Could We Terraform the Sun?

Could We Terraform the Sun?

In the list of crazy hypothetical ideas, terraforming the Sun has to be one of the top 10. So just how would someone go about doing terraforming our sun, a star, if they wanted to try?

In our series on terraforming other worlds, we’ve covered Mars, Venus, the Moon and Jupiter. Even though I solved the problem of how to terraform Jupiter (you’re welcome, science), you wanted to take things to the next level and you demanded I sort out how to terraform the Sun. Seriously? The Sun. Fine… here we go.

Let’s see what we’ve got to work with here. It’s a massive ball of plasma, containing 333,000 times more mass than the Earth. It’s about 74% hydrogen and 25% helium with a few other trace elements. There’s no solid surface to stand on it, so we need to fix that.

The average temperature on the surface of the Sun is about 5,500 Celsius, while the average temperature on Earth is about 15 C. Iron boils at only 2,800 degrees, so… that’s probably too hot. We’ll need to cool it down.

The gravity on the surface of the Sun is 28 times the gravity of Earth. If you could stand on the surface of the Sun, which you can’t, you’d be crushed flat. Okay, so we’ll add reduce the gravity… check.

There’s no breathable atmosphere, there’s no solid ground, the Sun generates deadly X-rays. Oh, and don’t forget about the terrible sunburns from the ultraviolet radiation.

So, what’s the list? Hot fire unbreathable pressure cooker goo surface gravity crushing machine. Sounds impossible, or does it?

First, the gas. As we covered in a previous episode, scientists have actually considered ways that you might extract the hydrogen and helium off of a star like the Sun, known as “stellar lifting”. There are a few ways you could work this. You could zap the surface of the Sun with a powerful laser, increasing the speed of solar wind in that area, forcing the Sun to throw its mass off into space.

Another method is to set up powerful magnetic fields around the Sun’s poles, and channel its hydrogen into jets that blast out into space. I’m not sure how you actually set up those magnetic fields, but that’s not my problem.

Once you’re done with the Sun, you’ve stripped away all its hydrogen and helium gas. What are you left with? About 5,600 times the mass of the Earth in heavier elements, like oxygen, silicon, gold, etc. Great!

Jupiter/Earth comparison. Credit: NASA/SDO/Goddard/Tdadamemd
Jupiter/Earth comparison. Credit: NASA/SDO/Goddard/Tdadamemd

Except 5,600 sounds like a lot. Jupiter is only 316 times the mass of the Earth. We’re looking to reform a “planet” with more than 10 times the mass of Jupiter. And not only that, but we had to kill the Sun to make this work. You monsters.

This is a terrible idea. What else could we do? If you’re a science fiction fan, you’ve heard of a Dyson Sphere. If not, you’ve got some TNG to catch up on.

First proposed by Freeman Dyson, you cover an entire Sun in a metal ball. Instead of the measly amount of energy that falls on Earth, this would allow you to capture 100% of the energy released by the Sun: 384 yottawatts.

According to Dyson and a variety of matheletes, you could dismantle all planets in the Solar System and build a sphere at a distance of 1 Earth radii at 8 to 20 centimeters thick. That would give you a surface area 550 million times more than the Earth.

Although, building an actual rigid sphere is probably unfeasible because it would be pretty unstable and eventually collapse. It probably makes more sense to build a swarm of satellites surrounding the Sun, capturing its energy.

We did a whole video on Dyson Spheres. Check it out here.

So there you go. I just terraformed the Sun. I’m terrified about your next suggestion: how could you terraform a black hole? I guess that’ll be the next video.

Would you like to live on my imagined terraformed Sun? If not, what about a Dyson Sphere or swarm?

What are Asteroids?

Asteroids
Artist's depiction of the asteroid belt between Mars and Jupiter. Credit: David Minton and Renu Malhotra

4.6 billion years ago, our Solar System formed from a collection of gas and dust surrounding our nascent Sun. While much of the gas and dust in this protoplanetary disk coalesced to form the planets, some of the debris was left over.

Some of debris was shattered remnants of planetesimals – bodies within the young Sun’s solar nebula that never grew large enough to become planets, and scientists theorize that large collisions in the early, chaotic Solar System pulverized these planetesimals into smaller pieces. Other debris never came together due to the massive gravitational pull from Jupiter.

These rocky remnants are now the asteroids that travel about our Solar System. Since these “leftovers” contain clues about the early days of our Solar System, scientists are eager to study them.

Definition of an Asteroid

Asteroids are rocky, metallic bodies that orbit the Sun. They are made from different kinds of rock and metals, with the metals being mostly nickel and iron. They are sometimes called “minor planets” but they are much, much smaller than the planets or moons. They don’t have atmospheres, but about 150 asteroids are known to have small “moons” orbiting them, and some even have two moons. There are also binary (double) asteroids, where two rocky bodies of roughly equal size orbit each other, as well as triple asteroid systems.

At least one asteroid has rings. This surprise discovery was made in 2013 when scientist watched Asteroid Chariklo pass in front of a star. The asteroid made the background star “blink” several times, which led to the discovery that two rings are surrounding the asteroid.

The asteroids of the inner Solar System and Jupiter: The donut-shaped asteroid belt is located between the orbits of Jupiter and Mars. Credit: Wikipedia Commons
The asteroids of the inner Solar System and Jupiter: The donut-shaped asteroid belt is located between the orbits of Jupiter and Mars. Credit: Wikipedia Commons

Location

The majority of known asteroids are in the asteroid belt, a large donut-shaped ring located between the orbits of Mars and Jupiter, and orbit approximately 2 to 4 AU (186 million to 370 million miles/300 million to 600 million kilometers) from the Sun. (*Note: 1 AU, or Astronomical Unit, equals the distance from the Earth to the Sun.)

Sometimes, the orbits of some asteroids get perturbed or altered from gravitational interactions with planets or other asteroids and they end up coming closer to the Sun, and therefore closer to Earth. These asteroids are known as Near Earth Asteroids, and are classified as NEAs if their orbits bring them within 1.3 AU (121 million miles/195 million kilometers) of the Earth.

Asteroids that actually cross Earth’s orbital path are known as Earth-crossers and, an asteroid is called a Potentially Hazardous Asteroid (PHA) if it will come less than .05 AU from Earth.

In addition to the asteroid belt, however, there have been recent discussions among astronomers about the potential existence of large number asteroids in the far reaches of our Solar System in the Kuiper Belt and Oort Cloud.

Number of Asteroids

There are millions of asteroids in our Solar System. Some scientists estimate the asteroid belt has between 1.1 and 1.9 million asteroids larger than 1 kilometer (0.6 mile) in diameter, and millions of smaller ones. Most of the undiscovered asteroids are likely the smaller ones (less than 100 km across) which are more difficult to detect. Other astronomers estimate there are over 150 million asteroids in the entire Solar System. New asteroids are being discovered all the time.

On average, three new NEAs are found every day. As of September 06, 2015, 13,024 Near-Earth objects have been discovered. About 875 of these NEOs are asteroids with a diameter of approximately 1 kilometer or larger. Also, 1,609 of these NEOs have been classified as Potentially Hazardous Asteroids (PHAs), but none at this time are expected to impact Earth. Check the NASA NEO website for updates.

Contrary to popular imagery that might be seen in science fiction movies and imagery, the asteroid belt is mostly empty. According to NASA, the average distance between objects in the asteroid belt is greater than 1-3 million km. The asteroids are spread over such a large volume that you likely would not run into an asteroid if you sent a spacecraft through the asteroid belt. Even though there may be millions of asteroids in the asteroid belt, most are small. Astronomers say if you put all of them together, the combination would be smaller than our moon.

Asteroids are not easy to spot because they often are made from dark material, and are difficult to find against the darkness of outer space. There are several dedicated surveys using both Earth-based telescopes and spacecraft searching the skies for asteroids. They include:

Catalina Sky Survey
Pan-STARRS
LINEAR
Spacewatch
NEOWISE

You can find more information about NASA’s NEO Search Program here.

This animation by Scott Manley shows the progression of new asteroid discoveries since 1980. It was created using data from the IAU’s Minor Planet Center and Lowell Observatory.

Ceres compared to asteroids visited to date, including Vesta, Dawn's mapping target in 2011. Image by NASA/ESA/JAXA. Compiled by Paul Schenck.
Ceres compared to asteroids visited to date, including Vesta, Dawn’s mapping target in 2011. Image by NASA/ESA/JAXA. Compiled by Paul Schenck.

Shape and Size

Most asteroids are irregularly shaped, though some are nearly spherical, and they are often pitted or cratered from impacts with other asteroids. As they revolve around the Sun in elliptical orbits, the asteroids also rotate, and have some quite erratic movements, and literally tumble through space.

The size of what classifies as an asteroid is not extremely well defined, as an asteroid can range from a pebbles, to a few meters wide – like a boulder — to objects that are hundreds of kilometers in diameter. The largest asteroid is asteroid Ceres at about 952 km (592 miles) in diameter, and Ceres is so large that it is also categorized as a dwarf planet. Over 200 asteroids are known to be larger than 100 km (60 miles), with sixteen asteroids known to have diameters of 240 kilometers (150 miles) or greater.

Asteroids we've seen up close show various shapes.  Credit: NASA
Asteroids we’ve seen up close show various shapes. Credit: NASA

The following animation is based on a 2008 a study of the size distribution of asteroid families using data from the Sloan Digital Sky Survey and was created by Alex Parker.

Composition

Most asteroids are made of rock — with some composed of clay and silicate — and different metals, mostly nickel and iron. Other precious metals have been found on some asteroids, including platinum and gold. A wide variety of minerals have also been found on various asteroids including olivine and pyroxene, which are also found on meteorites that have landed on Earth.

Most asteroids contain vast amounts of carbon, which means they closely follow the elemental composition of the Sun. There are indications that asteroids also contain water or ice in their interiors, and observations by the Dawn mission shows indications that water may have flowed across the surface of Vesta.

A few start-up companies have proposed mining asteroids for their resources. These included Planetary Resources and Deep Space Industries.

You can find more details about what asteroids are made of at our article here.

Asteroids are different from comets, which are mostly rock and ice. Comets usually have tails, which are made from ice and debris sublimating as the comet gets close to the Sun. Asteroids typically don’t have tails, even those near the Sun. But recently, astronomers have seen some asteroids that have sprouted tails, such as asteroid P/2010 A2. This seems to happen when the asteroid has been hit or pummeled by other asteroids and dust or gas is ejected from their surfaces, creating a sporadic tail effect. These so-called “active asteroids” are a newly recognized phenomenon, and as of this writing, only 13 known active asteroids have been found in the main asteroid belt, and so they are very rare.

Asteroid classifications

Asteroids have a few different classifications based on their location and make-up.

