–1000 km (310–620 mi).
The lower part of the thermosphere, from 80 to 550 kilometers (50 to 342 mi), contains the ionosphere – which is so named because it is here in the atmosphere that particles are ionized by solar radiation. This layer is completely cloudless and free of water vapor. It is also at this altitude that the phenomena known as Aurora Borealis and Aurara Australis are known to take place.
The Exosphere, which is outermost layer of the Earth’s atmosphere, extends from the exobase – located at the top of the thermosphere at an altitude of about 700 km above sea level – to about 10,000 km (6,200 mi). The exosphere merges with the emptiness of outer space, and is mainly composed of extremely low densities of hydrogen, helium and several heavier molecules including nitrogen, oxygen and carbon dioxide
The exosphere is located too far above Earth for any meteorological phenomena to be possible. However, the Aurora Borealis and Aurora Australis sometimes occur in the lower part of the exosphere, where they overlap into the thermosphere.
The average surface temperature on Earth is approximately 14°C; but as already noted, this varies. For instance, the hottest temperature ever recorded on Earth was 70.7°C (159°F), which was taken in the Lut Desert of Iran. Meanwhile, the coldest temperature ever recorded on Earth was measured at the Soviet Vostok Station on the Antarctic Plateau, reaching an historic low of -89.2°C (-129°F).
Mars’ Atmosphere:
Planet Mars has a very thin atmosphere which is composed of 96% carbon dioxide, 1.93% argon and 1.89% nitrogen along with traces of oxygen and water. The atmosphere is quite dusty, containing particulates that measure 1.5 micrometers in diameter, which is what gives the Martian sky a tawny color when seen from the surface. Mars’ atmospheric pressure ranges from 0.4 – 0.87 kPa, which is equivalent to about 1% of Earth’s at sea level.
Because of its thin atmosphere, and its greater distance from the Sun, the surface temperature of Mars is much colder than what we experience here on Earth. The planet’s average temperature is -46 °C (51 °F), with a low of -143 °C (-225.4 °F) during the winter at the poles, and a high of 35 °C (95 °F) during summer and midday at the equator.
The planet also experiences dust storms, which can turn into what resembles small tornadoes. Larger dust storms occur when the dust is blown into the atmosphere and heats up from the Sun. The warmer dust filled air rises and the winds get stronger, creating storms that can measure up to thousands of kilometers in width and last for months at a time. When they get this large, they can actually block most of the surface from view.
Trace amounts of methane have also been detected in the Martian atmosphere, with an estimated concentration of about 30 parts per billion (ppb). It occurs in extended plumes, and the profiles imply that the methane was released from specific regions – the first of which is located between Isidis and Utopia Planitia (30°N260°W) and the second in Arabia Terra (0°N310°W).
Ammonia was also tentatively detected on Mars by the Mars Express satellite, but with a relatively short lifetime. It is not clear what produced it, but volcanic activity has been suggested as a possible source.
Jupiter’s Atmosphere:
Much like Earth, Jupiter experiences auroras near its northern and southern poles. But on Jupiter, the auroral activity is much more intense and rarely ever stops. The intense radiation, Jupiter’s magnetic field, and the abundance of material from Io’s volcanoes that react with Jupiter’s ionosphere create a light show that is truly spectacular.
Jupiter also experiences violent weather patterns. Wind speeds of 100 m/s (360 km/h) are common in zonal jets, and can reach as high as 620 kph (385 mph). Storms form within hours and can become thousands of km in diameter overnight. One storm, the Great Red Spot, has been raging since at least the late 1600s. The storm has been shrinking and expanding throughout its history; but in 2012, it was suggested that the Giant Red Spot might eventually disappear.
Jupiter is perpetually covered with clouds composed of ammonia crystals and possibly ammonium hydrosulfide. These clouds are located in the tropopause and are arranged into bands of different latitudes, known as “tropical regions”. The cloud layer is only about 50 km (31 mi) deep, and consists of at least two decks of clouds: a thick lower deck and a thin clearer region.
There may also be a thin layer of water clouds underlying the ammonia layer, as evidenced by flashes of lightning detected in the atmosphere of Jupiter, which would be caused by the water’s polarity creating the charge separation needed for lightning. Observations of these electrical discharges indicate that they can be up to a thousand times as powerful as those observed here on the Earth.
Saturn’s Atmosphere:
The outer atmosphere of Saturn contains 96.3% molecular hydrogen and 3.25% helium by volume. The gas giant is also known to contain heavier elements, though the proportions of these relative to hydrogen and helium is not known. It is assumed that they would match the primordial abundance from the formation of the Solar System.
Trace amounts of ammonia, acetylene, ethane, propane, phosphine and methane have been also detected in Saturn’s atmosphere. The upper clouds are composed of ammonia crystals, while the lower level clouds appear to consist of either ammonium hydrosulfide (NH4SH) or water. Ultraviolet radiation from the Sun causes methane photolysis in the upper atmosphere, leading to a series of hydrocarbon chemical reactions with the resulting products being carried downward by eddies and diffusion.
