How are Energy and Matter the Same?

Picture of Albert Einstein, Physicist Credit: Public Domain

As Einstein showed us, light and matter and just aspects of the same thing. Matter is just frozen light. And light is matter on the move. How does one become the other?

Albert Einstein’s most famous equation says that energy and matter are two sides of the same coin.
But what does that really mean? And how are equations famous? I like to believe equations can be famous in the way a work of art, or a philosophy can be famous. People can have awareness of the thing, and yet never have interacted with it. They can understand that it is important, and yet not understand why it’s so significant. Which is a little too bad, as this is really a lovely mind bending idea.

The origin of E=mc2 lies in special relativity. Light has the same speed no matter what frame of reference you are in. No matter where you are, or how fast you’re going. If you were standing still at the side of the road, and observed a car traveling at ¾ light speed, you would see the light from their headlights traveling away from them at ¼ the speed of light.

But the driver of the car would still see that the light moving ahead of them at the speed of light. This is only possible if their time appears to slow down relative to you, and you and the people in the car can no longer agree on how long a second would take to pass.

Einstein's famous equation. Image via Pixabay.
Einstein’s famous equation. Image via Pixabay.

So the light appears to be moving away from them more slowly, but as they experience things more slowly it all evens out. This also affects their apparent mass. If they step on the gas, they will speed up more slowly than you would expect. It’s as if the car has more mass than you expect. So relativity requires that the faster an object moves, the more mass it appears to have. This means that somehow part of the energy of the car’s motion appears to transform into mass. Hence the origin of Einstein’s equation. How does that happen? We don’t really know. We only know that it does.

The same effect occurs with quantum particles, and not just with light. A neutron, for example, can decay into a proton, electron and anti-neutrino. The mass of these three particles is less than the mass of a neutron, so they each get some energy as well. So energy and matter are really the same thing. Completely interchangeable. And finally, Although energy and mass are related through special relativity, mass and space are related through general relativity. You can define any mass by a distance known as its Schwarzschild radius, which is the radius of a black hole of that mass. So in a way, energy, matter, space and time are all aspects of the same thing.

What do you think? Like E=mc2, what’s the most famous idea you can think of in physics?

And if you like what you see, come check out our Patreon page and find out how you can get these videos early while helping us bring you more great content!

Is Phobos Doomed?

Is Phobos Doomed?

What fate awaits Phobos, one of the moons of Mars?

“All these worlds are yours except Europa, attempt no landing there.”

As much as I love Arthur C. Clarke and his books, I’ve got to disagree with his judgement on which moons we should be avoiding. Europa is awesome. It’s probably got a vast liquid ocean underneath its icy surface. There might even be life swimming down there, ready to be discovered. Giant freaky Europa whales or some kind of alien sharknado. Oh man, I just had the BEST idea for a movie.

So yea, Europa’s fine. The place we should really be avoiding is the Martian Moon Phobos. Why? What’s wrong with Phobos? Have I become some kind of Phobo…phobe? Is there any good reason to avoid this place?

Well first, its name tells us all we need to know. Phobos is named for the Greek god of Horror, and I don’t mean like the usual gods of horror as in Clive Barker, John Carpenter or Wes Craven, I mean that Phobos is the actual personification of Fear… possibly with a freaky lion’s head. And… there’s also the fact that Phobos is doomed.

Literally doomed. Living on borrowed time. Its days are numbered. It’s been poisoned and there’s no antidote. It’s got metal shards in its heart and the battery on it’s electro-magnet is starting to brown out. More specifically, in a few million years, the asteroid-like rock is going to get torn apart by the Martian gravity and then get smashed onto the planet.

The streaked and stained surface of Phobos. (Image: NASA)
The streaked and stained surface of Phobos. (Image: NASA)

It all comes down to tidal forces. Our Moon takes about 27 days to complete an orbit, and our planet takes around 24 hours to complete one rotation on its axis. Our Moon is pulling unevenly on the Earth and slowing its rotation down.

To compensate, the Moon is slowly drifting away from us. We did a whole episode about this which we’ll link at the end of the episode. On Mars, Phobos only takes 8 hours to complete an orbit around the planet. While the planet takes almost 25 hours to complete one rotation on its axis. So Phobos travels three times around the planet for every Martian day. And this is a problem.