Location classifications are:

  1.  Main Belt Asteroids: (which includes the majority of known asteroids which orbit within the asteroid belt between Mars and Jupiter)
  2. Trojans: These asteroids share an orbit with a larger planet, but do not collide with it because they gather around two special places in the orbit (called the L4 and L5 Lagrangian points). There, the gravitational pull from the sun and the planet are balanced by a trojan’s tendency to otherwise fly out of the orbit. The Jupiter trojans form the most significant population of trojan asteroids. It is thought that they are as numerous as the asteroids in the asteroid belt. There are Mars and Neptune trojans, and NASA announced the discovery of an Earth trojan in 2011.
  3. Near-Earth Asteroids: These objects have orbits that pass close by that of Earth.

Then, there are subgroups of Near-Earth asteroids, and are categorized by their orbits.

  • Atiras are NEAs whose orbits are contained entirely with the orbit of the Earth, having a distance of less than 1 AU. They are named after asteroid 163693 Atira.
  • Atens are Earth-crossing NEAs with semi-major axes smaller than Earth’s, with a distance of less than 1 AU. They are named after asteroid 2062 Aten.
  • Apollos are Earth-crossing NEAs with semi-major axes larger than Earth’s, with a distance of less than 1 AU. They are named after asteroid 1862 Apollo.
  • Amors are Earth-approaching NEAs with orbits outside of Earth’s but inside of Mars’ orbit. They are named after asteroid 1221 Amor.

Classification by the composition tell us what the asteroid is made of, and this is related to how far from the Sun an asteroid formed. Some experienced high temperatures after they formed and partly melted, with iron sinking to the center and forcing basaltic (volcanic) lava to the surface. Only one such asteroid, Vesta, survives to this day. There are three basic types of asteroids:

  1. C-type (chondrite) asteroids are most common, making up about 75 percent of known asteroids. They are very dark in appearance and probably consist of clay and silicate rocks. They are among the most ancient objects in the solar system. Their composition is thought to be similar to the Sun, but depleted in hydrogen, helium, and other volatiles. C-type asteroids mainly are in the asteroid belt’s outer regions.
  2. S-types (stony) are made up of silicate materials and nickel-iron, and accounts for about 17 percent of known asteroids. They are brighter than C-type and they dominate the inner asteroid belt.
  3. M-types (metallic) are made from nickel and iron and accounts for about 8 percent of known asteroids. They are brighter than C-type and they can be found in the asteroid belt’s middle region.

Asteroid Impacts with Earth

How likely is it that our planet could be hit by a large asteroid or comet? We do know that Earth and the Moon have been struck many times in the past by asteroids whose orbits bring them into the inner Solar System. You can see pictures some of Earth’s largest and most spectacular impact craters here.

Studies of Earth’s history indicate that about once every 5,000 years or so (on average) an object the size of a football field hits Earth and causes significant damage. Once every few million years on average an object large enough to cause regional or global disaster impacts Earth.

Satellite views of the Chicxulub impact site. Image credit: NASA/JPL
Satellite views of the Chicxulub impact site. Image credit: NASA/JPL

There is strong scientific evidence that asteroid impacts played a major role in the mass extinctions documented in Earth’s fossil records. It is widely accepted that an impact 65 million years ago of an asteroid or comet at least 6 miles (10 kilometers) in diameter in the Yucatan peninsula, known as the Chicxulub crater is associated with the extinction of the dinosaurs.

We know of only a handful of recent large asteroid impacts. One is the forest-flattening 1908 Tunguska explosion over Siberia (which may have been the result of a comet) and another is the February 2013 meteor that exploded over Chelyabinsk, breaking windows and injuring many, mostly from broken glass.

But a recent study by the B612 Foundation found that there were 26 explosive airburst events similar to the Chelyabinsk event recorded from 2000 to 2013. The explosions asteroids ranged from one to 600 kilotons in energy output.

NASA says that about once a year, an automobile-sized asteroid hits Earth’s atmosphere, creates an impressive fireball, and burns up before reaching the surface.

NEOs still pose a danger to Earth today, but NASA, ESA and other space agencies have search programs that have discovered hundreds of thousands of main-belt asteroids, comets. None at this time pose any threat to Earth. You can find out more on this topic at NASA’s Near Earth Object Program website.

How asteroids are named

The International Astronomical Union’s Committee on Small Body Nomenclature approves the names for asteroids, but suggestions come from scientists and from the public. Asteroids are also given a number, for example (99942) Apophis. The Harvard Smithsonian Center for Astrophysics keeps a fairly current list of asteroid names.

All asteroids and comets visited by spacecraft as of November 2010 Credits: Montage by Emily Lakdawalla. Ida, Dactyl, Braille, Annefrank, Gaspra, Borrelly: NASA / JPL / Ted Stryk. Steins: ESA / OSIRIS team. Eros: NASA / JHUAPL. Itokawa: ISAS / JAXA / Emily Lakdawalla. Mathilde: NASA / JHUAPL / Ted Stryk. Lutetia: ESA / OSIRIS team / Emily Lakdawalla. Halley: Russian Academy of Sciences / Ted Stryk. Tempel 1, Hartley 2: NASA / JPL / UMD. Wild 2: NASA / JPL.
All asteroids and comets visited by spacecraft as of November 2010 Credits: Montage by Emily Lakdawalla. Ida, Dactyl, Braille, Annefrank, Gaspra, Borrelly: NASA / JPL / Ted Stryk. Steins: ESA / OSIRIS team. Eros: NASA / JHUAPL. Itokawa: ISAS / JAXA / Emily Lakdawalla. Mathilde: NASA / JHUAPL / Ted Stryk. Lutetia: ESA / OSIRIS team / Emily Lakdawalla. Halley: Russian Academy of Sciences / Ted Stryk. Tempel 1, Hartley 2: NASA / JPL / UMD. Wild 2: NASA / JPL.

History

We’ve gained knowledge of asteroids from three main sources: Earth-based remote sensing, data from spacecraft and laboratory analysis of meteorites.

Here are some important dates in the history of our knowledge and study of asteroids, including spacecraft missions that flew by or landed on asteroids:

1801: Giuseppe Piazzi discovers the first and largest asteroid, Ceres, orbiting between Mars and Jupiter.
1898: Gustav Witt discovers Eros, one of the largest near-Earth asteroids.
1991-1994: The Galileo spacecraft takes the first close-up images of an asteroid (Gaspra) and discovers the first moon (later named Dactyl) orbiting an asteroid (Ida).
1997-2000: The NEAR Shoemaker spacecraft flies by Mathilde and orbits and lands on Eros.
1998: NASA establishes the Near Earth Object Program Office to detect, track and characterize potentially hazardous asteroids and comets that could approach Earth.
2006: Japan’s Hayabusa becomes the first spacecraft to land on, collect samples and take off from an asteroid.
2006: Ceres attains a new classification — dwarf planet — but retains its distinction as the largest known asteroid.
2007: The Dawn spacecraft is launched on its journey to the asteroid belt to study Vesta and Ceres.
2008: The European spacecraft Rosetta, on its way to study a comet in 2014, flies by and photographs asteroid Steins, a type of asteroid composed of silicates and basalts.
2010: Japan’s Hayabusa returns its asteroid sample to Earth.
2010: Rosetta flies by asteroid Lutetia, revealing a primitive survivor from the violent birth of our solar system.
2011-2015: Dawn studies Vesta, becoming the first spacecraft to orbit a main-belt asteroid. It now is studying the dwarf planet Ceres, located in the main asteroid belt.

Below is a list of links to articles about asteroids in general, asteroid related events in history, and some specific asteroids. Many hours of research are waiting for you. Enjoy!

 

You can find additional information from NASA at the Asteroid page of their Solar System Exploration website.

How Many Moons Does Neptune Have?

Neptune and Moons
Neptune and its moons. Credit: NASA

Neptune, that icy gas giant that is the eighth planet from our Sun, was discovered in 1846 by two astronomers  – Urbain Le Verrier and Johann Galle. In keeping with the convention of planetary nomenclature, Neptune was named after the Roman god of the sea (the equivalent to the Greek Poseidon). And just seventeen days after it was discovered, astronomers began to notice that it too had a system of moons.

Initially, only Triton – Neptune’s largest moon – could be observed. But by the mid-20th century and after, thanks to improvements in ground-based telescopes and the development of robotic space probes, many more moons would be discovered. Neptune now has 14 recognized satellites, and in honor of of their parent planet, all are named for minor water deities in Greek mythology.

Discovery and Naming:

Triton, being the largest and most massive of Neptune’s moons, was the first to be discovered. It was observed by William Lassell on October 10th, 1846, just seventeen days after Neptune was discovered. It would be almost a century before any other moons would be discovered.

The first was Nereid, Neptune’s second largest and most massive moon, which was discovered on May 1st, 1949, by Gerard P. Kuiper (for whom the Kuiper Belt is named) using photographic plates from the McDonald Observatory in Fort Davis, Texas. The third moon, later named Larissa, was first observed by Harold J. Reitsema, William B. Hubbard, Larry A. Lebofsky and David J. Tholen on May 24th, 1981.

This composite Hubble Space Telescope picture shows the location of a newly discovered moon, designated S/2004 N 1, orbiting the giant planet Neptune, nearly 4.8 billion km (3 billion miles) from Earth. Credit: NASA, ESA, and M. Showalter (SETI Institute).
Hubble Space Telescope composite picture showing the location of a newly discovered moon, designated S/2004 N 1. Credit: NASA, ESA, and M. Showalter (SETI Institute).

The discovery of this moon was purely fortuitous, and occurred as a result of the ongoing search for rings similar to those discovered around Uranus four years earlier. If rings were in fact present, the star’s luminosity would decrease slightly just before the planet’s closest approach. While observing a star’s close approach to Neptune, the star’s luminosity dipped, but only for several seconds. This indicated the presence of a moon rather than a ring.

No further moons were found until Voyager 2 flew by Neptune in 1989. In the course of passing through the system, the space probe rediscovered Larissa and discovered five additional inner moons: Naiad, Thalassa, Despina, Galatea and Proteus.

In 2001, two surveys using large ground-based telescopes – the Cerro Tololo Inter-American Observatory and the Canada-France-Hawaii telescopes – found five additional outer moons bringing the total to thirteen. Follow-up surveys by two teams in 2002 and 2003 respectively re-observed all five of these moons – which were Halimede, Sao, Psamathe, Laomedeia, and Neso.

And then on July 15th, 2013, a team of astronomers led by Mark R. Showalter of the SETI Institute revealed that they had discovered a previously unknown fourteenth moon in images taken by the Hubble Space Telescope from 2004–2009. The as yet unnamed fourteenth moon, currently identified as S/2004 N 1, is thought to measure no more than 16–20 km in diameter.

In keeping with astronomical convention, Neptune’s moons are all taken from Greek and Roman mythology. In this case, all are named for gods of the sea, or for the children of Poseidon (which include Triton, Proteus, Depsina and Thalassa), minor Greek water dieties (Naiad and Nereid) or Nereids , the water nymphs in Greek mythology (Halimede, Galatea, Neso, Sao, Laomedeia and Psamathe).

