Predicting Eclipses: How Does the Saros Cycle Work?

Image credit and copyright:

Boy, how about that total solar eclipse last Friday? And there’s more in store, as most of North America will be treated to yet another total lunar eclipse on the morning of April 4th. This eclipse is member three of four of a quartet of lunar eclipses, known as a tetrad.

Solar and lunar eclipses are predictable, and serve as a dramatic reminder of the clockwork nature of the universe. Many will marvel at the ‘perfect symmetry’ of eclipses as seen from the Earth, though the true picture is much more complex. Yes, the Sun is roughly 400 times larger in diameter than the Moon, but also about 400 times farther away. This distance isn’t always constant, however, as the orbits of both the Earth and Moon are elliptical. And to complicate matters, the Moon is currently moving 3 to 4 centimetres farther away from the Earth per year. Already, annular eclipses are more common in the current epoch than are total solar eclipses, and about 1.4 billion years from now, total solar eclipses will cease to happen entirely.

This has an impact on lunar eclipses as well. The dark inner umbra of the Earth is an average of about 1.25 degrees across at the distance from Earth to the Moon. The Moon’s orbit is inclined 5.1 degrees relative to the ecliptic plane, which traces out the Earth’s path around the Sun.  If this inclination was equal to zero, we’d be treated to two eclipses — one solar and one lunar — every 29.5 day synodic month.

This inclination assures that we have, on average, two eclipse seasons year, and that eclipses occur in groupings of 2-3.  The maximum number of eclipses that can occur in a calendar year is 7, which next occurs in 2038, and the minimum is 4, as occurs in 2015.

A solar eclipse occurs at New Moon, and a lunar eclipse always occurs at Full — a fact that many works of film and fiction famously get wrong. And while you have to happen to be in the narrow path of a solar eclipse to witness totality, the whole Moonward facing hemisphere of the Earth gets to witness a lunar eclipse. Ancient cultures recognized the mathematical vagaries of the lunar and solar cycles as they attempted to reconcile early calendars. Our modern Gregorian calendar strikes a balance between the solar mean and tropical year. The Muslim calendar uses strictly lunar periods, and thus falls 11 days short of a 365 day year. The Jewish and Chinese calendars incorporate a hybrid luni-solar system, assuring that an intercalculary ‘leap month’ needs to be added every few years.

But trace out the solar and lunar cycles far enough, and something neat happens. Meton of Athens discovered in the 5th century BC that 235 synodic periods very nearly equals 19 solar years to within a few hours. This means that the phases of the Moon ‘sync up’ every 19-year Metonic cycle, handy if you’re say, trying to calculate the future dates for a movable feast such as Easter, which falls on (deep breath) the first Sunday after the first Full Moon after the March equinox.

Credit
A unique ‘moondial’ in front of the Flandrau observatory on the University of Arizona Tucson campus. Image credit: David Dickinson

But there’s more. Take a period of 223 synodic months, and they sync up three key lunar cycles which are crucial to predicting eclipses;

Synodic month- The time it takes for the Moon to return to like phase (29.5 days).

Anomalistic month- The time it takes for the Moon to return to perigee (27.6 days).

Draconic month- the time it takes for the Moon to return to a similar intersecting node (ascending or descending) along the ecliptic (27.2 days).

That last one is crucial, as eclipses always occur when the Moon is near a node. For example, the Moon crosses ascending node less than six hours prior to the start of the April 4th lunar eclipse.

Credit
The evolution of a solar saros. Image credit: A.T. Sinclair/NASA/GSFC/Wikimedia Commons

And thus, the saros was born. A saros period is just eight hours shy of 18 years and 11 days, which in turn is equal to 223 synodic, 242 anomalistic or 239 draconic months.

The name saros was first described by Edmond Halley in 1691, who took it from a translation of an 11th century Byzantine dictionary. The plural of saros is saroses.

This also means that solar and lunar eclipses one saros period apart share nearly the same geometry, shifted 120 degrees in longitude westward. For example, the April 4th lunar eclipse is member number 30 in a cycle of 71 lunar eclipses belonging to saros series 132. A similar eclipse occurred one saros ago on March 24th, 1997. Stick around until April 14th, 2033 and you’ll complete a personal triple saros of eclipses, known as an exeligmos.

Credit:
A tale of three eclipses spanning 1997-2033 from lunar saros 132. Credit: Fred Espenak/NASA/GSFC

Dozens of saros series — both solar and lunar — are underway at any particular time.

But there’s something else unique about April’s eclipse. Though saros 132 started with a slim shallow penumbral eclipse way back on May 12th, 1492, this upcoming eclipse features the very first total lunar eclipse of the series. You can tell, as the duration of totality is a short 4 minutes and 43 seconds, a far cry from the maximum duration of 107 minutes that can occur during a central eclipse.

Created by author.
The evolution of lunar saros 132, showing five key eclipses out of the 71 in the series. Created by author

This particular saros cycle of eclipses will continue to become more central as time goes on. The final total lunar eclipse of the series occurs on August 2nd, 2213 AD, and the saros finally ends way out on June 26th, 2754.

Eclipses, both lunar and solar, have also made their way into the annuals of history. A rising partial eclipse greeted the defenders of Constantinople in 1453, fulfilling a prophecy in the mind of the superstitious when the city fell to the Ottoman Turks seven days later. And you’d think we’d know better by now, but modern day fears of the ‘Blood Moon‘ seen during an eclipse still swirl around the internet even today. Lunar eclipses even helped mariners get a onetime fix on longitude at sea: Christopher Columbus and Captain James Cook both employed this method.