Saturn’s atmosphere exhibits a banded pattern similar to Jupiter’s, but Saturn’s bands are much fainter and wider near the equator. As with Jupiter’s cloud layers, they are divided into the upper and lower layers, which vary in composition based on depth and pressure. In the upper cloud layers, with temperatures in range of 100–160 K and pressures between 0.5–2 bar, the clouds consist of ammonia ice.
Water ice clouds begin at a level where the pressure is about 2.5 bar and extend down to 9.5 bar, where temperatures range from 185–270 K. Intermixed in this layer is a band of ammonium hydrosulfide ice, lying in the pressure range 3–6 bar with temperatures of 290–235 K. Finally, the lower layers, where pressures are between 10–20 bar and temperatures are 270–330 K, contains a region of water droplets with ammonia in an aqueous solution.
On occasion, Saturn’s atmosphere exhibits long-lived ovals, similar to what is commonly observed on Jupiter. Whereas Jupiter has the Great Red Spot, Saturn periodically has what’s known as the Great White Spot (aka. Great White Oval). This unique but short-lived phenomenon occurs once every Saturnian year, roughly every 30 Earth years, around the time of the northern hemisphere’s summer solstice.
These spots can be several thousands of kilometers wide, and have been observed in 1876, 1903, 1933, 1960, and 1990. Since 2010, a large band of white clouds called the Northern Electrostatic Disturbance have been observed enveloping Saturn, which was spotted by the Cassini space probe. If the periodic nature of these storms is maintained, another one will occur in about 2020.
The winds on Saturn are the second fastest among the Solar System’s planets, after Neptune’s. Voyager data indicate peak easterly winds of 500 m/s (1800 km/h). Saturn’s northern and southern poles have also shown evidence of stormy weather. At the north pole, this takes the form of a hexagonal wave pattern, whereas the south shows evidence of a massive jet stream.
The persisting hexagonal wave pattern around the north pole was first noted in the Voyager images. The sides of the hexagon are each about 13,800 km (8,600 mi) long (which is longer than the diameter of the Earth) and the structure rotates with a period of 10h 39m 24s, which is assumed to be equal to the period of rotation of Saturn’s interior.
The south pole vortex, meanwhile, was first observed using the Hubble Space Telescope. These images indicated the presence of a jet stream, but not a hexagonal standing wave. These storms are estimated to be generating winds of 550 km/h, are comparable in size to Earth, and believed to have been going on for billions of years. In 2006, the Cassini space probe observed a hurricane-like storm that had a clearly defined eye. Such storms had not been observed on any planet other than Earth – even on Jupiter.
Uranus’ Atmosphere:
As with Earth, the atmosphere of Uranus is broken into layers, depending upon temperature and pressure. Like the other gas giants, the planet doesn’t have a firm surface, and scientists define the surface as the region where the atmospheric pressure exceeds one bar (the pressure found on Earth at sea level). Anything accessible to remote-sensing capability – which extends down to roughly 300 km below the 1 bar level – is also considered to be the atmosphere.
Using these references points, Uranus’ atmosphere can be divided into three layers. The first is the troposphere, between altitudes of -300 km below the surface and 50 km above it, where pressures range from 100 to 0.1 bar (10 MPa to 10 kPa). The second layer is the stratosphere, which reaches between 50 and 4000 km and experiences pressures between 0.1 and 10-10 bar (10 kPa to 10 µPa).
The troposphere is the densest layer in Uranus’ atmosphere. Here, the temperature ranges from 320 K (46.85 °C/116 °F) at the base (-300 km) to 53 K (-220 °C/-364 °F) at 50 km, with the upper region being the coldest in the solar system. The tropopause region is responsible for the vast majority of Uranus’s thermal infrared emissions, thus determining its effective temperature of 59.1 ± 0.3 K.
Within the troposphere are layers of clouds – water clouds at the lowest pressures, with ammonium hydrosulfide clouds above them. Ammonia and hydrogen sulfide clouds come next. Finally, thin methane clouds lay on the top.
In the stratosphere, temperatures range from 53 K (-220 °C/-364 °F) at the upper level to between 800 and 850 K (527 – 577 °C/980 – 1070 °F) at the base of the thermosphere, thanks largely to heating caused by solar radiation. The stratosphere contains ethane smog, which may contribute to the planet’s dull appearance. Acetylene and methane are also present, and these hazes help warm the stratosphere.
The outermost layer, the thermosphere and corona, extend from 4,000 km to as high as 50,000 km from the surface. This region has a uniform temperature of 800-850 (577 °C/1,070 °F), although scientists are unsure as to the reason. Because the distance to Uranus from the Sun is so great, the amount of sunlight absorbed cannot be the primary cause.
Like Jupiter and Saturn, Uranus’s weather follows a similar pattern where systems are broken up into bands that rotate around the planet, which are driven by internal heat rising to the upper atmosphere. As a result, winds on Uranus can reach up to 900 km/h (560 mph), creating massive storms like the one spotted by the Hubble Space Telescope in 2012. Similar to Jupiter’s Great Red Spot, this “Dark Spot” was a giant cloud vortex that measured 1,700 kilometers by 3,000 kilometers (1,100 miles by 1,900 miles).
Neptune’s Atmosphere:
At high altitudes, Neptune’s atmosphere is 80% hydrogen and 19% helium, with a trace amount of methane. As with Uranus, this absorption of red light by the atmospheric methane is part of what gives Neptune its blue hue, although Neptune’s is darker and more vivid. Because Neptune’s atmospheric methane content is similar to that of Uranus, some unknown constituent is thought to contribute to Neptune’s more intense coloring.