However, many of the moons were not officially named until the 20th century. The name Triton, which was originally suggested by Camille Flammarion in his 1880 book Astronomie Populaire, but not into common usage until at least the 1930s.

Inner (Regular) Moons:

Neptune’s Regular Moons are those located closest to the planet and which follow circular prograde orbits that lie in the planet’s equatorial plane. They are, in order of distance from Neptune: Naiad (48,227 km), Thalassa (50,074 km), Despina (52,526 km), Galatea (61,953 km), Larissa (73,548 km), S/2004 N 1 (105,300 ± 50 km), and Proteus (117,646 km). All but the outer two are within Neptune-synchronous orbit (meaning that orbit Neptune slower than it’s orbital period (0.6713 days) and thus are being tidally decelerated.

The inner moons are closely associated with Neptune’s narrow ring system. The two innermost satellites, Naiad and Thalassa, orbit between the Galle and LeVerrier rings, whereas Despina orbits just inside the LeVerrier ring. The next moon, Galatea, orbits just inside the most prominent Adams ring and its gravity helps maintaining the ring by containing its particles.

Based on observational data and assumed densities, Naiad measures 96 × 60 × 52 km and weighs approximately 1.9 x 1017 kg. Meanwhile, Thalassa measures 108 x 100 × 52 km and weighs 3.5 x 1017 kg; Despina measures 180 x 148 x 128 and weighs 21 x 1017 kg; Galatea measures 204 x 184 x 144 and weighs 37.5 x 1017 kg; Larissa measures 216 x 204 x 168 and weighs 49.5 x 1017 kg; S/2004 N1 measures 16-20 km in diameter and weighs 0.5 ± 0.4 x 1017 kg; and Proteus measures 436 x 416 x 402 and weighs 50.35 x 1017 kg.

Only the two largest regular moons have been imaged with a resolution sufficient to discern their shapes and surface features. Nevertheless, with the exception of Larissa and Proteus (which are largely rounded) all of Neptune’s inner moons are believed to be elongated in shape. In addition, all the inner moons dark objects, with geometric albedo ranging from 7 to 10%.

Their spectra also indicated that they are made from water ice contaminated by some very dark material, probably organic compounds. In this respect, the inner Neptunian moons are similar to the inner moons of Uranus.

Outer (Irregular) Moons:

Neptune’s irregular moons consist of the planet’s remaining satellites (including Triton). They generally follow inclined eccentric and often retrograde orbits far from Neptune; the only exception is Triton, which orbits close to the planet following a circular orbit, though retrograde and inclined.

In order of their distance from the planet, the irregular moons are Triton, Nereid, Halimede, Sao, Laomedeia, Neso and Psamathe, a group that includes both prograde and retrograde objects. With the exception of Triton and Nereid, Neptune’s irregular moons are similar to those of other giant planets and are believed to have been gravitationally captured by Neptune.

In terms of size and mass, the irregular moons are relatively consistent, ranging from approximately 40 km in diameter and 4 x 1016 kg in mass (Psamathe) to 62 km and 16 x 1016 kg for Halimede.

Triton and Nereid:

Triton and Nereid are unusual irregular satellites and are thus treated separately from the other five irregular Neptunian moons. Between these two and the other irregular moons, four major differences have been noted.

First of all, they are the largest two known irregular moons in the Solar System. Triton itself is almost an order of magnitude larger than all other known irregular moons and comprises more than 99.5% of all the mass known to orbit Neptune (including the planet’s rings and thirteen other known moons).

Global Color Mosaic of Triton, taken by Voyager 2 in 1989. Credit: NASA/JPL/USGS
Global Color Mosaic of Triton, taken by Voyager 2 in 1989. Credit: NASA/JPL/USGS

Secondly, they both have atypically small semi-major axes, with Triton’s being over an order of magnitude smaller than those of all other known irregular moons. Thirdly, they both have unusual orbital eccentricities: Nereid has one of the most eccentric orbits of any known irregular satellite, and Triton’s orbit is a nearly perfect circle. Finally, Nereid also has the lowest inclination of any known irregular satellite

With a mean diameter of around 2700 km and a mass of 214080 ± 520 x 1017 kg, Triton is the largest of Neptune’s moons, and the only one large enough to achieve hydrostatic equilibrium (i.e. is spherical in shape). At a distance of 354,759 km from Neptune, it also sits between the planet’s inner and outer moons.

Triton follows a retrograde and quasi-circular orbit, and is composed largely of nitrogen, methane, carbon dioxide and water ices. With a geometric albedo of more than 70% and a Bond albedo as high as 90%, it is also one of the brightest objects in the Solar System. The surface has a reddish tint, owning to the interaction of ultraviolet radiation and methane, causing tholins.

Triton is also one of the coldest moons in the Solar System, with surface temperature of about 38 K (?235.2 °C). However, owing to the moon being geologically active (which results in cryovolcanism) and surface temperature variations that cause sublimation, Triton is one of only two moons in the Solar System that has a substantial atmosphere. Much like it’s surface, this atmosphere is composed primarily of nitrogen with small amounts of methane and carbon monoxide, and with an estimated pressure of about 14 ?bar.

Using the CRIRES instrument on ESO’s Very Large Telescope, a team of astronomers has been able to see that the summer is in full swing in Triton’s southern hemisphere. Credit: ESO
Using the CRIRES instrument on ESO’s Very Large Telescope, a team of astronomers has been able to see that the summer is in full swing in Triton’s southern hemisphere. Credit: ESO

Triton has a relatively high density of about 2 g/cm3 indicating that rocks constitute about two thirds of its mass, and ices (mainly water ice) the remaining one third. There also may be a layer of liquid water deep inside Triton, forming a subterranean ocean. Surface features include the large southern polar cap, older cratered planes cross-cut by graben and scarps, as well as youthful features caused by endogenic resurfacing.

Because of its retrograde orbit and relative proximity to Neptune (closer than the Moon is to Earth), Triton is grouped with the planet’s irregular moons (see below). In addition, it is believed to be a captured object, possibly a dwarf planet that was once part of the Kuiper Belt. At the same time, these orbital characteristics are the reason why Triton experiences tidal deceleration. and will eventually spiral inward and collide with the planet in about 3.6 billion years.

Nereid is the third-largest moon of Neptune. It has a prograde but very eccentric orbit and is believed to be a former regular satellite that was scattered to its current orbit through gravitational interactions during Triton’s capture. Water ice has been spectroscopically detected on its surface. Nereid shows large, irregular variations in its visible magnitude, which are probably caused by forced precession or chaotic rotation combined with an elongated shape and bright or dark spots on the surface.

Formation:

Given the lopsided distribution of mass in its moons, it is widely believed that Triton was captured after the formation of Neptune’s original satellite system – much of which would have been destroyed in the process of capture. Many theories have been offered regarding the mechanisms of its capture over the years.

The most widely-accepted is that Triton is a surviving member of a binary Kuiper Belt Object that was disrupted with an encounter with Neptune. In this scenario, Triton’s captured was the result of a three-body encounter, where it fell into a retrograde orbit while the other object was either destroyed or ejected in the process.

Triton’s orbit upon capture would have been highly eccentric, and would have caused chaotic perturbations in the orbits of the original inner Neptunian satellites, causing them to collide and reduce to a disc of rubble. Only after Triton’s orbit became circular again could some of the rubble re-accrete into the present-day regular moons. This means it is likely that Neptune’s present inner satellites are not the original bodies that formed with Neptune.

Numerical simulations show that there is a 0.41 probability that the moon Halimede collided with Nereid at some time in the past. Although it is not known whether any collision has taken place, both moons appear to have similar (“grey”) colors, implying that Halimede could be a fragment of Nereid.

Given its distance from the Sun, the only mission to ever study Neptune and its moons up close was the Voyager 2 mission. And though no missions are currently being planned, several proposals have been made that would see a robotic probe dispatched to the system sometime in the late 2020s or early 2030s.

We have many interesting articles on Neptune, Neptune’s Moons, and the Trans-Neptunian region here at Universe Today. Here’s a full article about Neptune’s Moon Triton, Naiad and Nereid and S/2004 N 1.

Here’s a lovely article on the latest Trans-Neptunian Objects to be discovered, and how Astronomer are Predicting at Least Two More Large Planets in the Solar System

For more information, check out NASA’s Solar System Exploration page titled “Neptune: The Windiest Planet”.

Solar System Guide

The Solar System. Image Credit: NASA
The Solar System. Image Credit: NASA

The Universe is a very big place, and we occupy a very small corner of it. Known as the Solar System, our stomping grounds are not only a tiny fraction of the Universe as we know it, but is also a very small part of our galactic neighborhood (aka. the Milky Way Galaxy). When it comes right down to it, our world is just a drop of water in an endless cosmic sea.

Nevertheless, the Solar System is still a very big place, and one which is filled with its fair share of mysteries. And in truth, it was only within the relatively recent past that we began to understand its true extent. And when it comes to exploring it, we’ve really only begun to scratch the surface.

Discovery:

With very few exceptions, few people or civilizations before the era of modern astronomy recognized the Solar System for what it was. In fact, the vast majority of astronomical systems posited that the Earth was a stationary object and that all known celestial objects revolved around it. In addition, they viewed it as being fundamentally different from other stellar objects, which they held to be ethereal or divine in nature.

Although there were some Greek, Arab and Asian astronomers during Antiquity and the Medieval period who believed that the universe was heliocentric in nature (i.e. that the Earth and other bodies revolved around the Sun) it was not until Nicolaus Copernicus developed his mathematically predictive model of a heliocentric system in the 16th century that it began to become widespread.

The first star party? Galileo shows of the sky in Saint Mark's square in Venice. Note the lack of adaptive optics. (Illustration in the Public Domain).
Galileo (1564 – 1642) would often show people how to use his telescope to view the sky in Saint Mark’s square in Venice. Note the lack of adaptive optics. Credit: Public Domain

During the 17th-century, scientists like Galileo Galilei, Johannes Kepler, and Isaac Newton developed an understanding of physics which led to the gradual acceptance that the Earth revolves round the Sun. The development of theories like gravity also led to the realization that the other planets are governed by the same physical laws as Earth.

The widespread use of the telescope also led to a revolution in astronomy. After Galileo discovered the moons of Jupiter in 1610, Christian Huygens would go on to discover that Saturn also had moons in 1655. In time, new planets would also be discovered (such as Uranus and Neptune), as well as comets (such as Halley’s Comet) and the Asteroids Belt.

By the 19th century, three observations made by three separate astronomers determined the true nature of the Solar System and its place the universe. The first was made in 1839 by German astronomer Friedrich Bessel, who successfully measured an apparent shift in the position of a star created by the Earth’s motion around the Sun (aka. stellar parallax). This not only confirmed the heliocentric model beyond a doubt, but revealed the vast distance between the Sun and the stars.