Credit
The rising partial eclipse as seen from Constantinople on May 22nd 1453. Image credit: Stellarium

All thoughts to ponder as you watch the April 4th total lunar eclipse. This eclipse will be visible for observers across the Pacific, the Asian Far East, Australia and western North America, after which you’ll have one more shot at total lunar eclipse in 2015 on September 28th. The next total lunar eclipse after that won’t be until January 31st 2018, favoring North America.

Welcome to the saros!

Read Dave Dickinson’s eclipse-fueled sci-fi tales Exeligmos and Shadowfall.

Is the Universe Finite or Infinite?

Is the Universe Finite or Infinite?

Two possiblities exist: either the Universe is finite and has a size, or it’s infinite and goes on forever. Both possibilities have mind-bending implications.

In another episode of Guide to Space, we talked: “how big is our Universe”. Then I said it all depends on whether the Universe is finite or infinite. I mumbled, did some hand waving, glossed over the mind-bending implications of both possibilities and moved on to whatever snarky sci-cult reference was next because I’m a bad host. I acted like nothing happened and immediately got off the elevator.

So, in the spirit of he who smelled it, dealt it. I’m back to shed my cone of shame and talk big universe. And if the Universe is finite, well, it’s finite. You could measure its size with a really long ruler. You could also follow up statements like that with all kinds of crass shenanigans. Sure, it might wrap back on itself in a mindbending shape, like a of monster donut or nerdecahedron, but if our Universe is infinite, all bets are off. It just goes on forever and ever and ever in all directions. And my brain has already begun to melt in anticipation of discussing the implications of an infinite Universe.

Haven’t astronomers tried to figure this out? Of course they have, you fragile mortal meat man/woman! They’ve obsessed over it, and ordered up some of the most powerful sensitive space satellites ever built to answer this question.Astronomers have looked deep at the Cosmic Microwave Background Radiation, the afterglow of the Big Bang. So, how would you test this idea just by watching the sky?

Here’s how smart they are. They’ve searched for evidence that features on one side of the sky are connected to features on the other side of the sky, sort of like how the sides of a Risk map connect to each other, or there’s wraparound on the PacMan board. And so far, there’s no evidence they’re connected.

In our hu-man words, this means 13.8 billion light-years in all directions, the Universe doesn’t repeat. Light has been travelling towards us for 13.8 billion years this way, and 13.8 billion years that way, and 13.8 billion years that way; and that’s just when the light left those regions. The expansion of the Universe has carried them from 47.5 billion light years away. Based on this, our Universe is 93 billion light-years across. That’s an “at least” figure. It could be 100 billion light-years, or it could be a trillion light-years. We don’t know. Possibly, we can’t know. And it just might be infinite.

If the Universe is truly infinite, well then we get a very interesting outcome; something that I guarantee will break your brain for the entire day. After moments like this, I prefer to douse it in some XKCD, Oatmeal and maybe some candy crush.

Artist's conception of Planck, a space observatory operated by the European Space Agency, and the cosmic microwave background. Credit: ESA and the Planck Collaboration - D. Ducros
Artist’s conception of Planck, a space observatory operated by the European Space Agency, and the cosmic microwave background. Credit: ESA and the Planck Collaboration – D. Ducros

Consider this. In a cubic meter (or yard) of space. Alright, in a box of space about yay big (show with hands), there’s a finite number of particles that can possibly exist in that region, and those particles can have a finite number of configurations considering their spin, charge, position, velocity and so on.

Tony Padilla from Numberphile has estimated that number to be 10 to the power of 10 to the power of 70. That’s a number so big that you can’t actually write it out with all the pencils in the Universe. Assuming of course, that other lifeforms haven’t discovered infinite pencil technology, or there’s a pocket dimension containing only pencils. Actually, it’s probably still not enough pencils.

There are only 10 ^ 80 particles in the observable Universe, so that’s much less than the possible configurations of matter in a cubic meter. If the Universe is truly infinite, if you travel outwards from Earth, eventually you will reach a place where there’s a duplicate cubic meter of space. The further you go, the more duplicates you’ll find.

Ooh, big deal, you think. One hydrogen pile looks the same as the next to me. Except, you hydromattecist, you’ll pass through places where the configuration of particles will begin to appear familiar, and if you proceed long enough you’ll find larger and larger identical regions of space, and eventually you’ll find an identical you. And finding a copy of yourself is just the start of the bananas crazy things you can do in an infinite Universe.

The Hubble Ultra Deep Field seen in ultraviolet, visible, and infrared light. Image Credit: NASA, ESA, H. Teplitz and M. Rafelski (IPAC/Caltech), A. Koekemoer (STScI), R. Windhorst (Arizona State University), and Z. Levay (STScI)
The Hubble Ultra Deep Field seen in ultraviolet, visible, and infrared light. Image Credit: NASA, ESA, H. Teplitz and M. Rafelski (IPAC/Caltech), A. Koekemoer (STScI), R. Windhorst (Arizona State University), and Z. Levay (STScI)

In fact, hopefully you’ll absorb the powers of an immortal version of you, because if you keep going you’ll find an infinite number of yous. You’ll eventually find entire duplicate observable universes with more yous also collecting other yous. And at least one of them is going to have a beard.

So, what’s out there? Possibly an infinite number of duplicate observable universes. We don’t even need multiverses to find them. These are duplicate universes inside of our own infinite universe. That’s what you can get when you can travel in one direction and never, ever stop.

Whether the Universe is finite or infinite is an important question, and either outcome is mindblenderingly fun. So far, astronomers have no idea what the answer is, but they’re working towards it and maybe someday they’ll be able to tell us.

So what do you think? Do we live in a finite or infinite universe? Tell us in the comments below.