Neptune’s atmosphere is subdivided into two main regions: the lower troposphere (where temperature decreases with altitude), and the stratosphere (where temperature increases with altitude). The boundary between the two, the tropopause, lies at a pressure of 0.1 bars (10 kPa). The stratosphere then gives way to the thermosphere at a pressure lower than 10-5 to 10-4 microbars (1 to 10 Pa), which gradually transitions to the exosphere.
Neptune’s spectra suggest that its lower stratosphere is hazy due to condensation of products caused by the interaction of ultraviolet radiation and methane (i.e. photolysis), which produces compounds such as ethane and ethyne. The stratosphere is also home to trace amounts of carbon monoxide and hydrogen cyanide, which are responsible for Neptune’s stratosphere being warmer than that of Uranus.
For reasons that remain obscure, the planet’s thermosphere experiences unusually high temperatures of about 750 K (476.85 °C/890 °F). The planet is too far from the Sun for this heat to be generated by ultraviolet radiation, which means another heating mechanism is involved – which could be the atmosphere’s interaction with ion’s in the planet’s magnetic field, or gravity waves from the planet’s interior that dissipate in the atmosphere.
Because Neptune is not a solid body, its atmosphere undergoes differential rotation. The wide equatorial zone rotates with a period of about 18 hours, which is slower than the 16.1-hour rotation of the planet’s magnetic field. By contrast, the reverse is true for the polar regions where the rotation period is 12 hours.
This differential rotation is the most pronounced of any planet in the Solar System, and results in strong latitudinal wind shear and violent storms. The three most impressive were all spotted in 1989 by the Voyager 2 space probe, and then named based on their appearances.
The first to be spotted was a massive anticyclonic storm measuring 13,000 x 6,600 km and resembling the Great Red Spot of Jupiter. Known as the Great Dark Spot, this storm was not spotted five later (Nov. 2nd, 1994) when the Hubble Space Telescope looked for it. Instead, a new storm that was very similar in appearance was found in the planet’s northern hemisphere, suggesting that these storms have a shorter life span than Jupiter’s.
The Scooter is another storm, a white cloud group located farther south than the Great Dark Spot – a nickname that first arose during the months leading up to the Voyager 2 encounter in 1989. The Small Dark Spot, a southern cyclonic storm, was the second-most-intense storm observed during the 1989 encounter. It was initially completely dark; but as Voyager 2 approached the planet, a bright core developed and could be seen in most of the highest-resolution images.
In sum, the planet’s of our Solar System all have atmospheres of sorts. And compared to Earth’s relatively balmy and thick atmosphere, they run the gamut between very very thin to very very dense. They also range in temperatures from the extremely hot (like on Venus) to the extreme freezing cold.
And when it comes to weather systems, things can equally extreme, with planet’s boasting either weather at all, or intense cyclonic and dust storms that put storms here n Earth to shame. And whereas some are entirely hostile to life as we know it, others we might be able to work with.
The Scientific Revolution, which took place in the 16th and 17th centuries, was a time of unprecedented learning and discovery. During this period, the foundations of modern science were laid, thanks to breakthroughs in the fields of physics, mathematics, chemistry, biology, and astronomy. And when it comes to astronomy, the most influential scholar was definitely Nicolaus Copernicus, the man credited with the creation of the Heliocentric model of the Universe.
Based on ongoing observations of the motions of the planets, as well as previous theories from classical antiquity and the Islamic World, Copernicus’ proposed a model of the Universe where the Earth, the planets and the stars all revolved around the Sun. In so doing, he resolved the mathematical problems and inconsistencies arising out of the classic geocentric model and laid the foundations for modern astronomy.
While Copernicus was not the first to propose a model of the Solar System in which the Earth and planets revolved around the Sun, his model of a heliocentric universe was both novel and timely. For one, it came at a time when European astronomers were struggling to resolve the mathematical and observational problems that arose out of the then-accepted Ptolemaic model of the Universe, a geocentric model proposed in the 2nd century CE.
In addition, Copernicus’ model was the first astronomical system that offered a complete and detailed account of how the Universe worked. Not only did his model resolves issues arising out of the Ptolemaic system, it offered a simplified view of the universe that did away with complicated mathematical devices that were needed for the geocentric model to work. And with time, the model gained influential proponents who contributed to it becoming the accepted convention of astronomy.
The Ptolemaic (Geocentric) Model:
The geocentric model, in which planet Earth is the center of the Universe and is circled by the Sun and all the planets, had been the accepted cosmological model since ancient times. By late antiquity, this model had come to be formalized by ancient Greek and Roman astronomers, such as Aristotle (384 – 322 BCE) – who’s theories on physics became the basis for the motion of the planets – and Ptolemy (ca. 100 – ca.?170 CE), who proposed the mathematical solutions.
The geocentric model essentially came down to two common observations. First of all, to ancient astronomers, the stars, the Sun, and the planets appeared to revolve around the Earth on daily basis. Second, from the perspective of the Earth-bound observer, the Earth did not appear to move, making it a fixed point in space.