In 1859, Robert Bunsen and Gustav Kirchhoff (a German chemist and physicist) used the newly invented spectroscope to examined the spectral signature of the Sun. They discovered that it was composed of the same elements as existed on Earth, thus proving that Earth and the heavens were composed of the same elements.

With parallax technique, astronomers observe object at opposite ends of Earth's orbit around the Sun to precisely measure its distance. CREDIT: Alexandra Angelich, NRAO/AUI/NSF.
With parallax technique, astronomers observe object at opposite ends of Earth’s orbit around the Sun to precisely measure its distance. Credit: Alexandra Angelich, NRAO/AUI/NSF.

Then, Father Angelo Secchi  – an Italian astronomer and director at the Pontifical Gregorian University – compared the spectral signature of the Sun with those of other stars, and found them to be virtually identical. This demonstrated conclusively that our Sun was composed of the same materials as every other star in the universe.

Further apparent discrepancies in the orbits of the outer planets led American astronomer Percival Lowell to conclude that yet another planet, which he referred to as “Planet X“, must lie beyond Neptune. After his death, his Lowell Observatory conducted a search that ultimately led to Clyde Tombaugh’s discovery of Pluto in 1930.

Also in 1992, astronomers David C. Jewitt of the University of Hawaii and Jane Luu of the MIT discovered the Trans-Neptunian Object (TNO) known as (15760) 1992 QB1. This would prove to be the first of a new population, known as the Kuiper Belt, which had already been predicted by astronomers to exist at the edge of the Solar System.

Further investigation of the Kuiper Belt by the turn of the century would lead to additional discoveries. The discovery of Eris and other “plutoids” by Mike Brown, Chad Trujillo, David Rabinowitz and other astronomers would lead to the Great Planet Debate – where IAU policy and the convention for designating planets would be contested.

Structure and Composition:

At the core of the Solar System lies the Sun (a G2 main-sequence star) which is then surrounded by four terrestrial planets (the Inner Planets), the main Asteroid Belt, four gas giants (the Outer Planets), a massive field of small bodies that extends from 30 AU to 50 AU from the Sun (the Kuiper Belt). The system is then surrounded a spherical cloud of icy planetesimals (the Oort Cloud) that is believed to extend to a distance of 100,000 AU from the Sun into the Interstellar Medium.

The Sun contains 99.86% of the system’s known mass, and its gravity dominates the entire system. Most large objects in orbit around the Sun lie near the plane of Earth’s orbit (the ecliptic) and most planets and bodies rotate around it in the same direction (counter-clockwise when viewed from above Earth’s north pole). The planets are very close to the ecliptic, whereas comets and Kuiper belt objects are frequently at greater angles to it.

It’s four largest orbiting bodies (the gas giants) account for 99% of the remaining mass, with Jupiter and Saturn together comprising more than 90%. The remaining objects of the Solar System (including the four terrestrial planets, the dwarf planets, moons, asteroids, and comets) together comprise less than 0.002% of the Solar System’s total mass.

Sun and Planets
The Sun and planets to scale. Credit: Illustration by Judy Schmidt, texture maps by Björn Jónsson

Astronomers sometimes informally divide this structure into separate regions. First, there is the Inner Solar System, which includes the four terrestrial planets and the Asteroid Belt. Beyond this, there’s the outer Solar System that includes the four gas giant planets. Meanwhile, there’s the outermost parts of the Solar System are considered a distinct region consisting of the objects beyond Neptune (i.e. Trans-Neptunian Objects).

Most of the planets in the Solar System possess secondary systems of their own, being orbited by planetary objects called natural satellites (or moons). In the case of the four giant planets, there are also planetary rings – thin bands of tiny particles that orbit them in unison. Most of the largest natural satellites are in synchronous rotation, with one face permanently turned toward their parent.

The Sun, which comprises nearly all the matter in the Solar System, is composed of roughly 98% hydrogen and helium. The terrestrial planets of the Inner Solar System are composed primarily of silicate rock, iron and nickel. Beyond the Asteroid Belt, planets are composed mainly of gases (such as hydrogen, helium) and ices – like water, methane, ammonia, hydrogen sulfide and carbon dioxide.

Objects farther from the Sun are composed largely of materials with lower melting points. Icy substances comprise the majority of the satellites of the giant planets, as well as most of Uranus and Neptune (hence why they are sometimes referred to as “ice giants”) and the numerous small objects that lie beyond Neptune’s orbit.

Together, gases and ices are referred to as volatiles. The boundary in the Solar System beyond which those volatile substances could condense is known as the frost line, which lies roughly 5 AU from the Sun. Within the Kuiper Belt, objects and planetesimals are composed mainly of these materials and rock.

Formation and Evolution:

The Solar System formed 4.568 billion years ago from the gravitational collapse of a region within a large molecular cloud composed of hydrogen, helium, and small amounts of heavier elements fused by previous generations of stars. As the region that would become the Solar System (known as the pre-solar nebula) collapsed, conservation of angular momentum caused it to rotate faster.

The center, where most of the mass collected, became increasingly hotter than the surrounding disc. As the contracting nebula rotated faster, it began to flatten into a protoplanetary disc with a hot, dense protostar at the center. The planets formed by accretion from this disc, in which dust and gas gravitated together and coalesced to form ever larger bodies.

Due to their higher boiling points, only metals and silicates could exist in solid form closer to the Sun, and these would eventually form the terrestrial planets of Mercury, Venus, Earth, and Mars. Because metallic elements only comprised a very small fraction of the solar nebula, the terrestrial planets could not grow very large.

In contrast, the giant planets (Jupiter, Saturn, Uranus, and Neptune) formed beyond the point between the orbits of Mars and Jupiter where material is cool enough for volatile icy compounds to remain solid (i.e. the frost line).

The ices that formed these planets were more plentiful than the metals and silicates that formed the terrestrial inner planets, allowing them to grow massive enough to capture large atmospheres of hydrogen and helium. Leftover debris that never became planets congregated in regions such as the asteroid belt, Kuiper belt, and Oort cloud.

Within 50 million years, the pressure and density of hydrogen in the center of the protostar became great enough for it to begin thermonuclear fusion. The temperature, reaction rate, pressure, and density increased until hydrostatic equilibrium was achieved.

At this point, the Sun became a main-sequence star. Solar wind from the Sun created the heliosphere and swept away the remaining gas and dust from the protoplanetary disc into interstellar space, ending the planetary formation process.

The terrestrial planets of our Solar System at approximately relative sizes. From left, Mercury, Venus, Earth and Mars. Credit: Lunar and Planetary Institute
The terrestrial planets of our Solar System at approximately relative sizes. From left, Mercury, Venus, Earth and Mars. Credit: Lunar and Planetary Institute

The Solar System will remain roughly as we know it today until the hydrogen in the core of the Sun has been entirely converted to helium. This will occur roughly 5 billion years from now and mark the end of the Sun’s main-sequence life. At this time, the core of the Sun will collapse, and the energy output will be much greater than at present.

The outer layers of the Sun will expand to roughly 260 times its current diameter, and the Sun will become a red giant. The expanding Sun is expected to vaporize Mercury and Venus and render Earth uninhabitable as the habitable zone moves out to the orbit of Mars. Eventually, the core will be hot enough for helium fusion and the Sun will burn helium for a time, after which nuclear reactions in the core will start to dwindle.

At this point, the Sun’s outer layers will move away into space, leaving a white dwarf – an extraordinarily dense object that will have half the original mass of the Sun, but will be the size of Earth. The ejected outer layers will form what is known as a planetary nebula, returning some of the material that formed the Sun to the interstellar medium.

Inner Solar System:

In the inner Solar System, we find the “Inner Planets” – Mercury, Venus, Earth, and Mars – which are so named because they orbit closest to the Sun. In addition to their proximity, these planets have a number of key differences that set them apart from planets elsewhere in the Solar System.

For starters, the inner planets are rocky and terrestrial, composed mostly of silicates and metals, whereas the outer planets are gas giants. The inner planets are also much more closely spaced than their outer Solar System counterparts. In fact, the radius of the entire region is less than the distance between the orbits of Jupiter and Saturn.

Generally, inner planets are smaller and denser than their counterparts, and have few to no moons or rings circling them. The outer planets, meanwhile, often have dozens of satellites and rings composed of particles of ice and rock.

The terrestrial inner planets are composed largely of refractory minerals such as the silicates, which form their crusts and mantles, and metals such as iron and nickel which form their cores. Three of the four inner planets (Venus, Earth and Mars) have atmospheres substantial enough to generate weather. All of them have impact craters and tectonic surface features as well, such as rift valleys and volcanoes.

Of the inner planets, Mercury is the closest to our Sun and the smallest of the terrestrial planets. Its magnetic field is only about 1% that of Earth’s, and it’s very thin atmosphere means that it is hot during the day (up to 430°C) and freezing at night (as low as -187 °C) because the atmosphere can neither keep heat in or out. It has no moons of its own and is comprised mostly of iron and nickel. Mercury is one of the densest planets in the Solar System.

Venus, which is about the same size as Earth, has a thick toxic atmosphere that traps heat, making it the hottest planet in the Solar System. This atmosphere is composed of 96% carbon dioxide, along with nitrogen and a few other gases. Dense clouds within Venus’ atmosphere are composed of sulphuric acid and other corrosive compounds, with very little water. Much of Venus’ surface is marked with volcanoes and deep canyons – the biggest of which is over 6400 km (4,000 mi) long.

Earth is the third inner planet and the one we know best. Of the four terrestrial planets, Earth is the largest, and the only one that currently has liquid water, which is necessary for life as we know it. Earth’s atmosphere protects the planet from dangerous radiation and helps keep valuable sunlight and warmth in, which is also essential for life to survive.

Like the other terrestrial planets, Earth has a rocky surface with mountains and canyons, and a heavy metal core. Earth’s atmosphere contains water vapor, which helps to moderate daily temperatures. Like Mercury, the Earth has an internal magnetic field. And our Moon, the only one we have, is comprised of a mixture of various rocks and minerals.

Mars, as it appears today, Credit: NASA
Mars, as it appears today, Credit: NASA

Mars is the fourth and final inner planet, and is also known as the “Red Planet” due to the oxidization of iron-rich materials that form the planet’s surface. Mars also has some of the most interesting terrain features of any of the terrestrial planets. These include the largest mountain in the Solar System (Olympus Mons) which rises some 21,229 m (69,649 ft) above the surface, and a giant canyon called Valles Marineris – which is 4000 km (2500 mi) long and reaches depths of up to 7 km (4 mi).

Much of Mars’ surface is very old and filled with craters, but there are geologically newer areas of the planet as well. At the Martian poles are polar ice caps that shrink in size during the Martian spring and summer. Mars is less dense than Earth and has a smaller magnetic field, which is indicative of a solid core, rather than a liquid one.

Mars’ thin atmosphere has led some astronomers to believe that the surface water that once existed there might have actually taken liquid form, but has since evaporated into space. The planet has two small moons called Phobos and Deimos.