How Could You Capture an Asteroid?

How Could You Capture an Asteroid?

We can’t just go into space with a big butterfly net or catcher’s mitt, so how in the world could we capture an asteroid?

Ah asteroids, those dinosaur-killing, Scrooge-McDuck-moneybins from heaven.

They’re great and all, but you know what would be better? All the asteroids gathered up and put in a nice safe orbit where we harvest out all their precious sweet, juicy platinum cores.

Instead of nervously scanning the heavens, wishing we had more iridium at our disposal, we could seek out all the asteroids in the Solar System and push them somewhere we can get at them, whenever we want after we dump them into the orbital equivalent of a lazy susan.

Okay fine, instead of pushing all the asteroids around, maybe we should start with one. Get that right and we can extend our plans to the rest of the delicious space rocks we crave.

I know this sounds like just another pie in the sky “Fraser-Cain-double-plus-crazy” plan, but I’m not the only one to propose this idea. In fact, NASA has expressed plans to reach out and capture an asteroid and maybe put it into orbit around Earth.

There are many benefits to this plan. We’ll learn just how hard it is to move asteroids around, should we find one on a dangerous trajectory. We’ll learn how to land on an asteroid, and extract its precious resources. And of course, there’s the science. So much to learn from a pet asteroid. Also, if anyone ticks us off we can lop off clumps and hurl it at them. So a dinosaur killing space rock, returned safely to Earth? That sounds a little dangerous. Possibly a species-wide Darwin awards moment.

An artist's conception of a space exploration vehicle approaching an asteroid. Credit: NASA
An artist’s conception of a space exploration vehicle approaching an asteroid. Credit: NASA

How exactly does one capture an asteroid, and how could we move it back to Earth without killing us all, and more importantly will the Aliens have Darwin awards when we accidentally wipe ourselves out? This sounds like a job for BRUCE WILLIS.

As you may suspect, scientists have come up with a vast collection of clever ideas to move asteroids around. They all come down to the same challenge. You somehow need to impart a thrust to an asteroid. NASA has also informed me that involving Bruce Willis is optional, despite my insistence and extensive letter writing campaign.

One basic idea would be to fly down to the asteroid and install some kind of thruster on it. Perhaps an efficient ion engine, or a rail gun that throws off chunks of rock into space, imparting a thrust to the asteroid. The problem is that asteroids are often spinning, so you’d need to stop that rotation before you could fire up the thrusters.

Artist concept of an impactor heading towards an asteroid. Credit: ESA
Artist concept of an impactor heading towards an asteroid. Credit: ESA

Another idea would be to set off nuclear explosions nearby and just push it in the right direction with raw explosive power. By setting off the nuke close enough to the asteroid’s surface, you expel vaporized rock, which acts like a thruster. Also known as the “Ben Affleck Special”.

This one’s going to sound crazy, but scientists are serious. Airbags. You could bump a large inflated bag against the asteroid again and again to slowly nudge it in the direction you want. The rotation doesn’t really matter because the time you contact the asteroid is so brief.

Don’t like that? How about a gravity tractor? Now I’ve got your attention! You could fly a spacecraft really close to the asteroid, which would then attract it slowly, pulling it in the direction you like. As long as the spacecraft keeps thrusting away from the asteroid, you’ll keep pulling it along like a kite on a string.

These are just some of the big ideas. Scientists have proposed some sort of one sided space graffiti, painting them silver, possibly attaching solar sails, or even vaporizing rock with lasers to provide thrust.

Asteroid mining concept.  Credit: NASA/Denise Watt
Asteroid mining concept. Credit: NASA/Denise Watt

There’s another idea which deserves mention, and I’m going to warn you right now, it’s pretty terrifying. It’s called aerobraking. Instead of using energy to slow the asteroid and put it into the perfect orbit, we use the Earth’s atmosphere to help asteroids shed a tremendous amount of velocity.

By allowing an asteroid to pass briefly – briefly! – through the atmosphere of the Earth, you could decelerate it significantly. Make a few of these passes and you should be able to get it into a nice safe orbit around Earth. Of course, get it wrong and you crash an asteroid into Earth. So, there’s that. It would absolutely make a mess of our lawn, and we’d be the laughing stock of the local group.

Asteroids are precious resources, just waiting for us to reach out and harvest their minerals. Fortunately, we’ve got a range of strategies we can use to move them around. One of them has got to work… right?

Which idea for moving an asteroid do you like the best? Which one really freaks you out?

Could the Death Star Destroy a Planet?

Could the Death Star Destroy a Planet?

In the movie Star Wars, the Darth Vader’s Death Star destroyed a planet. Could this really happen?

You’ve watched Star Wars right? Is that still a thing? With the Starring and the Warring? Anyway, there’s this classic scene where the “Death Star” sidles up to Alderaan, and it is all like “Hey Planetoid, you lookin’ fine tonight” and then it fires up the superlaser and destroys the entire orb in a single blast. “BOOM”. Shortly followed by some collective group screaming on the interstellar forceway radio.

This is generally described as “science fiction”. And when you’re making up stories, anything you like can happen in them. George Lucas’ hunger for your childhood toy money wasn’t hampered by the pesky constraints of physics in any meaningful way.

Here at the Guide to Space, we get to take our own flights of fancy and pointlessly speculate for your amusement. That’s our job. Well, that and snark. Let’s consider what it would actually take to destroy a planet with a ‘pew pew’ style laser beam, and what kinds of energy would need to be harnessed in a fully armed and operational battle station.

Let’s go back and carefully review our “evidence”. The Death Star drifts in, charges up all its lasers into a superlaser blast focused on Alderaan. The planet then detonates and chunks fly off in every direction just like the pie eating contest in “Stand By Me”.