The belief that the Earth was spherical, which became an accepted fact by the 3rd century BCE, was incorporated into this system. As such, by the time of Aristotle, the geocentric model of the universe became one where the Earth, Sun and all the planets were spheres, and where the Sun, planets and stars all moved in perfect circular motions.
However, it was not until Egyptian-Greek astronomer Claudius Ptolemaeus (aka. Ptolemy) released his treatise Almagest in the 2nd century BCE that the details became standardized. Drawing on centuries of astronomical traditions, ranging from Babylonian to modern times, Ptolemy argued that the Earth was in the center of the universe and the stars were all at a modest distance from the center of the universe.
Each planet in this system is also moved by a system of two spheres – a deferent and an epicycle. The deferent is a circle whose center point is removed from the Earth, which was used to account for the differences in the lengths of the seasons. The epicycle is embedded in the deferent sphere, acting as a sort of “wheel within a wheel”. The purpose of he epicycle was to account for retrograde motion, where planets in the sky appear to be slowing down, moving backwards, and then moving forward again.
Unfortunately, these explanations did not account for all the observed behaviors of the planets. Most noticeably, the size of a planet’s retrograde loop (especially Mars) were sometimes smaller, and larger, than expected. To alleviate the problem, Ptolemy developed the equant – a geometrical tool located near the center of a planet’s orbit that causes it to move at a uniform angular speed.
To an observer standing at this point, a planet’s epicycle would always appear to move at uniform speed, whereas it would appear to be moving at non-uniform speed from all other locations.While this system remained the accepted cosmological model within the Roman, Medieval European and Islamic worlds for over a thousand years, it was unwieldy by modern standards.
However, it did manage to predict planetary motions with a fair degree of accuracy, and was used to prepare astrological and astronomical charts for the next 1500 years. By the 16th century, this model was gradually superseded by the heliocentric model of the universe, as espoused by Copernicus, and then Galileo and Kepler.
The Copernican (Heliocentric) Model:
In the 16th century, Nicolaus Copernicus began devising his version of the heliocentric model. Like others before him, Copernicus built on the work of Greek astronomer Atistarchus, as well as paying homage to the Maragha school and several notable philosophers from the Islamic world (see below). By the early 16th century, Copernicus summarized his ideas in a short treatise titled Commentariolus (“Little Commentary”).
By 1514, Copernicus began circulating copies amongst his friends, many of whom were fellow astronomers and scholars. This forty-page manuscript described his ideas about the heliocentric hypothesis, which was based on seven general principles. These principles stated that:
Celestial bodies do not all revolve around a single point
The center of Earth is the center of the lunar sphere—the orbit of the moon around Earth
All the spheres rotate around the Sun, which is near the center of the Universe
The distance between Earth and the Sun is an insignificant fraction of the distance from Earth and Sun to the stars, so parallax is not observed in the stars
The stars are immovable – their apparent daily motion is caused by the daily rotation of Earth
Earth is moved in a sphere around the Sun, causing the apparent annual migration of the Sun. Earth has more than one motion
Earth’s orbital motion around the Sun causes the seeming reverse in direction of the motions of the planets
Thereafter he continued gathering data for a more detailed work, and by 1532, he had come close to completing the manuscript of his magnum opus – De revolutionibus orbium coelestium(On the Revolutions of the Heavenly Spheres). In it, he advanced his seven major arguments, but in more detailed form and with detailed computations to back them up.
By placing the orbits of Mercury and Venus between the Earth and the Sun, Copernicus was able to account for changes in their appearances. In short, when they are on the far side of the Sun, relative to Earth, they appear smaller but full. When they are on the same side of the Sun as the Earth, they appear larger and “horned” (crescent-shaped).
It also explained the retrograde motion of planets like Mars and Jupiter by showing that Earth astronomers do not have a fixed frame of reference but a moving one. This further explained how Mars and Jupiter could appear significantly larger at certain times than at others. In essence, they are significantly closer to Earth when at opposition than when they are at conjunction.
However, due to fears that the publication of his theories would lead to condemnation from the church (as well as, perhaps, worries that his theory presented some scientific flaws) he withheld his research until a year before he died. It was only in 1542, when he was near death, that he sent his treatise to Nuremberg to be published.
Historical Antecedents:
As already noted, Copernicus was not the first to advocate a heliocentric view of the Universe, and his model was based on the work of several previous astronomers. The first recorded examples of this are traced to classical antiquity, when Aristarchus of Samos (ca. 310 – 230 BCE) published writings that contained references which were cited by his contemporaries (such as Archimedes).
In his treatise The Sand Reckoner, Archimedes described another work by Aristarchus in which he advanced an alternative hypothesis of the heliocentric model. As he explained:
Now you are aware that ‘universe’ is the name given by most astronomers to the sphere whose center is the center of the earth and whose radius is equal to the straight line between the center of the sun and the center of the earth. This is the common account… as you have heard from astronomers. But Aristarchus of Samos brought out a book consisting of some hypotheses, in which the premises lead to the result that the universe is many times greater than that now so called. His hypotheses are that the fixed stars and the sun remain unmoved, that the earth revolves about the sun in the circumference of a circle, the sun lying in the middle of the orbit, and that the sphere of the fixed stars, situated about the same center as the sun, is so great that the circle in which he supposes the earth to revolve bears such a proportion to the distance of the fixed stars as the center of the sphere bears to its surface.