Outer Solar System:

The outer planets (sometimes called Jovian planets or gas giants) are huge planets swaddled in gas that have rings and plenty of moons. Despite their size, only two of them are visible without telescopes: Jupiter and Saturn. Uranus and Neptune were the first planets discovered since antiquity, and showed astronomers that the solar system was bigger than previously thought.

The outer planets of our Solar System at approximately relative sizes. From left, Jupiter, Saturn, Uranus and Neptune. Credit: Lunar and Planetary Institute
The outer planets of our Solar System at approximately relative sizes. From left, Jupiter, Saturn, Uranus and Neptune. Credit: Lunar and Planetary Institute

Jupiter is the largest planet in our Solar System and spins very rapidly (10 Earth hours) relative to its orbit of the sun (12 Earth years). Its thick atmosphere is mostly made up of hydrogen and helium, perhaps surrounding a terrestrial core that is about Earth’s size. The planet has dozens of moons, some faint rings and a Great Red Spot – a raging storm that has happening for the past 400 years at least.

Saturn is best known for its prominent ring system – seven known rings with well-defined divisions and gaps between them. How the rings got there is one subject under investigation. It also has dozens of moons. Its atmosphere is mostly hydrogen and helium, and it also rotates quickly (10.7 Earth hours) relative to its time to circle the Sun (29 Earth years).

Uranus was first discovered by William Herschel in 1781. The planet’s day takes about 17 Earth hours and one orbit around the Sun takes 84 Earth years. Its mass contains water, methane, ammonia, hydrogen and helium surrounding a rocky core. It has dozens of moons and a faint ring system. The only spacecraft to visit this planet was the Voyager 2 spacecraft in 1986.

Neptune is a distant planet that contains water, ammmonia, methane, hydrogen and helium and a possible Earth-sized core. It has more than a dozen moons and six rings. NASA’s Voyager 2 spacecraft also visited this planet and its system by 1989 during its transit of the outer Solar System.

How many moons are there in the Solar System? Image credit: NASA
How many moons are there in the Solar System? Image credit: NASA

Trans-Neptunian Region:

There have been more than a thousand objects discovered in the Kuiper Belt, and it’s theorized that there are as many as 100,000 objects larger than 100 km in diameter. Given to their small size and extreme distance from Earth, the chemical makeup of KBOs is very difficult to determine.

However, spectrographic studies conducted of the region since its discovery have generally indicated that its members are primarily composed of ices: a mixture of light hydrocarbons (such as methane), ammonia, and water ice – a composition they share with comets. Initial studies also confirmed a broad range of colors among KBOs, ranging from neutral grey to deep red.

This suggests that their surfaces are composed of a wide range of compounds, from dirty ices to hydrocarbons. In 1996, Robert H. Brown et al. obtained spectroscopic data on the KBO 1993 SC, revealing its surface composition to be markedly similar to that of Pluto (as well as Neptune’s moon Triton) in that it possessed large amounts of methane ice.

Water ice has been detected in several KBOs, including 1996 TO66, 38628 Huya and 20000 Varuna. In 2004, Mike Brown et al. determined the existence of crystalline water ice and ammonia hydrate on one of the largest known KBOs, 50000 Quaoar. Both of these substances would have been destroyed over the age of the Solar System, suggesting that Quaoar had been recently resurfaced, either by internal tectonic activity or by meteorite impacts.

Keeping Pluto company out in the Kuiper belt are many other objects worthy of mention. Quaoar, Makemake, Haumea, Orcus and Eris are all large icy bodies in the Belt and several of them even have moons of their own. These are all tremendously far away, and yet, very much within reach.

Oort Cloud and Farthest Regions:

The Oort Cloud is thought to extend from between 2,000 and 5,000 AU (0.03 and 0.08 ly) to as far as 50,000 AU (0.79 ly) from the Sun, though some estimates place the outer edge as far as 100,000 and 200,000 AU (1.58 and 3.16 ly). The Cloud is thought to be comprised of two regions – a spherical outer Oort Cloud of 20,000 – 50,000 AU (0.32 – 0.79 ly), and disc-shaped inner Oort (or Hills) Cloud of 2,000 – 20,000 AU (0.03 – 0.32 ly).

The outer Oort cloud may have trillions of objects larger than 1 km (0.62 mi), and billions that measure 20 kilometers (12 mi) in diameter. Its total mass is not known, but – assuming that Halley’s Comet is a typical representation of outer Oort Cloud objects – it has the combined mass of roughly 3×1025 kilograms (6.6×1025 pounds), or five Earths.

The layout of the solar system, including the Oort Cloud, on a logarithmic scale. Credit: NASA
The layout of the solar system, including the Oort Cloud, on a logarithmic scale. Credit: NASA

Based on the analyses of past comets, the vast majority of Oort Cloud objects are composed of icy volatiles – such as water, methane, ethane, carbon monoxide, hydrogen cyanide, and ammonia. The appearance of asteroids thought to be originating from the Oort Cloud has also prompted theoretical research that suggests that the population consists of 1-2% asteroids.

Earlier estimates placed its mass up to 380 Earth masses, but improved knowledge of the size distribution of long-period comets has led to lower estimates. The mass of the inner Oort Cloud, meanwhile, has yet to be characterized. The contents of both Kuiper Belt and the Oort Cloud are known as Trans-Neptunian Objects (TNOs), because the objects of both regions have orbits that that are further from the Sun than Neptune’s orbit.

Exploration:

Our knowledge of the Solar System also benefited immensely from the advent of robotic spacecraft, satellites, and robotic landers. Beginning in the mid-20th century, in what was known as “The Space Age“, manned and robotic spacecraft began exploring planets, asteroids and comets in the Inner and Outer Solar System.

All planets in the Solar System have now been visited to varying degrees by spacecraft launched from Earth. Through these unmanned missions, humans have been able to get close-up photographs of all the planets. In the case of landers and rovers, tests have been performed on the soils and atmospheres of some.

Sputnik 1
Photograph of a Russian technician putting the finishing touches on Sputnik 1, humanity’s first artificial satellite. Credit: NASA/Asif A. Siddiqi

The first artificial object sent into space was the Soviet satellite Sputnik 1, which was launched in space in 1957, successfully orbited the Earth for months, and collected information on the density of the upper atmosphere and the ionosphere. The American probe Explorer 6, launched in 1959, was the first satellite to capture images of the Earth from space.

Robotic spacecraft conducting flybys also revealed considerable information about the planet’s atmospheres, geological and surface features. The first successful probe to fly by another planet was the Soviet Luna 1 probe, which sped past the Moon in 1959. The Mariner program resulted in multiple successful planetary flybys, consisting of the Mariner 2 mission past Venus in 1962, the Mariner 4 mission past Mars in 1965, and the Mariner 10 mission past Mercury in 1974.

By the 1970’s, probes were being dispatched to the outer planets as well, beginning with the Pioneer 10 mission which flew past Jupiter in 1973 and the Pioneer 11 visit to Saturn in 1979. The Voyager probes performed a grand tour of the outer planets following their launch in 1977, with both probes passing Jupiter in 1979 and Saturn in 1980-1981. Voyager 2 then went on to make close approaches to Uranus in 1986 and Neptune in 1989.

Launched on January 19th, 2006, the New Horizons probe is the first man-made spacecraft to explore the Kuiper Belt. This unmanned mission flew by Pluto in July 2015. Should it prove feasible, the mission will also be extended to observe a number of other Kuiper Belt Objects (KBOs) in the coming years.

Orbiters, rovers, and landers began being deployed to other planets in the Solar System by the 1960’s. The first was the Soviet Luna 10 satellite, which was sent into lunar orbit in 1966. This was followed in 1971 with the deployment of the Mariner 9 space probe, which orbited Mars, and the Soviet Venera 9 which orbited Venus in 1975.

The Galileo probe became the first artificial satellite to orbit an outer planet when it reached Jupiter in 1995, followed by the CassiniHuygens probe orbiting Saturn in 2004. Mercury and Vesta were explored by 2011 by the MESSENGER and Dawn probes, respectively, with Dawn establishing orbit around the asteroid/dwarf planet Ceres in 2015.

The first probe to land on another Solar System body was the Soviet Luna 2 probe, which impacted the Moon in 1959. Since then, probes have landed on or impacted on the surfaces of Venus in 1966 (Venera 3), Mars in 1971 (Mars 3 and Viking 1 in 1976), the asteroid 433 Eros in 2001 (NEAR Shoemaker), and Saturn’s moon Titan (Huygens) and the comet Tempel 1 (Deep Impact) in 2005.

Curiosity Rover snapped this self portrait mosaic with the MAHLI camera while sitting on flat sedimentary rocks at the “John Klein” outcrop where the robot conducted historic first sample drilling inside the Yellowknife Bay basin, on Feb. 8 (Sol 182) at lower left in front of rover. The photo mosaic was stitched from raw images snapped on Sol 177, or Feb 3, 2013, by the robotic arm camera - accounting for foreground camera distortion. Credit: NASA/JPL-Caltech/MSSS/Marco Di Lorenzo/KenKremer (kenkremer.com).
Curiosity Rover self portrait mosaic, taken with the MAHLI camera while sitting on flat sedimentary rocks at the “John Klein” outcrop in Feb. 2013. Credit: NASA/JPL-Caltech/MSSS/Marco Di Lorenzo/KenKremer

To date, only two worlds in the Solar System, the Moon and Mars, have been visited by mobile rovers. The first robotic rover to land on another planet was the Soviet Lunokhod 1, which landed on the Moon in 1970. The first to visit another planet was Sojourner, which traveled 500 meters across the surface of Mars in 1997, followed by Spirit (2004), Opportunity (2004), and Curiosity (2012).

Manned missions into space began in earnest in the 1950’s, and was a major focal point for both the United States and Soviet Union during the “Space Race“. For the Soviets, this took the form of the Vostok program, which involved sending manned space capsules into orbit.

The first mission – Vostok 1 – took place on April 12th, 1961, and was piloted by Soviet cosmonaut Yuri Gagarin (the first human being to go into space). On June 6th, 1963, the Soviets also sent the first woman – Valentina Tereshvoka – into space as part of the Vostok 6 mission.

In the US, Project Mercury was initiated with the same goal of placing a crewed capsule into orbit. On May 5th, 1961, astronaut Alan Shepard went into space aboard the Freedom 7 mission and became the first American (and second human) to go into space.

After the Vostok and Mercury programs were completed, the focus of both nations and space programs shifted towards the development of two and three-person spacecraft, as well as the development of long-duration spaceflights and extra-vehicular activity (EVA).

Bootprint in the moon dust from Apollo 11. Credit: NASA
Bootprint in the moon dust from Apollo 11. Credit: NASA

This took the form of the Voshkod and Gemini programs in the Soviet Union and US, respectively. For the Soviets, this involved developing a two to three-person capsule, whereas the Gemini program focused on developing the support and expertise needed for an eventual manned mission to the Moon.