What we saw was every part of Alderaan given enough of a kick so that it was traveling at escape velocity from every other part of the planet. If the Death Star hadn’t delivered enough explosive energy, the planet might have fluffed up for a moment, but then the collective gravity would suck it all back in together, and then the slightly re-arranged, and likely now uninhabited planet would continue orbiting its star.

You can imagine doing this the slow way. Take each continent on Alderaan, load it up into a rocket and blast that rocket off into space as though it was on escape trajectory from the planet. Sure, you’d would need an incomprehensible number of rocket launches to get that material off the planet. But hey, midichlorians, blue finger lightning and ESP.

Fortunately, as you carted away more and more of the busted up rock, it would have less mutual gravity, and so the rocket launches would require less and less energy to get the job done. Eventually, you’d just be left with one last chunk of rock that you could just force ninja kick into the neighboring star.

Death Star beam. Credit: Lucasfilm
Death Star beam. Credit: Lucasfilm

So how much energy is that going to take? Well, there’s an “easy” calculation you can make. The energy you’d need is equal to 3 times the gravitational constant (6.673 x 10^-11) times the mass of the planet squared divided by 5 times the planet’s radius. Do this math for an Earth-sized/mass world, and let’s see that’s, two and one, carry the 5… and you get 2 x 10^36 joules. That’s a two followed by 36 zeros in joules. Is that a lot? That sounds like a lot.

Well, our own Sun puts out 3 x 10^26 joules per second. So, if you poured all the energy from the Sun into the task of tearing apart the Earth, it wouldn’t have enough energy to do it. In fact, you’d need to focus the light of the Sun for a full week to get that level of planet destruction done.

According to ancient Star Warsian dork scholars, the Death Star (SOLUS MORTIS) is powered by a hyperreactor with the output of multiple main sequence stars. So there you go, problem solved. It’s the size of a small moon, but it’s more powerful than many stars. Of course it can destroy a planet.

Exploding planet. Credit: ESO
Exploding planet. Credit: ESO

The Death Star clearly destroyed Alderaan. We watched it explode. I saw it, you saw it. We heard the screams of millions of souls cry out. It happened. But what if it wasn’t a beam thingy?

Our math is good, but clearly we’re not enlightened enough to comprehend the true wisdom hidden within the Lucasian scriptures. Perhaps the Death Star’s superlaser was just a targeting laser. Directing the placement of gigantic antimatter bomb. According to Ethan Siegel, from “Starts With a Bang,” you’d only need 1.24 trillion tonnes of antimatter.

Imagine you made a bomb out of that much antimatter iron – if that’s even a thing – you’d only need a sphere about 3 km across. If the Death Star is 150 km across or so, they could carry a bunch of these. Very carefully. Like super carefully. Okay, maybe it’d be a good idea if everyone took off their boots, and make sure they only talked with their inside voices.

Obviously, Star Wars is a story, so anything, ANYTHING can happen. The future is unknown, and we might discover all kinds of weirdo physics and harness them into all kinds of powerful weapons. I’m only suggesting, that a space station capable of deploying a week’s worth of solar energy in a single second might be a stretch. And maybe, George, if you just done a little back of the napkin math, we wouldn’t be talking about this right now. Also, maybe no Ewoks. I’m just saying.

Where do you stand on the feasibility of imaginary space station weaponry? How big a planet can your imagination destroy?

How Do We Know Dark Energy Exists?

How Do We Know Dark Energy Exists?

We have no idea what it dark energy is, so how are we pretty sure it exists?

I’ve talked about how astronomers know that dark matter exists. Even though they can’t see it, they detect it through the effect its gravity has on light. Dark matter accounts for 27% of the Universe, dark energy accounts for 68% of the Universe. And again, astronomers really have no idea what what it is, only that they’re pretty sure it does exist. 95% of the nature of the Universe is a complete and total mystery. We just have no idea what this stuff is.

So this time around, lets focus on dark energy. Back in the late 90s, astronomers wanted to calculate once and for all if the Universe was open or closed. In other words, they wanted to calculate the rate of expansion of the Universe now and then compare this rate to its expansion in the past. In order to answer this question, they searched the skies for a special type of supernova known as a Type 1a.

While most supernovae are just massive stars, Type 1a are white dwarf stars that exist in a binary system. The white dwarf siphons material off of its binary partner, and when it reaches 1.6 times the mass of the Sun, it explodes. The trick is that these always explode with roughly the same amount of energy. So if you measure the brightness of a Type 1a supernova, you know roughly how far away it is.

Astronomers assumed the expansion was slowing down. But the question was, how fast was it slowing down? Would it slow to a halt and maybe even reverse direction? So, what did they discover?

In the immortal words of Isaac Asimov, “the most exciting phrase to hear in science, the one that heralds new discoveries, is not ‘Eureka’, but ‘That’s Funny’” Instead of finding that the expansion of the Universe was slowing down, they discovered that it’s speeding up. That’s like trying to calculate how quickly apples fall from trees and finding that they actually fly off into the sky, faster and faster.

Since this amazing, Nobel prize winning discovery, astronomers have used several other methods to verify this mind-bending reality of the Universe. NASA’s Wilkinson Microwave Anisotropy Probe studied the Cosmic Microwave Background Radiation of the Universe for 7 years, and put the amount of dark energy at 72.8% of the Universe. ESA’s Planck spacecraft performed an even more careful analysis and pegged that number at 68.3% of the Universe.