This gave rise to the notion that there should be an observable parallax with the “fixed stars” (i.e an observed movement of the stars relative to each other as the Earth moved around the Sun). According to Archimedes, Aristarchus claimed that the stars were much farther away than commonly believed, and this was the reason for no discernible parallax.
The only other philosopher from antiquity who’s writings on heliocentrism have survived is Seleucis of Seleucia (ca. 190 – 150 BCE). A Hellenistic astronomer who lived in the Near-Eastern Seleucid empire, Seleucus was a proponent of the heliocentric system of Aristarchus, and is said to have proved the heliocentric theory.
According to contemporary sources, Seleucus may have done this by determining the constants of the geocentric model and applying them to a heliocentric theory, as well as computing planetary positions (possibly using trigonometric methods). Alternatively, his explanation may have involved the phenomenon of tides, which he supposedly theorized to be related to the influence of the Moon and the revolution of the Earth around the Earth-Moon ‘center of mass’.
In the 5th century CE, Roman philosopher Martianus Capella of Carthage expressed an opinion that the planets Venus and Mercury revolved around the Sun, as a way of explaining the discrepancies in their appearances. Capella’s model was discussed in the Early Middle Ages by various anonymous 9th-century commentators, and Copernicus mentions him as an influence on his own work.
During the Late Middle Ages, Bishop Nicole Oresme (ca. 1320-1325 to 1382 CE) discussed the possibility that the Earth rotated on its axis. In his 1440 treatise De Docta Ignorantia (On LearnedIgnorance) Cardinal Nicholas of Cusa (1401 – 1464 CE) asked whether there was any reason to assert that the Sun (or any other point) was the center of the universe.
Indian astronomers and cosmologists also hinted at the possibility of a heliocentric universe during late antiquity and the Middle Ages. In 499 CE, Indian astronomer Aaryabhata published his magnum opus Aryabhatiya, in which he proposed a model where the Earth was spinning on its axis and the periods of the planets were given with respect to the Sun. He also accurately calculated the periods of the planets, times of the solar and lunar eclipses, and the motion of the Moon.
In the 15th century, Nilakantha Somayaji published the Aryabhatiyabhasya, which was a commentary on Aryabhata’s Aryabhatiya. In it, hedeveloped a computational system for a partially heliocentric planetary model, in which the planets orbit the Sun, which in turn orbits the Earth. In the Tantrasangraha (1500), he revised the mathematics of his planetary system further and incorporated the Earth’s rotation on its axis.
Also, the heliocentric model of the universe had proponents in the medieval Islamic world, many of whom would go on to inspire Copernicus. Prior to the 10th century, the Ptolemaic model of the universe was the accepted standard to astronomers in the West and Central Asia. However, in time, manuscripts began to appear that questioned several of its precepts.
For instance, the 10th-century Iranian astronomer Abu Sa’id al-Sijzi contradicted the Ptolemaic model by asserting that the Earth revolved on its axis, thus explaining the apparent diurnal cycle and the rotation of the stars relative to Earth. In the early 11th century, Egyptian-Arab astronomer Alhazen wrote a critique entitled Doubts on Ptolemy (ca. 1028) in which he criticized many aspects of his model.
Around the same time, Iranian philosopher Abu Rayhan Biruni 973 – 1048) discussed the possibility of Earth rotating about its own axis and around the Sun – though he considered this a philosophical issue and not a mathematical one. At the Maragha and the Ulugh Beg (aka. Samarkand) Observatory, the Earth’s rotation was discussed by several generations of astronomers between the 13th and 15th centuries, and many of the arguments and evidence put forward resembled those used by Copernicus.
Impact of the Heliocentric Model:
Despite his fears about his arguments producing scorn and controversy, the publication of Copernicu’s theories resulted in only mild condemnation from religious authorities. Over time, many religious scholars tried to argue against his model. But within a few generation’s time, Copernicus’ theory became more widespread and accepted, and gained many influential defenders in the meantime.
These included Galileo Galilei (1564-1642), who’s investigations of the heavens using the telescope allowed him to resolve what were seen as flaws in the heliocentric model, as well as discovering aspects about the heavens that supported heliocentrism. For example, Galileo discovered moons orbiting Jupiter, Sunspots, and the imperfections on the Moon’s surface – all of which helped to undermine the notion that the planets were perfect orbs, rather than planets similar to Earth. While Galileo’s advocacy of Copernicus’ theories resulted in his house arrest, others soon followed.
German mathematician and astronomer Johannes Kepler (1571-1630) also helped to refine the heliocentric model with his introduction of elliptical orbits. Prior to this, the heliocentric model still made use of circular orbits, which did not explain why planets orbited the Sun at different speeds at different times. By showing how the planet’s sped up while at certain points in their orbits, and slowed down in others, Kepler resolved this.
In addition, Copernicus’ theory about the Earth being capable of motion would go on to inspire a rethinking of the entire field of physics. Whereas previous ideas of motion depended on an outside force to instigate and maintain it (i.e. wind pushing a sail) Copernicus’ theories helped to inspire the concepts of gravity and inertia. These ideas would be articulated by Sir Isaac Newton, who’s Principia formed the basis of modern physics and astronomy.