These latter efforts culminated on July 21st, 1969 with the Apollo 11 mission, when astronauts Neil Armstrong and Buzz Aldrin became the first men to walk on the Moon. As part of the Apollo program, five more Moon landings would take place through 1972, and the program itself resulted in many scientific packages being deployed on the Lunar surface, and samples of moon rocks being returned to Earth.

After the Moon Landing took place, the focus of the US and Soviet space programs then began to shift to the development of space stations and reusable spacecraft. For the Soviets, this resulted in the first crewed orbital space stations dedicated to scientific research and military reconnaissance – known as the Salyut and Almaz space stations.

The first orbital space station to host more than one crew was NASA’s Skylab, which successfully held three crews from 1973 to 1974. The first true human settlement in space was the Soviet space station Mir, which was continuously occupied for close to ten years, from 1989 to 1999. It was decommissioned in 2001, and its successor, the International Space Station, has maintained a continuous human presence in space since then.

Space Shuttle Columbia launching on its maiden voyage on April 12th, 1981. Credit: NASA
Space Shuttle Columbia launching on its maiden voyage on April 12th, 1981. Credit: NASA

The United States’ Space Shuttle, which debuted in 1981, became the only reusable spacecraft to successfully make multiple orbital flights. The five shuttles that were built (Atlantis, Endeavour, Discovery, Challenger, Columbia and Enterprise) flew a total of 121 missions before being decommissioned in 2011.

During their history of service, two of the craft were destroyed in accidents. These included the Space Shuttle Challenger – which exploded upon take-off on Jan. 28th, 1986 – and the Space Shuttle Columbia which disintegrated during re-entry on Feb. 1st, 2003.

In 2004, then-U.S. President George W. Bush announced the Vision for Space Exploration, which called for a replacement for the aging Shuttle, a return to the Moon and, ultimately, a manned mission to Mars. These goals have since been maintained by the Obama administration, and now include plans for an Asteroid Redirect mission, where a robotic craft will tow an asteroid closer to Earth so a manned mission can be mounted to it.

All the information gained from manned and robotic missions about the geological phenomena of other planets – such as mountains and craters – as well as their seasonal, meteorological phenomena (i.e. clouds, dust storms and ice caps) have led to the realization that other planets experience much the same phenomena as Earth. In addition, it has also helped scientists to learn much about the history of the Solar System and its formation.

As our exploration of the Inner and Outer Solar System has improved and expanded, our conventions for categorizing planets has also changed. Our current model of the Solar System includes eight planets (four terrestrial, four gas giants), four dwarf planets, and a growing number of Trans-Neptunian Objects that have yet to be designated. It also contains and is surrounded by countless asteroids and planetesimals.

Given its sheer size, composition and complexity, researching our Solar System in full detail would take an entire lifetime. Obviously, no one has that kind of time to dedicate to the topic, so we have decided to compile the many articles we have about it here on Universe Today in one simple page of links for your convenience.

There are thousands of facts about the solar system in the links below. Enjoy your research.

The Solar System:

Theories about the Solar System:

Moons:

Anything EXTREME!:

Solar System Stuffs:

Pluto’s Moon Nix

Artist's impression of Pluto and its moons. Credit: NASA / Johns Hopkins University Applied Physics Laboratory / Southwest Research Institute

Over the course of the past decade, many amazing discoveries have been made at the edge of the Solar System. Thanks to the work of astronomers working out of Earth-based observatories, with the Hubble Space Telescope, and those behind the recent New Horizons mission, not only have new objects been discovered, but additional discoveries have been made about the ones we already knew about.

For example, in 2005, two additional satellites were discovered in orbit of PlutoHydra and Nix. The discovery of these moons (which has since been followed by the discovery of two more) has taught astronomers much about the far-flung system of Pluto, and helped to advance our understanding of the Kuiper Belt.

Discovery and Naming:
Nix was discovered in June of 2005 by the Hubble Space Telescope Pluto Companion Search Team, using discovery images that were taken on May 15th and 18th, 2005. The team was composed of Hal A. Weaver, Alan Stern, Max J. Mutchler, Andrew J. Steffl, Marc W. Buie, William J. Merline, John R. Spencer, Eliot F. Young, and Leslie A. Young.

The discovery images of Nix (and Hydra) obtained by the Hubble Space Telescope. Credit: NASA, ESA, H. Weaver (JHU/APL), A. Stern (SwRI)
The discovery images of Nix (and Hydra) obtained by the Hubble Space Telescope. Credit: NASA, ESA, H. Weaver (JHU/APL), A. Stern (SwRI)

Nix and Hydra were also independently discovered by Max J. Mutchler on June 15th, 2005, and by Andrew J. Steffl on August 15th, 2005. At the time, Nix was given the provisional designation of S/2005 P 2 and casually referred to as “P2”. Once pre-recovery images from 2002 were confirmed, the discoveries were announced on October 31st, 2005.

In accordance with IAU guidelines concerning the naming of satellites in the Solar System, the moon was named Nix. Derived from Greek mythology, Nix is the goddess of darkness and night, the mother of Charon and the ferryman of Hades (the Greek equivalent of Pluto) who brought the souls of the dead to the underworld.

The name was officially announced on June 21st, 2006, in an IAU Circular, where the designation “Pluto II” is also given. The initials N and H (for Nix and Hydra) were also a deliberate reference to the New Horizons mission, which would be conducting a flyby of the Pluto system in less than ten years time after the announcement was made.

Images acquired by the New Horizon's probe of Nix (left) and Hydra (right). Credit: NASA/JHUAPL/SWRI
Images acquired by the New Horizon’s probe of Nix (left) and Hydra (right) on July 14th, 2015. Credit: NASA/JHUAPL/SWRI

Size, Mass and Orbit:
Based on observations with the Hubble Space Telescope of Nix’s geometric albedo and shape, the satellite was estimated to measure 56.3 km (35 mi) along its longest axis and 25.7 km (16 mi) wide. However, images provided by the New Horizons’ Ralph instrument on July 14th, 2015, indicated that Nix measures 42 km (26 mi) in length and 36 km (22 mi) wide.

Nix follows a circular orbit with very little eccentricity (0.0020) and a low inclination of approximately 0.13°. It is in the same orbital plane as Charon, is in a 3:2 orbital resonance with Hydra, and a 9:11 resonance with Styx. Its orbital period is roughly 24.9 days, meaning it takes about 25 days to complete a single orbit of Pluto.

As with Hydra and perhaps the other small Plutonian moons, Nix rotates chaotically, which is due mainly to its oblong shape. This means that the moon’s axial tilt and day length vary greatly over short timescales, to the point that it regularly flips over.

Composition:
Early observations conducted by Marc W. Buie and William M. Grundy at the Lowell Observatory appeared to show that Nix has a reddish color like Pluto, but unlike any of its other moons. However, more-recent studies conducted by S. Alan Stern et al. using the Hubble Space Telescope’s Advanced Camera for Surveys (ACS), have indicated that it is likely as grey as the remaining satellites.

From these observations, it is likely that the surface of Nix is composed primarily of water ice (like Hydra) and may or may also have trace amount of methane ice on its surface. If true, then the exposure of these deposits of methane ice to ultra-violet radiation from the Sun would result in the presence of tholins, which would give it a reddish hue.

However, when the New Horizons space probe photographed Hydra and Nix during its flyby of the Pluto system, it spotted a large region with a distinctive red tint, probably a crater. The appearance of this surface region – a spot of red against an otherwise grey landscape – may explain these conflicting results.

Exploration:
Thus far, only one mission has been performed to the Pluto system that resulted in close-up and detailed photographs of Nix. This would be the New Horizons mission, which flew through the Pluto-Charon system on July 14th, 2015 and photographed Hydra and Nix from an approximate distance of 640,000 km (400,000 mi).

Until July 13th, 2015, when NASA’s Long Range Reconnaissance Imager (LORRI) on board New Horizons determined Nix’s dimensions, its size was unknown. More images and information will be downloaded from the spacecraft between now and late 2016.

Prior to the discovery of Hydra and Nix in 2005, Pluto was believed to share its orbit with only the satellite of Charon – hence why astronomers often refer to it as the “Pluto-Charon system”. However, since the discovery of these two additional satellites in 2005, two more have been discovered – Kerberos in July of 2011 and Styx in July of 2012.

This raises the number of bodes in the Pluto-Charon system to one primary and five satellites. And thanks to the recent New Horizons flyby, we got to see all of them up close for the first time!

Like most large bodies in the Kuiper Belt (not to mention their satellites) much remains to be learned about Nix and its companions. In time, and with more missions to the outer Solar System, we are sure to address many of the mysteries surrounding this particular satellite, and will probably find many more waiting for us!

We have written many interesting articles on Pluto, its system of moons and the Kuiper Belt here at Universe Today.

Here’s Moons of Pluto, Pluto’s New Moons are Named Nix and Hydra, and Pluto’s Moons Nix and Hydra Get Real.

And here’s New Horizons Now Close Enough to See Pluto’s Smaller Moons, and Fifth Moon Found Around Pluto.

Astronomy Cast has a wonderful episode on the New Horizons mission, titled On Pluto’s Doorstep – Live Hangout with New Horizons Team.

For more information, check out NASA’s Solar System Exploration: Nix and PlanetEdu.com’s page on updated images of Nix and Pluto’s other moons..

What Do Other Planets Sound Like?

What Do Other Planets Sound Like?

We know that in space, no one can hear you scream. But what would things sound like on another planet?

When humans finally set foot on Mars, they’re going to be curious about everything around them.

What’s under that rock? What does it feel like to jump in the lower Martian gravity. What does Martian regolith taste like? What’s the bitcoin to red rock exchange rate?

As long as they perform their activities in the safety of a pressurized habitation module or exosuit, everything should be fine. But what does Mars sound like?

I urge all future Martian travelers, no matter how badly you want to know the answer to this question: don’t take your helmet off. With only 1% the atmospheric pressure of Earth, you’d empty your lungs with a final scream in a brief and foolish moment, then suffocate horribly with a mouthful of dust on the surface of the Red Planet.

But… actually, even the screaming would sound a little different. How different? Let me show you. First you just need to take your helmet off for a just a little sec, just an itsy bitsy second. Here, I’ll hold it for you. Oh, come on, just take your helmet off. All the cool kids are doing it.

What about Venus? Or Titan? What would everything sound like on an alien world?

We evolved to exist on Earth, and so it’s perfectly safe for us to listen to sounds in the air. No space suit needed. Unless you didn’t evolve on Earth, in which case I offer to serve as emissary to our all new alien overlords.

You know sounds travel when waves of energy propagate through a medium, like air or water. The molecules bump into each other and pass along the energy until they strike something that won’t move, like your ear drum. Then your brain turns bouncing into sounds.