It’s actually speeding up Mars’ rotation. And in exchange, it’s getting closer and closer to Mars with every orbit. The current deadpool gives the best odds on Phobos taking 30 to 50 million years to finally crash into the planet. The orbit will get lower and lower until it reaches a level known as the Roche Limit. This is the point where the tidal forces between the near and far sides of the moon are so different that it gets torn apart. Then Mars will have a bunch of teeny moons from the former Phobos.

Mars with rings of moon dust after the fall of one of its moons, Phobos. (Photo Credit: © Hive Studios)
Mars with rings of moon dust after the fall of one of its moons, Phobos.
(Photo Credit: © Hive Studios)

And then good news! Those adorable moonlets will get further pulverized until Mars has a ring. But then bad news… that ring will crash onto the planet in a cascade of destruction to be described as “the least fun balloon drop of all time”. So, you probably wouldn’t want to live on Mars then either.

Count yourself lucky. What were the chances that we would exist in the Solar System at a time that Phobos was a thing, and not a string of impacts on the surface of Mars.

Enjoy Phobos while you can, but remember that real estate there is temporary. Might I suggest somewhere in the alien sharknado infested waters of Europa instead?

What do you think. Did Arthur C Clarke have it wrong? Should we explore Europa?

And if you like what you see, come check out our Patreon page and find out how you can get these videos early while helping us bring you more great content!

The Orbit of Earth. How Long is a Year on Earth?

Diagram of the Earths orbit around the Sun. Credit: NASA/H. Zell

Ever since the 16th century when Nicolaus Copernicus demonstrated that the Earth revolved around in the Sun, scientists have worked tirelessly to understand the relationship in mathematical terms. If this bright celestial body – upon which depends the seasons, the diurnal cycle, and all life on Earth – does not revolve around us, then what exactly is the nature of our orbit around it?

For several centuries, astronomers have applied the scientific method to answer this question, and have determined that the Earth’s orbit around the Sun has many fascinating characteristics. And what they have found has helped us to understanding why we measure time the way we do.

Orbital Characteristics:

First of all, the speed of the Earth’s orbit around the Sun is 108,000 km/h, which means that our planet travels 940 million km during a single orbit. The Earth completes one orbit every 365.242199 mean solar days, a fact which goes a long way towards explaining why need an extra calendar day every four years (aka. during a leap year).

The planet’s distance from the Sun varies as it orbits. In fact, the Earth is never the same distance from the Sun from day to day. When the Earth is closest to the Sun, it is said to be at perihelion. This occurs around January 3rd each year, when the Earth is at a distance of about 147,098,074 km.

The average distance of the Earth from the Sun is about 149.6 million km, which is also referred to as one astronomical unit (AU). When it is at its farthest distance from the Sun, Earth is said to be at aphelion – which happens around July 4th where the Earth reaches a distance of about 152,097,701 km.

And those of you in the northern hemisphere will notice that “warm” or “cold” weather does not coincide with how close the Earth is to the Sun. That is determined by axial tilt (see below).

Elliptical Orbit:

Next, there is the nature of the Earth’s orbit. Rather than being a perfect circle, the Earth moves around the Sun in an extended circular or oval pattern. This is what is known as an “elliptical” orbit. This orbital pattern was first described by Johannes Kepler, a German mathematician and astronomer, in his seminal work Astronomia nova (New Astronomy).

An illustration of Kepler's three laws of motion, which show two planets that have elliptical orbits around the Sun. Credit: Wikipedia/Hankwang
An illustration of Kepler’s three laws of motion, which show two planets that have elliptical orbits around the Sun. Credit: Wikipedia/Hankwang

After measuring the orbits of the Earth and Mars, he noticed that at times, the orbits of both planets appeared to be speeding up or slowing down. This coincided directly with the planets’ aphelion and perihelion, meaning that the planets’ distance from the Sun bore a direct relationship to the speed of their orbits. It also meant that both Earth and Mars did not orbit the Sun in perfectly circular patterns.