Einstein Lecturing
Einstein Lecturing. (Ferdinand Schmutzer, Public Domain)

Astronomers know that dark energy exists. There are multiple lines of evidence. But as with dark matter, they have absolutely no clue what it is. Einstein described an idea he called the cosmological constant. It was a way to explain a static Universe that really should be expanding or contracting. Once astronomers figured out the Universe was actually expanding, he threw the idea out.

Hey, not so fast there “Einstein”. Maybe just one of the features of space itself is that it pushes stuff away. And the more space there is, the more outward pressure you get. Perhaps from virtual particles popping in and out of existence in the vacuum of space.

Another possibility is a phenomenon called Quintessence, a negative energy field that pervades the entire Universe. Yes, that sounds totally woo-woo, thanks Universe, Deepak Chopra crazy talk, but it might explain the repulsive force that makes up most of the Universe. And there are other theories, which are even more exotic. But mostly likely it’s something that physicists haven’t even thought of yet.

So, how do we know dark energy exists? Distant supernovae are a lot further away from each other than they should be if the expansion of the Universe was slowing down. Nobody has any idea what it is, it’s a mystery, and there’s nothing wrong with a mystery. In fact, for me, it’s one of the most exciting ideas in space and astronomy.

What do you think dark energy is?

How Do We Know Dark Matter Exists?

Fritz Zwicky
Fritz Zwicky. Image Source: Fritz Zwicky Stiftung website

Dark matter can’t be seen or detected by any of our instruments, so how do we know it really exists?

Imagine the Universe was a pie, and you were going to slice it up into tasty portions corresponding to what proportions are what. The largest portion of the pie, 68% would go to dark energy, that mysterious force accelerating the expansion of the Universe. 27% would go to dark matter, the mysterious matter that surrounds galaxies and only interacts through gravity. A mere 5% of this pie would go to regular normal matter, the stuff that stars, planets, gas, dust, and humans are made out of.

Dark matter has been given this name because it doesn’t seem to interact with regular matter in any way. It doesn’t collide with it, or absorb energy from it. We can’t see it or detect it with any of our instruments. We only know it’s there because we can see the effect of its gravity.

Now, you might be saying, if we don’t know what this thing is, and we can’t detect it. How do we know it’s actually there? Isn’t it probably not there, like dragons? How do we know dark matter actually exists, when we have no idea what it actually is?

Oh, it’s there. In fact, pretty much all we know is that it does exist. Dark matter was first theorized back in the 1930s by Fritz Zwicky to account for the movement of galaxy clusters, but the modern calculations were made by Vera Rubin in the 1960s and 70s. She calculated that galaxies were spinning more quickly than they should. So quickly that they should tear themselves apart like a merry-go-round ejecting children.

Rubin imagined that every galaxy was stuck inside a vast halo of dark matter that supplied the gravity to hold the galaxy together. But there was no way to actually detect this stuff, so astronomers proposed other models. Maybe gravity doesn’t work the way we think it does at vast distances.

But in the last few years, astronomers have gotten better and better at detecting dark matter, purely though the effect of its gravity on the path that light takes as it crosses the Universe. As light travels through a region of dark matter, its path gets distorted by gravity. Instead of taking a straight line, the light is bent back and forth depending on how much dark matter is passes through.

And here’s the amazing part. Astronomers can then map out regions of dark matter in the sky just by looking at the distortions in the light, and then working backwards to figure out how much intervening dark matter would need to be there to cause it.

Large Hadron Collider.  Credit:  NY Times
Large Hadron Collider. Credit: NY Times

These techniques have become so sophisticated that astronomers have discovered unusual situations where galaxies and their dark matter have gotten stripped away from each other. Or dark matter galaxies which don’t have enough gas to form stars. They’re just giant blobs of dark matter. Astronomers even use dark matter as gravitational lenses to study more distant objects. They have no idea what dark matter is, but they can still use it as a telescope.

They’ve never captured a dark matter particle, and haven’t studied them in the lab. One of the Large Hadron Collider’s next tasks will be to try and generate particles that match the characteristics of dark matter as we understand it. Even if the LHC doesn’t actually create dark matter, it will help narrow down the current theories, hopefully helping physicists focus in on the true nature of this mystery.

This is how science works. Someone notices something unusual, and then people propose theories to explain it. The theory that best matches reality is considered correct. We live in a modern world, where so many scientific theories have already been proven for hundreds of years: germs, gravity, evolution, etc. But with dark matter, you’re alive at a time when this is a mystery. And if we’re lucky, we’ll see it solved within our lifetime. Or maybe there’s no dark matter after all, and we’re about to learn something totally new about our Universe. Science, it’s all up to you.

What do you think dark matter is? Tell us in the comments below.

How Long Does It Take to Get to Pluto?

How Long Does It Take to Get to Pluto?

It’s a long way out to the dwarf planet Pluto. So, just how fast could we get there?

Pluto, the Dwarf planet, is an incomprehensibly long distance away. Seriously, it’s currently more than 5 billion kilometers away from Earth. It challenges the imagination that anyone could ever travel that kind of distance, and yet, NASA’s New Horizons has been making the journey, and it’s going to arrive there July, 2015.

You may have just heard about this news. And I promise you, when New Horizons makes its close encounter, it’s going to be everywhere. So let me give you the advanced knowledge on just how amazing this journey is, and what it would take to cross this enormous gulf in the Solar System.

Pluto travels on a highly elliptical orbit around the Sun. At its closest point, known as “perihelion”, Pluto is only 4.4 billion kilometers out. That’s nearly 30 AU, or 30 times the distance from the Earth to the Sun. Pluto last reached this point on September 5th, 1989. At its most distant point, known as “aphelion”, Pluto reaches a distance of 7.3 billion kilometers, or 49 AU. This will happen on August 23, 2113.