The speed of the waves depends on what the medium is made of and how dense it is. For example, sound travels at about 340 meters/second in dry air, at sea level at room temperature. Sound moves much more quickly through liquid. In water it’s nearly 1,500 m/s. It’s even faster through a solid – iron is up past 5,100 m/s. Our brain perceives a different sound depending on the intensity of the waves and how quickly they bounce off our ears.

Artist's impression of the surface of Venus. Credit: ESA/AOES
Artist’s impression of the surface of Venus. Credit: ESA/AOES

Other worlds have media that sound waves can travel through, and with your eardrum exposed to the atmosphere you should theoretically hear sounds on other worlds. Catastrophic biological failures from using your eardrums outside of documented pressure tolerances notwithstanding.

Professor Tim Leighton and a team of researchers from the University of Southampton have simulated what we would hear standing on the surface of other worlds, like Mars, Venus or even Saturn’s Moon Titan.

On Venus, the pitch of your voice would become deeper, because vocal cords would vibrate much more slowly in the thicker Venusian atmosphere. But sounds would travel more quickly through the soupy atmosphere. According to Dr. Leighton, humans would sound like bass Smurfs. Mars would sound a little bit higher, and Titan would sound totally alien.

Dr. Leighton actually simulated the same sound on different worlds. Here’s the sound of thunder on Earth.
Here’s what it would sound like on Venus.
And here’s what it would sound like on Mars.
Here’s what a probe splashing into water on Earth would sound like.
And here’s what it would sound like splashing into a hydrocarbon lake on Titan.

You might be amazed to learn that we still haven’t actually recorded sounds on another world, right up until someone points out that putting a microphone on another planet hasn’t been that big a priority for any space mission.

A fish-eye view of Titan's surface from the European Space Agency's Huygens lander in January 2005. Credit: ESA/NASA/JPL/University of Arizona
A fish-eye view of Titan’s surface from the European Space Agency’s Huygens lander in January 2005. Credit: ESA/NASA/JPL/University of Arizona

Especially when we could analyze soil samples, but hey fart sounds played and then recorded in the Venusian atmosphere could prove incredibly valuable to the future of internet soundboards.

The Planetary Society has been working to get a microphone included on a mission. They actually included a microphone on the Mars Polar Lander mission that failed in 1999. Another French mission was going to have a microphone, but it was cancelled. There are no microphones on either Spirit or Opportunity, and the Curiosity Rover doesn’t have one either despite its totally bumping stereo.

Here’s is the only thing we’ve got. When NASA’s Phoenix Lander reached the Red Planet in 2008, it had a microphone on board to capture sounds. It recorded audio as it entered the atmosphere, but operators turned the instrument off before it reached the surface because they were worried it would interfere with the landing.

Mars Phoenix Lander. Image credit: NASA/JPL/SSI

Here’s the recording.

Meh. I’m going to need you to do better NASA. I want an actual microphone recording winds on the surface of Mars. I hope it’s something Dethklok puts on their next album, they could afford that kind of expense.

It turns out, that if you travel to an alien world, not only would the sights be different, but the sounds would be alien too. Of course, you’d never know because you’re be too chicken to take your helmet off and take in the sounds through the superheated carbon dioxide or methane atmosphere.

What sounds would you like to hear on an alien world? Tell us in the comments below.

The (Possible) Dwarf Planet 2007 OR10

An artist's conception of 2007 OR10, nicknamed Snow White. Astronomers suspect that its rosy color is due to the presence of irradiated methane. [Credit: NASA]

Over the course of the past decade, more and more objects have been discovered within the Trans-Neptunian region. With every new find, we have learned more about the history of our Solar System and the mysteries it holds. At the same time, these finds have forced astronomers to reexamine astronomical conventions that have been in place for decades.

Consider 2007 OR10, a Trans-Neptunian Object (TNO) located within the scattered disc that at one time went by the nicknames of “the seventh dwarf” and “Snow White”. Approximately the same size as Haumea, it is believed to be a dwarf planet, and is currently the largest object in the Solar System that does not have a name.

Discovery and Naming:

2007 OR10 was discovered in 2007 by Meg Schwamb, a PhD candidate at Caltech and a graduate student of Michael Brown, while working out of the Palomar Observatory. The object was colloquially referred to as the “seventh dwarf” (from Snow White and the Seven Dwarfs) since it was the seventh object to be discovered by Brown’s team (after Quaoar in 2002, Sedna in 2003, Haumea and Orcus in 2004, and Makemake and Eris in 2005).

Comparison of Sedna with the other largest TNOs and with Earth (all to scale). Credit: NASA/Lexicon
Comparison of Sedna with the other largest TNOs and with Earth (all to scale). Credit: NASA/Lexicon

At the time of its discovery, the object appeared to be very large and very white, which led to Brown giving it the other nickname of “Snow White”. However, subsequent observation has revealed that the planet is actually one of the reddest in the Kuiper Belt, comparable only to Haumea. As a result, the nickname was dropped and the object is still designated as 2007 OR10.

The discovery of 2007 OR10 would not be formally announced until January 7th, 2009.

Size, Mass and Orbit:

A study published in 2011 by Brown – in collaboration with A.J. Burgasser (University of California San Diego) and W.C. Fraser (MIT) – 2007 OR10’s diameter was estimated to be between 1000-1500 km. These estimates were based on photometry data obtained in 2010 using the Magellan Baade Telescope at the Las Campanas Observatory in Chile, and from spectral data obtained by the Hubble Space Telescope.

However, a survey conducted in 2012 by Pablo Santos Sanz et al. of the Trans-Neptunian region produced an estimate of 1280±210 km based on the object’s size, albedo, and thermal properties. Combined with its absolute magnitude and albedo, 2007 OR10 is the largest unnamed object and the fifth brightest TNO in the Solar System. No estimates of its mass have been made as of yet.

2007 OR10 also has a highly eccentric orbit (0.5058) with an inclination of 30.9376°. What this means is that at perihelion, it is roughly 33 AU (4.9 x 109 km/30.67 x 109 mi) from our Sun while at aphelion, it is as distant as 100.66 AU (1.5 x 1010 km/9.36 x 1010 mi). It also has an orbital period of 546.6 years, which means that the last time it was at perihelion was 1857 and it won’t reach aphelion until 2130. As such, it is currently the second-farthest known large body in the Solar System, and  will be farther out than both Sedna and Eris by 2045.

Composition:

According to the spectral data obtained by Brown, Burgasser and Fraser, 2007 OR10 shows infrared signatures for both water ice and methane, which indicates that it is likely similar in composition to Quaoar. Concurrent with this, the reddish appearance of 2007 OR10 is believed to be due to presence of tholins in the surface ice, which are caused by the irradiation of methane by ultraviolet radiation.

The presence of red methane frost on the surfaces of both 2007 OR10 and Quaoar is also seen as an indication of the possible existence of a tenuous methane atmosphere, which would slowly evaporate into space when the objects are closer to the Sun. Although 2007 OR10 comes closer to the Sun than Quaoar, and is thus warm enough that a methane atmosphere should evaporate, its larger mass makes retention of an atmosphere just possible.

Also, the presence of water ice on the surface is believed to imply that the object underwent a brief period of cryovolcanism in its distant past. According to Brown, this period would have been responsible not only for water ice freezing on the surface, but for the creation of an atmosphere that included nitrogen and carbon monoxide. These would have been depleted rather quickly, and a tenuous atmosphere of methane would be all that remains today.

However, more data is required before astronomers can say for sure whether or not 2007 OR10 has an atmosphere, a history of cryovolcanism, and what its interior looks like. Like other KBOs, it is possible that it is differentiated between a mantle of ices and a rocky core. Assuming that there is sufficient antifreeze, or due to the decay of radioactive elements, there may even be a liquid-water ocean at the core-mantle boundary.

Classification:

Though it is too difficult to resolve 2007 OR10’s size based on direct observation, based on calculations of 2007 OR10’s albedo and absolute magnitude, many astronomers believe it to be of sufficient size to have achieved hydrostatic equilibrium. As Brown stated in 2011, 2007 OR10 “must be a dwarf planet even if predominantly rocky”, which is based on a minimum possible diameter of 552 km and what is believed to be the conditions under which hydrostatic equilibrium occurs in cold icy-rock bodies.

That same year, Scott S. Sheppard and his team (which included Chad Trujillo) conducted a survey of bright KBOs (including 2007 OR10) using the Palomar Observatory’s 48 inch Schmidt telescope. According to their findings, they determined that “[a]ssuming moderate albedos, several of the new discoveries from this survey could be in hydrostatic equilibrium and thus could be considered dwarf planets.”

Currently, nothing is known of 2007 OR10’s mass, which is a major factor when determining if a body has achieved hydrostatic equilibrium. This is due in part to there being no known satellite(s) in orbit of the object, which in turn is a major factor in determining the mass of a system. Meanwhile, the IAU has not addressed the possibility of accepting additional dwarf planets since before the discovery of 2007 OR10 was announced.

Alas, much remains to be learned about 2007 OR10. Much like it’s Trans-Neptunian neighbors and fellow KBOs, a lot will depend on future missions and observations being able to learn more about its size, mass, composition, and whether or not it has any satellites. However, given its extreme distance and fact that it is currently moving further and further away, opportunities to observe and explore it via flybys will be limited.

However, if all goes well, this potential dwarf planet could be joining the ranks of such bodies as Pluto, Eris, Ceres, Haumea and Makemake in the not-too-distant future. And with luck, it will be given a name that actually sticks!

We have many interesting articles on Dwarf Planets, the Kuiper Belt, and Plutoids here at Universe Today. Here’s Why Pluto is no longer a planet and how astronomers are predicting Two More Large Planets in the outer Solar System.

Astronomy Cast also has an episode all about Dwarf Planets titled, Episode 194: Dwarf Planets.

For more information, check out the NASA’s Solar System Overview: Dwarf Planets, and the Jet Propulsion Laboratory’s Small-Body Database, as well as Mike Browns Planets.

 

What Did We Learn About Pluto?

What Did We Learn About Pluto?

We’ve only had blurry images of Pluto up until New Horizons. So what did we learn when we got up close and personal with Pluto and its moons?

Clyde Tombaugh first discovered Pluto in 1930. He saw only see a single speck of light moving slowly in front of the background stars as he flipped photographic plates back and forth. Sadly, this was the best anyone could do for decades. Even the mighty Hubble, the most sensitive instrument ever focused on Pluto, could only resolve a few grainy pixels.

It’s because Pluto is really really far away: 7.5 billion kilometers. Just the light alone from there takes over 4 hours to reach us. In order to get any more information, humanity needed to reach out and send a spacecraft to Pluto, and photograph it, up close and personal.

In 1989, Alan Stern and a group of planetary scientists began working on a mission. Their work culminated in NASA’s New Horizons spacecraft, launched in 2006, beginning a 9 and a half year journey. And unless you’ve been living in a lunar lava tube, you know that New Horizons finally reached its destination in mid July 2015, passing a narrow 12,472 kilometers above the surface.