Although its progress was slow, the heliocentric model eventually replaced the geocentric model. In the end, the impact of its introduction was nothing short of a revolutionary. Henceforth, humanity’s understanding of the universe and our place in it would be forever changed.
Virtually every planet in the Solar System has moons. Earth has The Moon, Mars has Phobos and Deimos, and Jupiter and Saturn have 67 and 62 officially named moons, respectively. Heck, even the recently-demoted dwarf planet Pluto has five confirmed moons – Charon, Nix, Hydra, Kerberos and Styx. And even asteroids like 243 Ida may have satellites orbiting them (in this case, Dactyl). But what about Mercury?
If moons are such a common feature in the Solar System, why is it that Mercury has none? Yes, if one were to ask how many satellites the planet closest to our Sun has, that would be the short answer. But answering it more thoroughly requires that we examine the process through which other planets acquired their moons, and seeing how these apply (or fail to apply) to Mercury.
When beholding the sheer size and majesty of mountains, ancient humans could not help but feel that they were standing in the presence of something… godlike. And within the belief systems of many ancient cultures, it was generally felt that mountains were something spiritual – either serving as the home of the Gods, a result of their activity, or a place to get closer to God.
Thanks to modern geology, we now know the true story of how mountains are formed. Simply put, they are the result of tectonic forces or volcanism. But knowing this has not diminished their impressive and awe-inspiring nature. When a geological formation is created through forces that can only be described as titanic, this is to be expected. But just how are mountains formed?
In truth, there are three ways in which mountains are formed, which correspond to the types of mountains in question. These are known as volcanic, fold and block mountains. All of these are the result of plate tectonics, where compressional forces, isostatic uplift and intrusion of igneous matter forces surface rock upward, creating a landform higher than the surrounding features.
Over the course of many million years, these uplifted sections are eroded by the elements – wind, rain, ice and gravity. These gradually wear the surface of the mountains down, cause the surface to be younger than the rocks that form them, and lead to the types of formations and distributions we are familiar with today.
Volcanic Mountains:
Volcanic mountains are formed when a tectonic plate is pushed beneath another (or above a mid-ocean ridge or hotspot) where magma is forced to the surface. When the magma reaches the surface, it often builds a volcanic mountain, such as s shield volcano or a stratovolcano. Examples of this sort of mountains include Mount Fuji in Japan, Mauna Kea in Hawaii, Nyamuragira in the Democratic Republic of Congo, Skjaldbreiður in Iceland and Mount Etna in Sicily.
At other times, the rising magma solidifies below the surface and forms dome mountains, where material is pushed up from the force of the build-up beneath it. Examples of this formation include Navajo Mountain in San Juan County, Utah; the Chaitén lava dome of Chile, Torfajökull in Iceland, and Mount St. Helens in Washington State.
Fold Mountains:
As the name suggests, fold mountains occur when two tectonic plates collide at a convergent plate boundary, causing the crust to overthicken. This process forces the less dense crust to float on top of the denser mantle rocks – with material being forced upwards to form hills, plateaus or mountains – while a greater volume of material is forced downward into the mantle.
The Jura Mountains, a series of sub-parallel mountain ridges located in the Alps, are an example of fold mountains. Other examples include the “Simply Folded Belt” of the Zagros mountains, which extends from northern Syria and southern Turkey to eastern Iran and the Persian Gulf. There is also the Akwapim-Togo ranges in Ghana and the Ridge-and-Valley Appalachians in the Eastern United States.
But perhaps most famous is the Himalayan mountain chain, located between northern India and Nepal. This chain formed as a result of the collision between the Indian subcontinent and Asia some 25 million years ago, and has given rise to the tallest mountain in the world – Mt. Everest.
Block Mountains:
Block mountains are caused by faults in the crust, a seam where rocks can move past each other. Also known as rifting, this process occurs when rocks on one side of a fault rise relative to the other. The uplifted blocks become block mountains (also known as horsts) while the intervening dropped blocks are known as graben (i.e. depressed regions).
Examples of this type of terrain can be found in the Upper Rhine valley, the Vosges mountains in France, the Black Forest in Germany, and the Vindhya and Satpura horsts in India. There is also the East African Rift, an active continental rift zone with several active volcanoes that extends from Eritrea to Mozambique.
Mountain Erosion:
As noted, the final way in which mountains are formed is through erosion. This occurs during and after an uplift, where a newly formed mountainous region is subjected to the effects of wind, water, ice, and gravity. These forces actively shape the surface of mountain ranges, wearing down the exposed surfaces, depositing sediment in alluvial flows, and leading to the formation of characteristic landforms.
These include pyramidal peaks, knife-edge arêtes, and bowl-shaped cirques that can contain lakes. Plateau mountains, such as the Catskills, are formed from the erosion of an uplifted plateau. And after millions of years of erosion, mountains may cease to exist entirely.
Given the size and scale of a mountain, the immense forces involved in their creation, and the immense amount of time it takes to shape and form them, it is little wonder why they are considered such a big deal. Between their religious significance (i.e. Mount Zion, Mount Olympus, Mount Ararat, and Mauna Kea, to name a few), their scenic value, the challenge they present, and their importance to the Earth sciences, these geological formations continue to enjoy a special place in our hearts, minds and culture.