I know, these numbers seem incomprehensible and lose their meaning. So let me give you some context. Light itself takes 4.6 hours to travel from the Earth to Pluto. If you wanted to send a signal to Pluto, it would take 4.6 hours for your transmission to reach Pluto, and then an additional 4.6 hours for their message to return to us.

Let’s talk spacecraft. When New Horizons blasted off from Earth, it was going 58,000 km/h. Just for comparison, astronauts in orbit are merely jaunting along at 28,000 km/h. That’s its speed going away from the Earth. When you add up the speed of the Earth, New Horizons was moving away from the Sun at a blistering 160,000 km/h.

Unfortunately, the pull of gravity from the Sun slowed New Horizons down. By the time it reached Jupiter, it was only going 68,000 km/h. It was able to steal a little velocity from Jupiter and crank its speed back up to 83,000 km/h. When it finally reaches Pluto, it’ll be going about 50,000 km/h. So how long did this journey take?

Artist's conception of the New Horizons spacecraft at Pluto. Credit: Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute (JHUAPL/SwRI)
Artist’s conception of the New Horizons spacecraft at Pluto. Credit: Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute (JHUAPL/SwRI)

New Horizons launched on January 19, 2006, and it’ll reach Pluto on July 14, 2015. Do a little math and you’ll find that it has taken 9 years, 5 months and 25 days. The Voyager spacecraft did the distance between Earth and Pluto in about 12.5 years, although, neither spacecraft actually flew past Pluto. And the Pioneer spacecraft completed the journey in about 11 years.

Could you get to Pluto faster? Absolutely. With a more powerful rocket, and a lighter spacecraft payload, you could definitely shave down the flight time. But there are a couple of problems. Rockets are expensive, coincidentally bigger rockets are super expensive. The other problem is that getting to Pluto faster means that it’s harder to do any kind of science once you reach the dwarf planet.

New Horizons made the fastest journey to Pluto, but it’s also going to fly past the planet at 50,000 km/h. That’s less time to take high resolution images. And if you wanted to actually go into orbit around Pluto, you’d need more rockets to lose all that velocity. So how long does it take to get to Pluto? Roughly 9-12 years. You could probably get there faster, but then you’d get less science done, and it probably wouldn’t be worth the rush.

Are you super excited about the New Horizons flyby of Pluto? Tell us all about it in the comments below.

How Far Back Are We Looking in Time?

How Far Back Are We Looking in Time?

When we look out into space, we’re also looking back into time. Just how far back can we see?

The Universe is a magic time window, allowing us to peer into the past. The further out we look, the further back in time we see. Despite our brains telling us things we see happen at the instant we view them, light moves at a mere 300,000 kilometers per second, which makes for a really weird time delay at great distances.

Let’s say that you’re talking with a friend who’s about a meter away. The light from your friend’s face took about 3.336 nanoseconds to reach you. You’re always seeing your loved ones 3.336 nanoseconds into the past. When you look around you, you’re not seeing the world as it is, you’re seeing the world as it was, a fraction of a second ago. And the further things are, the further back in time you’re looking.

The distance to the Moon is, on average, about 384,000 km. Light takes about 1.28 seconds to get from the Moon to the Earth. If there was a large explosion on the Moon of a secret Nazi base, you wouldn’t see it for just over a second. Even trying to communicate with someone on the Moon would be frustrating as you’d experience a delay each time you talked.

Let’s go with some larger examples. Our Sun is 8 minutes and 20 seconds away at the speed of light. You’re not seeing the Sun as it is, but how it looked more than 8 minutes ago.

On average, Mars is about 14 light minutes away from Earth. When we were watching live coverage of NASA’s Curiosity Rover landing on Mars, it wasn’t live. Curiosity landed minutes earlier, and we had to wait for the radio signals to reach us, since they travel at the speed of light.

When NASA’s New Horizons spacecraft reaches Pluto next year, it’ll be 4.6 light hours away. If we had a telescope strong enough to watch the close encounter, we’d be looking at events that happened 4.6 hours ago.

A Hubble Space Telescope image of Proxima Centauri, the closest star to Earth. Credit: ESA/Hubble & NASA
A Hubble Space Telescope image of Proxima Centauri, the closest star to Earth. Credit: ESA/Hubble & NASA

The closest star, Proxima Centauri, is more than 4.2 light-years away. This means that the Proxima Centurans don’t know who won the last US Election, or that there are going to be new Star Wars movies. They will, however, as of when this video was produced, be watching Toronto make some questionable life choices regarding its mayoral election.

The Eagle Nebula with the famous Pillars of Creation, is 7,000 light-years away. Astronomers believe that a supernova has already gone off in this region, blasting them away. Take a picture with a telescope and you’ll see them, but mostly likely they’ve been gone for thousands of years.

The core of our own Milky Way galaxy is about 25,000 light-years away. When you look at these beautiful pictures of the core of the Milky Way, you’re seeing light that may well have left before humans first settled in North America.

The Andromeda Galaxy will collide with the Milky Way in the future. Credit: Adam Evans
The Andromeda Galaxy. Credit: Adam Evans

And don’t get me started on Andromeda. That galaxy is more than 2.5 million light-years away. That light left Andromeda before we had Homo Erectus on Earth. There are galaxies out there, where aliens with powerful enough telescopes could be watching dinosaurs roaming the Earth, right now.

Here’s where it gets even more interesting. Some of the brightest objects in the sky are quasars, actively feeding supermassive black holes at the cores of galaxies. The closest is 2.5 billion light years away, but there are many much further out. Earth formed only 4.5 billion years ago, so we can see quasars shining where the light had left before the Earth even formed.