In describing the nature of elliptical orbits, scientists use a factor known as “eccentricity”, which is expressed in the form of a number between zero and one. If a planet’s eccentricity is close to zero, then the ellipse is nearly a circle. If it is close to one, the ellipse is long and slender.

Earth’s orbit has an eccentricity of less than 0.02, which means that it is very close to being circular. That is why the difference between the Earth’s distance from the Sun at perihelion and aphelion is very little – less than 5 million km.

Seasonal Change:

Third, there is the role Earth’s orbit plays in the seasons, which we referred to above. The four seasons are determined by the fact that the Earth is tilted 23.4° on its vertical axis, which is referred to as “axial tilt.” This quirk in our orbit determines the solstices – the point in the orbit of maximum axial tilt toward or away from the Sun – and the equinoxes, when the direction of the tilt and the direction to the Sun are perpendicular.

Over the course of a year the orientation of the axis remains fixed in space, producing changes in the distribution of solar radiation. These changes in the pattern of radiation reaching earth’s surface cause the succession of the seasons. Credit: NOAA/Thomas G. Andrews
Over the course of a year the orientation of the axis remains fixed in space, producing changes in the distribution of solar radiation. Credit: NOAA/Thomas G. Andrews

In short, when the northern hemisphere is tilted away from the Sun, it experiences winter while the southern hemisphere experiences summer. Six months later, when the northern hemisphere is tilted towards the Sun, the seasonal order is reversed.

In the northern hemisphere, winter solstice occurs around December 21st, summer solstice is near June 21st, spring equinox is around March 20th and autumnal equinox is about September 23rd. The axial tilt in the southern hemisphere is exactly the opposite of the direction in the northern hemisphere. Thus the seasonal effects in the south are reversed.

While it is true that Earth does have a perihelion, or point at which it is closest to the sun, and an aphelion, its farthest point from the Sun, the difference between these distances is too minimal to have any significant impact on the Earth’s seasons and climate.

Lagrange Points:

Another interesting characteristic of the Earth’s orbit around the Sun has to do with Lagrange Points. These are the five positions in Earth’s orbital configuration around the Sun where where the combined gravitational pull of the Earth and the Sun provides precisely the centripetal force required to orbit with them.

Sun Earth Lagrange Points. Credit: Xander89/Wikimedia Commons
Sun-Earth Lagrange Points. Credit: Xander89/Wikimedia Commons

The five Lagrange Points between the Earth are labelled (somewhat unimaginatively) L1 to L5. L1, L2, and L3 sit along a straight line that goes through the Earth and Sun. L1 sits between them, L3 is on the opposite side of the Sun from the Earth, and L2 is on the opposite side of the Earth from L1. These three Lagrange points are unstable,  which means that a satellite placed at any one of them will move off course if disturbed in the slightest.

The L4 and L5 points lie at the tips of the two equilateral triangles where the Sun and Earth constitute the two lower points. These points liem along along Earth’s orbit, with L4 60° behind it and L5 60° ahead.  These two Lagrange Points are stable, hence why they are popular destinations for satellites and space telescopes.

The study of Earth’s orbit around the Sun has taught scientists much about other planets as well. Knowing where a planet sits in relation to its parent star, its orbital period, its axial tilt, and a host of other factors are all central to determining whether or not life may exist on one, and whether or not human beings could one day live there.

We have written many interesting articles about the Earth’s orbit here at Universe Today. Here’s 10 Interesting Facts About Earth, How Far is Earth from the Sun?, What is the Rotation of the Earth?, Why are there Seasons?, and What is Earth’s Axial Tilt?

For more information, check out this article on NASA- Window’s to the Universe article on elliptical orbits or check out NASA’s Earth: Overview.

Astronomy Cast also espidoes that are relevant to the subject. Here’s BQuestions Show: Black black holes, Unbalancing the Earth, and Space Pollution.

Sources:

How Quickly Do Black Holes Form?

How Quickly Do Black Holes Form?


A star can burn its hydrogen for millions or even billions of years. But when the party’s over, black holes form in an instant. How long does it all take to happen.

Uh-oh! You’re right next to a black hole that’s starting to form.