For the very first time in human history, we saw a member of the Kuiper Belt right up in it’s business. And now I retire these old low quality images Pluto! Begone artist’s illustrations!

From here on out, we’re all about sick high def photos of the surface and its moons. I for one am going to revel in them for a while.

So fashion shoots aside, what did we actually learn about Pluto? The primary mission was to map the geography of Pluto and its biggest moon, Charon. It would study the surface chemistry of these icy worlds, and measure their atmospheres, if they even exist at all.

The mission had a few other objectives, and of course, planetary scientists knew that the spacecraft would just surprise us with stuff we never expected. Kuiper Belt objects like Pluto and Charon are ancient; geologists expected them to be pockmarked with craters, large and small.

Views of Pluto during New Horizons' approach. Credit: NASA/Damian Peach
Views of Pluto during New Horizons’ approach. Credit: NASA/Damian Peach

Surprisingly, New Horizons showed relatively smooth surfaces on both worlds. Pluto has a Texas-sized region newly named Sputnik Planum, where exotic ices flow like glaciers. Frozen nitrogen, carbon dioxide and methane ices act just like the ones we have here on Earth. We can see from the relative lack of craters that this process is still happening.

Pluto has mountains. Mountains! Close ups show a young range with peaks as high as 11,000 feet, or 3,500 meters. Here’s the crazy part. Those exotic chemicals that act like snow and ice? They’re not hard enough to make mountain peaks like this.

At extreme cold temperatures, water ice becomes as hard as rock. These mountains are made of ice, and they’re very young, probably less than 100 million years old. There could be plate tectonics on Pluto, but with ice, not rock. My mind is blown.

Pluto’s moon Charon has a huge chasm longer and deeper than the Grand Canyon in Arizona and although scientists hoped to see an atmosphere, the reality was beyond anyone’s expectations.

Backlit by the sun, Pluto’s atmosphere rings its silhouette like a luminous halo in this image taken by NASA’s New Horizons spacecraft around midnight EDT on July 15. This global portrait of the atmosphere was captured when the spacecraft was about 1.25 million miles (2 million kilometers) from Pluto and shows structures as small as 12 miles across. The image, delivered to Earth on July 23, is displayed with north at the top of the frame.  Credits: NASA/JHUAPL/SwRI
Backlit by the sun, Pluto’s atmosphere rings its silhouette like a luminous halo in this image taken by NASA’s New Horizons spacecraft around midnight EDT on July 15. This global portrait of the atmosphere was captured when the spacecraft was about 1.25 million miles (2 million kilometers) from Pluto and shows structures as small as 12 miles across. The image, delivered to Earth on July 23, is displayed with north at the top of the frame. Credits: NASA/JHUAPL/SwRI

New Horizons detected a thin nitrogen atmosphere at Pluto. It could be snowing nitrogen on Pluto right now. There could be faint winds, since there are regions on Pluto that look like they might have undergone weathering.

Take a look at this photograph as New Horizons zipped away. You can see the atmosphere clearly surrounding the dwarf planet, interacting with the solar wind and creating a tail that stretches away from the Sun.

Here’s my favorite thing we learned. Pluto is about 80 km larger than previous estimates, which makes it the largest Kuiper Belt Object found so far. Even bigger than Eris, which is still a little more massive. So maybe it’s time to revisit that Pluto planethood debate again. I’m just messing with you. No good will ever come from having that debate. It will only end in tears.

Interestingly, the data connection between Earth and New Horizons is tenuous. Possibly the worst internet since AOL. It can only transmit back about 1kb of data per second, which means that we’ll need to wait about 16 months for the photographs and data to be sent home during the first few days of the flyby.

As an extra bonus, this isn’t the last we’re going to hear from New Horizons. Because it’s so far away, as the spacecraft can only trickle data back to Earth. It’s going to take almost 2 years for all the images and measurements it gathered during its flyby to get back to Earth for scientists to study. Expect many more discoveries and announcements over the coming years, and more videos from us.

Now that Pluto has finally been explored, where do you think we should go next in the Solar System? Tell us in the comments below.

The Dwarf Planet Orcus

Artist's impression of the Trans-Neptunian Object (TNO) 90482 Orcus. Credit: NASA

Since the early 2000s, more and more objects have been discovered in the outer Solar System that resemble planets. However, until they are officially classified, the terms Kuiper Belt Object (KBO) and Trans-Neptunian Object (TNO) are commonly used. This is certainly true of Orcus, another large object that was spotted in Pluto’s neighborhood about a decade ago.

Although similar in size and orbital characteristics to Pluto, Orcus is Pluto’s opposite in many ways. For this reason, Orcus is often referred to as the “anti-Pluto”, a fact that contributed greatly to the selection of its name. Although Orcus has not yet been officially categorized as a dwarf planet by the IAU, many astronomers agree that it meets all the requirements and will be in the future.

Discovery and Naming:
Orcus was discovered on February 17th, 2004, by Michael Brown of Caltech, Chad Trujillo of the Gemini Observatory, and David Rabinowitz of Yale University. Although discovered using images that were taken in 2004, prerecovery images of Orcus have been identified going back as far as November 8th, 1951.

Provisionally known as 90482 2004 DW, by November 22nd, 2004, the name Orcus was assigned. In accordance with the IAU’s astronomical conventions, objects with a similar size and orbit to that of Pluto are to be named after underworld deities. Therefore, the discovery team suggested the name Orcus, after the Etruscan god of the underworld and the equivalent of the Roman god Pluto.

90482 Orcus. The location of Orcus is shown in the green circle (top, left). Credit: NASA
90482 Orcus. The location of Orcus is shown in the green circle (top, left). Credit: NASA

Size, Mass and Orbit:
Given its distance, estimates of Orcus’ diameter and mass have varied over time. In 2008, observations made using the Spitzer Space Telescope in the far infrared placed its diameter at 958.4 ± 22.9 km. Subsequent observations made in 2013 using the Herschel Space Telescope at submillimeter wavelengths led to similar estimates being made.

In addition, Orcus appears to have an albedo of about 21% to 25%, which may be typical of trans-Neptunian objects approaching the 1000 km diameter range. However, these estimates were based on the assumption that Orcus was a singular object and not part of a system. The discovery of the relatively large satellite Vanth (see below) in 2007 by Brown et al. is likely to change these considerably.

The absolute magnitude of Vanth is estimated to be 4.88, which means that it is about 11 times fainter than Orcus itself. If the albedos of both bodies are the same at 0.23, then the diameter of Orcus would be closer to 892 -942 km, while Vanth would measure about 260 -293 km.

In terms of mass, the Orcus system is estimated to be 6.32 ± 0.05 ×1020 kg, which is about 3.8% the mass of the dwarf planet Eris. How this mass is partitioned between Orcus and Vanth depends of their relative sizes. If Vanth is 1/3rd the diameter Orcus, its mass is likely to be only 3% of the system. However, if it’s diameter is about half that of Orcus, then its mass could be as high as 1/12 of the system, or about 8% of the mass of Orcus.

Orcus compared to Earth and the Moon. Credit: Wikipedia Commons
Orcus compared to Earth and the Moon. Credit: Wikipedia Commons

Much like Pluto, Orcus has a very long orbital period, taking 245.18 years (89552 days) to complete a single rotation around the Sun. It also is in a 2:3 orbital resonance with Neptune and is above the ecliptic during perihelion. In addition, it’s orbit has a similar inclination and eccentricity as Pluto’s – 20.573° to the ecliptic, and 0.227, respectively.

In short, Orcus orbits the Sun at a distance of 30.27 AU (4.53 billion km) at perihelion and 48.07 AU (7.19 billion km) at aphelion. However, Pluto and Orcus are oriented differently. For one, Orcus is at aphelion when Pluto is at perihelion (and vice versa), and the aphelion of Orcus’s orbit points in nearly the opposite direction from Pluto’s. Hence why Orcus is often referred to as the “anti-Pluto”.

Composition:
The density of the primary (and secondary assuming they have the same density) is estimated to be 1.5 g/cm3. In addition, spectroscopic and near-infrared observations have indicated that the surface is neutral in color and shows signs of water. Further infrared observations in 2004 by the European Southern Observatory and the Gemini Observatory indicated the possible presence of water ice and carbonaceous compounds.

This would indicate that Orcus is most likely differentiated between a rocky core and an icy mantle composed of water and methane ices as well as tholins – though not as much as other KBOs which are more reddish in appearance. The water and methane ices are believed to cover no more than 50% and 30% of the surface, respectively – which would mean the proportion of ice on the surface is less than on Charon, but similar to that on Triton.

Another interesting feature on Orcus is the presence of crystalline ice on its surface – which may be an indication of cryovolcanism – and the possible presence of ammonia dissolved in water and/or methane/ethane ices. This would make Orcus quite unique, since ammonia has not been detected on any other TNO or icy satellite of the outer planets (other than Uranus’ moon Miranda).

Moon:
In 2011, Mike Brown and T.A. Suer detected a satellite in orbit of Orcus, based on images taken by the Hubble Space Telescope on November 13th, 2005. The satellite was given the designation S/2005 (90482) before being renamed Vanth on March 30th, 2005. This name was the result of an opinion poll where Mike Brown asked readers of his weekly column to submit their suggestions.

The name Vanth, after the Etruscan goddess who guided the souls of the dead to the underworld, was eventually chosen from among a large pool of submissions, which Brown then submitted to the IAU. The IAU’s Committee for Small Body Nomenclature assessed it and determined it fit with their naming procedures, and officially approved of it in March of 2010.

Vanth orbits Orcus in a nearly face-on circular orbit at a distance of 9030 ± 89 km. It has an eccentricity of about 0.007 and an orbital period of 9.54 days. In terms of how Orcus acquired it, it is not likely that it was the result of a collision with an object, since Vanth’s spectrum is very different from that of its primary.

Therefore, it is much more likely that Vanth is a captured KBO that Orcus acquired in the course of its history. However, it is also possible that Vanth could have originated as a result of rotational fission of the primordial Orcus, which would have rotated much faster billions of years ago than it does now.

Much like most other KBOs, there is much that we still don’t know about Orcus. There are currently no plans for a mission in the near future. But given the growing interest in the region, it would not be surprising at all if future missions to the outer Solar System were to include a flyby of this world. And as we learn more about Orcus’ size, shape and composition, we are likely to see it added to the list of confirmed dwarf planets.

We have many interesting articles on Dwarf Planets, Kuiper Belt Objects, and the Outer Solar System here at Universe Today. Here is What is a Dwarf Planet? and What is the Kuiper Belt?

And be sure to checkout How Many Planets are in the Solar System?, and this article about all the Bright Objects in the Kuiper Belt.

For more information on Orcus, Vanth, check out the Planetary Society’s page on Orcus and Vanth. To learn more about how they were discovered, consult Mike Brown’s Planets.

Astronomy Cast also has a great interview with Mike Brown from Caltech.