As we explore other planets, we have also found new and impressive mountain formations that have taught us much about the geological activity and composition of other worlds. For example, there the volcanic mountain on Mars known as Olympus Mons, which just happens to be the largest mountain in the Solar System. And this is merely a drop in the bucket. Wherever there’s a geologically active planet, there’s mountains to be found!
Gravity is a fundamental force of physics, one which we Earthlings tend to take for granted. You can’t really blame us. Having evolved over the course of billions of years in Earth’s environment, we are used to living with the pull of a steady 1 g (or 9.8 m/s²). However, for those who have gone into space or set foot on the Moon, gravity is a very tenuous and precious thing.
Basically, gravity is dependent on mass, where all things – from stars, planets, and galaxies to light and sub-atomic particles – are attracted to one another. Depending on the size, mass and density of the object, the gravitational force it exerts varies. And when it comes to the planets of our Solar System, which vary in size and mass, the strength of gravity on their surfaces varies considerably.
A nebula is a truly wondrous thing to behold. Named after the Latin word for “cloud”, nebulae are not only massive clouds of dust, hydrogen and helium gas, and plasma; they are also often “stellar nurseries” – i.e. the place where stars are born. And for centuries, distant galaxies were often mistaken for these massive clouds.
Alas, such descriptions barely scratch the surface of what nebulae are and what there significance is. Between their formation process, their role in stellar and planetary formation, and their diversity, nebulae have provided humanity with endless intrigue and discovery.
The Sun has always been the center of our cosmological systems. But with the advent of modern astronomy, humans have become aware of the fact that the Sun is merely one of countless stars in our Universe. In essence, it is a perfectly normal example of a G-type main-sequence star (G2V, aka. “yellow dwarf”). And like all stars, it has a lifespan, characterized by a formation, main sequence, and eventual death.
This lifespan began roughly 4.6 billion years ago, and will continue for about another 4.5 – 5.5 billion years, when it will deplete its supply of hydrogen, helium, and collapse into a white dwarf. But this is just the abridged version of the Sun’s lifespan. As always, God (or the Devil, depending on who you ask) is in the details!
To break it down, the Sun is about half way through the most stable part of its life. Over the course of the past four billion years, during which time planet Earth and the entire Solar System was born, it has remained relatively unchanged. This will stay the case for another four billion years, at which point, it will have exhausted its supply of hydrogen fuel. When that happens, some pretty drastic things will take place!
The Birth of the Sun:
According to Nebular Theory, the Sun and all the planets of our Solar System began as a giant cloud of molecular gas and dust. Then, about 4.57 billion years ago, something happened that caused the cloud to collapse. This could have been the result of a passing star, or shock waves from a supernova, but the end result was a gravitational collapse at the center of the cloud.
From this collapse, pockets of dust and gas began to collect into denser regions. As the denser regions pulled in more and more matter, conservation of momentum caused it to begin rotating, while increasing pressure caused it to heat up. Most of the material ended up in a ball at the center while the rest of the matter flattened out into disk that circled around it.
The ball at the center would eventually form the Sun, while the disk of material would form the planets. The Sun spent about 100,000 years as a collapsing protostar before temperature and pressures in the interior ignited fusion at its core. The Sun started as a T Tauri star – a wildly active star that blasted out an intense solar wind. And just a few million years later, it settled down into its current form. The life cycle of the Sun had begun.
The Main Sequence:
The Sun, like most stars in the Universe, is on the main sequence stage of its life, during which nuclear fusion reactions in its core fuse hydrogen into helium. Every second, 600 million tons of matter are converted into neutrinos, solar radiation, and roughly 4 x 1027 Watts of energy. For the Sun, this process began 4.57 billion years ago, and it has been generating energy this way every since.
However, this process cannot last forever since there is a finite amount of hydrogen in the core of the Sun. So far, the Sun has converted an estimated 100 times the mass of the Earth into helium and solar energy. As more hydrogen is converted into helium, the core continues to shrink, allowing the outer layers of the Sun to move closer to the center and experience a stronger gravitational force.
This places more pressure on the core, which is resisted by a resulting increase in the rate at which fusion occurs. Basically, this means that as the Sun continues to expend hydrogen in its core, the fusion process speeds up and the output of the Sun increases. At present, this is leading to a 1% increase in luminosity every 100 million years, and a 30% increase over the course of the last 4.5 billion years.
In 1.1 billion years from now, the Sun will be 10% brighter than it is today, and this increase in luminosity will also mean an increase in heat energy, which Earth’s atmosphere will absorb. This will trigger a moist greenhouse effect here on Earth that is similar to the runaway warming that turned Venus into the hellish environment we see there today.
In 3.5 billion years from now, the Sun will be 40% brighter than it is right now. This increase will cause the oceans to boil, the ice caps to permanently melt, and all water vapor in the atmosphere to be lost to space. Under these conditions, life as we know it will be unable to survive anywhere on the surface. In short, planet Earth will come to be another hot, dry Venus.