In the J.J. Abrams Star Trek Universe, this ended up being a huge inconvenience for Spock as he tried to evade a ticked off lumpy forehead Romulan who’d made plenty of questionable life choices, drunk on Romulan ale and living above a tattoo parlor.

So, if you were piloting Spock’s ship towards the singularity, do you have any hope of escaping before it gets to full power? Think quickly now. This not only has implications for science, but most importantly, for the entire Star Trek reboot! Or you know, we can just create a brand new timeline. Everybody’s doing it. Retcon, ftw.

Most black holes come to be after a huge star explodes into a supernova. Usually, the force of gravity in a huge star is balanced by its radiation – the engine inside that sends out energy into space. But when the star runs out of fuel to burn, gravity quickly takes over and the star collapses. But how quickly? Ready your warp engines and hope for the best.

Here’s the bad news – there’s not much hope for Spock or his ship. A star’s collapse happens in an instant, and the star’s volume gets smaller and smaller. Your escape velocity – the energy you need to escape the star – will quickly exceed the speed of light.

You could argue there’s a moment in time where you could escape. This isn’t quite the spot to argue about Vulcan physiology, but I assume their reaction time is close to humans. It would happen faster than you could react, and you’d be boned.

But look at the bright side – maybe you’d get to discover a whole new universe. Unless of course Black holes just kill you, and aren’t sweet magical portals for you and your space dragon which you can name Spock, in honor of your Vulcan friend who couldn’t outrun a black hole.

Artist’s impression of the supergiant star Betelgeuse as it was revealed with ESO’s Very Large Telescope. Credit: ESO/L.Calçada
Artist’s impression of the supergiant star Betelgeuse as it was revealed with ESO’s Very Large Telescope. Credit: ESO/L.Calçada

Here we’ve been talking about what happens if a black hole suddenly appears beside you. The good news is, supernovae can be predicted. Not very precisely, but astronomers can say which stars are nearing the end of their lives.

Here’s an example. In the constellation Orion, Betelgeuse the bright star on the right shoulder, is expected to go supernova sometime in the next few hundred thousand years.

That’s plenty of time to get out of the way.

So: black holes are dangerous for your health, but at least there’s lots of time to move out of the way if one looks threatening. Just don’t go exploring too close!

If you were to fall through a black hole, what do you think would happen? Naw, just kidding, we all know you’d die. Why don’t you tell us what your favorite black hole sci fi story is in the comments below!

And if you like what you see, come check out our Patreon page and find out how you can get these videos early while helping us bring you more great content!

What is the Difference Between Asteroids and Comets?

Artist view of an asteroid (with companion) passing near Earth. Credit: P. Carril / ESA

Asteroids and comets have a few things in common. They are both celestial bodies orbiting our Sun, and they both can have unusual orbits, sometimes straying close to Earth or the other planets. They are both “leftovers” — made from materials from the formation of our Solar System 4.5 billion years ago. But there are a few notable differences between these two objects, as well. The biggest difference between comets and asteroids, however, is what they are made of.

While asteroids consist of metals and rocky material, comets are made up of ice, dust, rocky materials and organic compounds. When comets get closer to the Sun, they lose material with each orbit because some of their ice melts and vaporizes. Asteroids typically remain solid, even when near the Sun.

Right now, the majority of asteroids reside in the asteroid belt, a region between the orbits of Mars and Jupiter which may hold millions of space rocks of varying sizes. On the other hand, the majority of comets are in the farthest reaches of our Solar System: either 1. in the Kuiper Belt — a region just outside the orbit of the dwarf planet Pluto that may have millions of icy comets (as well as many icy dwarf planets like Pluto and Eris); or 2. the Oort Cloud, a region where trillions of comets may circle the Sun at huge distances of up to 20 trillion kilometers (13 trillion miles).

Anillustration of what the Oort cloud might be like. Credit: Don Yeomans/JPL.
Anillustration of what the Oort cloud might be like. Credit: Don Yeomans/JPL.

Some scientists think asteroids formed much closer to the Sun, where it was too warm for any ices to remain solid, while comets formed farther from the Sun and were therefore able to retain ice. However, other scientists think that the comets that are now in the Kuiper Belt and Oort cloud actually formed in the inner Solar System, but were then flung out from the gravitation effects of the giant planets Jupiter and Saturn.