The Cosmic Microwave Background Radiation, the very edge of the observable Universe is about 13.8 billion light-years away. This light left the Universe when it was only a few hundred thousand years old, and only now has finally reached us. What’s even stranger, the place that emitted that radiation is now 46 billion light-years away from us.

So crack out your sonic screwdrivers and enjoy your time machine, Whovians. Your ability to look out into space and peer into the past. Without a finite speed of light, we wouldn’t know as much about the Universe we live in and where we came from. What moment in history do you wish you could watch? Express your answer in the form of a distance in light-years.

10 Interesting Facts About Volcanoes

A view of the Villarrica Volcano's Eruption In Chile on March 3, 2-15. Credit: Ariel Marinkovic/EPA /Landov.

Want some volcano facts? Here are 10 interesting facts about volcanoes. Some of these facts you’ll know, and others may surprise you. Whatever the case, volcanoes are amazing features of nature that demand our respect.

1. There are Three Major Kinds of Volcanoes:

Although volcanoes are all made from hot magma reaching the surface of the Earth and erupting, there are different kinds. Shield volcanoes have lava flows with low viscosity that flow dozens of kilometers; this makes them very wide with smoothly sloping flanks.

Stratovolcanoes are made up of different kinds of lava, and eruptions of ash and rock and grow to enormous heights. Cinder cone volcanoes are usually smaller, and come from short-lived eruptions that only make a cone about 400 meters high.

2. Volcanoes Erupt Because of Escaping Magma:

About 30 km beneath your feet is the Earth’s mantle. It’s a region of superhot rock that extends down to the Earth’s core. This region is so hot that molten rock can squeeze out and form giant bubbles of liquid rock called magma chambers. This magma is lighter than the surrounding rock, so it rises up, finding cracks and weakness in the Earth’s crust.

Lava fountain in Hawaii.
Lava fountain in Hawaii. Image Credit: Jim D. Griggs/HVO/USGS

When it finally reaches the surface, it erupts out of the ground as lava, ash, volcanic gasses and rock. It’s called magma when it’s under the ground, and lava when it erupts onto the surface.

3. Volcanoes can be Active, Dormant or Extinct:

An active volcano is one that has had an eruption in historical times (in the last few thousand years). A dormant volcano is one that has erupted in historical times and has the potential to erupt again, it just hasn’t erupted recently. An extinct volcano is one that scientists think probably won’t erupt again. Here’s more information on the active volcanoes in the world.

4. Volcanoes can Grow Quickly:

Although some volcanoes can take thousands of years to form, others can grow overnight. For example, the cinder cone volcano Paricutin appeared in a Mexican cornfield on February 20, 1943. Within a week it was 5 stories tall, and by the end of a year it had grown to more than 336 meters tall. It ended its grown in 1952, at a height of 424 meters. By geology standards, that’s pretty quick.

Detailed View of Ash Plume at Eyjafjallajökull Volcano
Detailed view from space of the ash plume caused by the Eyjafjallajökull volcano in 2010. Credit: NASA

5. There are 20 Volcanoes Erupting Right Now:

Somewhere, around the world, there are likely about 20 active volcanoes erupting as you’re reading this. Some are experiencing new activity, others are ongoing. Between 50-70 volcanoes erupted last year, and 160 were active in the last decade. Geologists estimate that 1,300 erupted in the last 10,000 years.

Three quarters of all eruptions happen underneath the ocean, and most are actively erupting and no geologist knows about it at all. One of the reasons is that volcanoes occur at the mid ocean ridges, where the ocean’s plates are spreading apart. If you add the underwater volcanoes, you get an estimate that there are a total of about 6,000 volcanoes that have erupted in the last 10,000 years.

6. Volcanoes are Dangerous:

But then you knew that. Some of the most deadly volcanoes include Krakatoa, which erupted in 1883, releasing a tsunami that killed 36,000 people. When Vesuvius exploded in AD 79, it buried the towns of Pompeii and Herculaneum, killing 16,000 people.

Image of Mt. Vesuvius, captured in 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Credit: NASA/EO
Image of Mt. Vesuvius, captured in 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard the Terra satellite. Credit: NASA/EO

Mount Pelee, on the island of Martinique destroyed a town with 30,000 people in 1902. The most dangerous aspect of volcanoes are the deadly pyroclastic flows that blast down the side of a volcano during an eruption. These contain ash, rock and water moving hundreds of kilometers an hour, and hotter than 1,000 degrees C.

7. Supervolcanoes are Really Dangerous:

Geologists measure volcano eruptions using the Volcano Explosivity Index, which measures the amount of material released. A “small” eruption like Mount St. Helens was a 5 out of 8, releasing a cubic kilometer of material. The largest explosion on record was Toba, thought to have erupted 73,000 years ago.

It released more than 1,000 cubic kilometers of material, and created a caldera 100 km long and 30 kilometers wide. The explosion plunged the world into a world wide ice age. Toba was considered an 8 on the VEI.

8. The Tallest Volcano in the Solar System isn’t on Earth:

That’s right, the tallest volcano in the Solar System isn’t on Earth at all, but on Mars. Olympus Mons, on Mars, is a giant shield volcano that rises to an elevation of 27 km, and it measures 550 km across. Scientists think that Olympus Mons was able to get so large because there aren’t any plate tectonics on Mars. A single hotspot was able to bubble away for billions of years, building the volcano up bigger and bigger.