Core Hydrogen Exhaustion:
All things must end. That is true for us, that is true for the Earth, and that is true for the Sun. It’s not going to happen anytime soon, but one day in the distant future, the Sun will run out of hydrogen fuel and slowly slouch towards death. This will begin in approximate 5.4 billion years, at which point the Sun will exit the main sequence of its lifespan.
With its hydrogen exhausted in the core, the inert helium ash that has built up there will become unstable and collapse under its own weight. This will cause the core to heat up and get denser, causing the Sun to grow in size and enter the Red Giant phase of its evolution. It is calculated that the expanding Sun will grow large enough to encompass the orbit’s of Mercury, Venus, and maybe even Earth. Even if the Earth survives, the intense heat from the red sun will scorch our planet and make it completely impossible for life to survive.
Final Phase and Death:
Once it reaches the Red-Giant-Branch (RGB) phase, the Sun will haves approximately 120 million years of active life left. But much will happen in this amount of time. First, the core (full of degenerate helium), will ignite violently in a helium flash – where approximately 6% of the core and 40% of the Sun’s mass will be converted into carbon within a matter of minutes.
The Sun will then shrink to around 10 times its current size and 50 times its luminosity, with a temperature a little lower than today. For the next 100 million years, it will continue to burn helium in its core until it is exhausted. By this point, it will be in its Asymptotic-Giant-Branch (AGB) phase, where it will expand again (much faster this time) and become more luminous.
Over the course of the next 20 million years, the Sun will then become unstable and begin losing mass through a series of thermal pulses. These will occur every 100,000 years or so, becoming larger each time and increasing the Sun’s luminosity to 5,000 times its current brightness and its radius to over 1 AU.
At this point, the Sun’s expansion will either encompass the Earth, or leave it entirely inhospitable to life. Planets in the Outer Solar System are likely to change dramatically, as more energy is absorbed from the Sun, causing their water ices to sublimate – perhaps forming dense atmosphere and surface oceans. After 500,000 years or so, only half of the Sun’s current mass will remain and its outer envelope will begin to form a planetary nebula.
The post-AGB evolution will be even faster, as the ejected mass becomes ionized to form a planetary nebula and the exposed core reaches 30,000 K. The final, naked core temperature will be over 100,000 K, after which the remnant will cool towards a white dwarf. The planetary nebula will disperse in about 10,000 years, but the white dwarf will survive for trillions of years before fading to black.
Ultimate Fate of our Sun:
When people think of stars dying, what typically comes to mind are massive supernovas and the creation of black holes. However, this will not be the case with our Sun, due to the simple fact that it is not nearly massive enough. While it might seem huge to us, but the Sun is a relatively low mass star compared to some of the enormous high mass stars out there in the Universe.
As such, when our Sun runs out of hydrogen fuel, it will expand to become a red giant, puff off its outer layers, and then settle down as a compact white dwarf star, then slowly cooling down for trillions of years. If, however, the Sun had about 10 times its current mass, the final phase of its lifespan would be significantly more (ahem) explosive.
When this super-massive Sun ran out of hydrogen fuel in its core, it would switch over to converting atoms of helium, and then atoms of carbon (just like our own). This process would continue, with the Sun consuming heavier and heavier fuel in concentric layers. Each layer would take less time than the last, all the way up to nickel – which could take just a day to burn through.
Then, iron would starts to build up in the core of the star. Since iron doesn’t give off any energy when it undergoes nuclear fusion, the star would have no more outward pressure in its core to prevent it from collapsing inward. When about 1.38 times the mass of the Sun is iron collected at the core, it would catastrophically implode, releasing an enormous amount of energy.
Within eight minutes, the amount of time it takes for light to travel from the Sun to Earth, an incomprehensible amount of energy would sweep past the Earth and destroy everything in the Solar System. The energy released from this might be enough to briefly outshine the galaxy, and a new nebula (like the Crab Nebula) would be visible from nearby star systems, expanding outward for thousands of years.
All that would remain of the Sun would be a rapidly spinning neutron star, or maybe even a stellar black hole. But of course, this is not to be our Sun’s fate. Given its mass, it will eventually collapse into a white star until it burns itself out. And of course, this won’t be happening for another 6 billion years or so. By that point, humanity will either be long dead or have moved on. In the meantime, we have plenty of days of sunshine to look forward to!
How was our Universe created? How did it come to be the seemingly infinite place we know of today? And what will become of it, ages from now? These are the questions that have been puzzling philosophers and scholars since the beginning the time, and led to some pretty wild and interesting theories. Today, the consensus among scientists, astronomers and cosmologists is that the Universe as we know it was created in a massive explosion that not only created the majority of matter, but the physical laws that govern our ever-expanding cosmos. This is known as The Big Bang Theory.
For almost a century, the term has been bandied about by scholars and non-scholars alike. This should come as no surprise, seeing as how it is the most accepted theory of our origins. But what exactly does it mean? How was our Universe conceived in a massive explosion, what proof is there of this, and what does the theory say about the long-term projections for our Universe?
The basics of the Big Bang theory are fairly simple. In short, the Big Bang hypothesis states that all of the current and past matter in the Universe came into existence at the same time, roughly 13.8 billion years ago. At this time, all matter was compacted into a very small ball with infinite density and intense heat called a Singularity. Suddenly, the Singularity began expanding, and the universe as we know it began.