Mauna Kea
Mauna Kea observed from space. Credit: NASA/EO

9. The Tallest and Biggest Volcanoes on Earth are side by side:

The tallest volcano on Earth is Hawaii’s Mauna Kea, with an elevation of 4,207 meters. It’s only a little bigger than the largest volcano on Earth, Mauna Loa with an elevation of only 4,169 meters. Both are shield volcanoes that rise up from the bottom of the ocean. If you could measure Mauna Kea from the base of the ocean to its peak, you’d get a true height of 10,203 meters (and that’s bigger than Mount Everest).

10. The Most Distant Point from the Center of the Earth is a Volcano:

You might think that the peak of Mount Everest is the most distant point from the center of the Earth, but that’s not true. Instead, it’s the volcano Chimborazo in Ecuador. That’s because the Earth is spinning in space and is flattened out. Points at the equator are further from the center of the Earth than the poles. And Chimborazo is very close to the Earth’s equator.

We have written many articles about volcanoes for Universe Today. Here’s an article that tackles about the 10 facts about earth’s core. You might also want to read on the 10 facts about earth. And here’s more: all about volcanoes.

Want more resources on the Earth? Here’s a link to NASA’s Human Spaceflight page, and here’s NASA’s Visible Earth.

We have also recorded an episode of Astronomy Cast about Earth, as part of our tour through the Solar System – Episode 51: Earth.

Reference:
USGS Volcano Hazards Program

Why Don’t We Search for Different Life?

Why Don’t We Search for Different Life?

If we really want to find life on other worlds, why do we keep looking for life based on carbon and water? Why don’t we look for the stuff that’s really different?

In the immortal words of Arthur C. Clarke, “Two possibilities exist: either we are alone in the Universe or we are not. Both are equally terrifying.”

I’m seeking venture capital for a Universal buffet chain, and I wondering if I need to include whatever the tentacle equivalent of forks is on my operating budget. If there isn’t any life, I’m going to need to stop watching so much science fiction and get on with helping humanity colonize space.

Currently, astrobiologists are hard at work searching for life, trying to answer this question. The SETI Institute is scanning radio signals from space, hoping to catch a message. Since humans use radio waves, maybe aliens will too. NASA is using the Curiosity Rover to search for evidence that liquid water existed on the surface of Mars long enough for life to get going. The general rule is if we find liquid water on Earth, we find life. Astronomers are preparing to study the atmospheres of extrasolar planets, looking for gasses that match what we have here on Earth.

Isn’t this just intellectually lazy? Do our scientists lack imagination? Aren’t they all supposed to watch Star Trek How do we know that life is going to look anything like the life we have on Earth? Oh, the hubris!

Who’s to say aliens will bother to communicate with radio waves, and will transcend this quaint transmission system and use beams of neutrinos instead. Or physics we haven’t even discovered yet? Perhaps they talk using microwaves and you can tell what the aliens are saying by how your face gets warmed up. And how do we know that life needs to depend on water and carbon? Why not silicon-based lifeforms, or beings which are pure energy? What about aliens that breathe pure molten boron and excrete seahorse dreams? Why don’t these scientists expand their search to include life as we don’t know it? Why are they so closed-minded?

Viking Lander
In 1976, two Viking spacecraft landed on Mars. The image is of a model of the Viking lander, along with astronomer and pioneering astrobiologist Carl Sagan. Each lander was equipped with life detection experiments designed to detect life based on its metabolic activities.
Credits: NASA/Jet Propulsion Laboratory, Caltech

The reality is they’re just being careful. A question this important requires good evidence. Consider the search for life on Mars. Back in the 1970s, the Viking Lander carried an experiment that would expose Martian soil to water and nutrients, and then try to detect out-gassing from microbes. The result of the experiment was inconclusive, and scientists still argue over the results today. If you’re going to answer a question like this, you want to be conclusive. Also, getting to Mars is pretty challenging to begin with. You probably don’t want to “half-axe” your science.

The current search for life is incremental and exhaustive. NASA’s Spirit and Opportunity searched for evidence that liquid water once existed on the surface of Mars. They found evidence of ancient water many times, in different locations. The fact that water once existed on the surface of Mars is established. Curiosity has extended this line of research, looking for evidence that water existed on the surface of Mars for long periods of time. Long enough that life could have thrived. Once again, the rover has turned up the evidence that scientists were hoping to see. Mars was once hospitable for life, for long periods of time. The next batch of missions will actually search for life, both on the surface of Mars and bringing back samples to Earth so we can study them here.

The search for life is slow and laborious because that’s how science works. You start with the assumption that since water is necessary for life on Earth, it makes sense to just check other water in the Solar System. It’s the low hanging fruit, then once you’ve exhausted all the easy options, you get really creative.

An illustration of a Titanic lake by Ron Miller. All rights reserved. Used with permission.
An illustration of a Titanic lake by Ron Miller. All rights reserved. Used with permission.

Scientists have gotten really creative about how and where they could search for life. Astrobiologists have considered other liquids that could be conducive for life. Instead of water, it’s possible that alternative forms of life could use liquid methane or ammonia as a solvent for its biological processes. In fact, this environment exists on the surface of Titan. But even if we did send a rover to Titan, how would we even know what to look for?

We understand how life works here, so we know what kinds of evidence to pursue. But kind of what evidence would be required to convince you there’s life as you don’t understand it? Really compelling evidence.
Go ahead and propose some alternative forms of life and how you think we’d go searching for it in the comments.

Thanks for watching! Never miss an episode by clicking subscribe. Our Patreon community is the reason these shows happen. We’d like to thank Kuri the Vegan Traveller and Craig Hayes, and the rest of the members who support us in making great space and astronomy content. Members get advance access to episodes, extras, contests, and other shenanigans with Jay, myself and the rest of the team. Want to get in on the action? Click here.