We do know that gravitational perturbations periodically jar both asteroids and comets from their usual “homes” — setting them on orbital courses that bring them closer to the Sun, as well as Earth.

When comets approach the Sun, some of their ices melt. This causes another notable difference between asteroids and comets: comets have “tails” while asteroids generally don’t. When the ices in comets begin to melt and other materials vaporize from the heat from the Sun, this forms a glowing halo that extends outward from the comet as it sails through space. The ice and compounds like methane and ammonia develop a fuzzy, cloud-like shell called a coma. Forces exerted on the coma by the Sun’s radiation pressure and solar wind cause an enormous, elongated tail to form. Tails always points away from the Sun.

Asteroids typically don’t have tails, even those near the Sun. But recently, astronomers have seen some asteroids that have sprouted tails, such as asteroid P/2010 A2. This seems to happen when the asteroid has been hit or pummeled by other asteroids and dust or gas is ejected from their surfaces, creating a sporadic tail effect. These so-called “active asteroids” are a newly recognized phenomenon, and as of this writing, only 13 known active asteroids have been found in the main asteroid belt, and so they are very rare.

Another difference between asteroids and comets is in their orbital patterns. Asteroids tend to have shorter, more circular orbits. Comets tend to have very extended and elongated orbits, which often exceed 50,000 AU from the Sun. (*Note: 1 AU, or Astronomical Unit, equals the distance from the Earth to the Sun.) Some, called long-period comets come from the Oort Cloud and are in big elliptical orbits of the Sun that take them far out beyond the planets and back. Others, called short-period comets come from the Kuiper Belt and travel in shorter orbits around the Sun.

There is a big difference when it comes to numbers… although there is a caveat in that we don’t know precisely how many asteroids OR comets there are in our Solar System, since many have never been seen. Astronomers have discovered millions of asteroids – some as small as dust particles and others measuring hundreds of kilometers across. But as of this writing, astronomers have found only about 4,000 comets. However, some estimates say there could be one hundred billion comets in the Oort cloud.

The fact that asteroids and comets were both formed during the earliest days of our Solar System has scientists studying both with keen interest. By examining them up close with satellites and landers — such as the current Rosetta mission with the Philae lander to Comet 67P — scientists hope to learn more about what our Solar System looked like in its earliest days. The next mission to a comet will be the JAXA Hayabusa-2 mission, which should launch at the end of November or early December 2014, arriving in 2018 to asteroid (162173) 1999 JU. Here’s a list of past missions to asteroids and comets.

We also know that both comets and asteroids are in other solar systems beyond our own. In 2012, scientists using the Spitzer Space Telescope witnessed what they think was a crash between two huge asteroids orbiting another star 1,200 light-years. In 2011, astronomers saw evidence of comets pummeling a planet orbiting the star Eta Corvi, which is about 59 light-years away from us.

Scientists also study comets and asteroids to determine the likelihood of them hitting Earth and other planets, and what effect their flybys could have on planetary atmospheres. In November of 2014, a comet named Siding Spring flew very close to Mars, and scientists are still studying the encounter. But this may happen more often that we think: one recent study says that Mars gets bombarded by 200 small asteroids or comets every year.

How likely is it that our planet could be hit by a large asteroid or comet? We do know that Earth has been hit many times in the past by asteroids and comets whose orbits bring them into the inner Solar System. There is strong scientific evidence that cosmic collisions played a major role in the mass extinctions documented in Earth’s fossil records. These objects that come close to Earth, known as Near Earth Objects or NEOs, still pose a danger to Earth today. But NASA, ESA and other space agencies have search programs that have discovered hundreds of thousands of main-belt asteroids, comets. None at this time pose any threat to Earth. You can find out more on this topic at NASA’s Near Earth Object Program website.

Additionally, the possibility of mining both asteroids and comets someday is also becoming a source of interest for industrialists and commercial space ventures, such as Planetary Resources.

Want more resources on asteroids? Here’s an infographic on the differences between asteroids, comets, meteors and meteoroids. Here’s NASA’s Lunar and Planetary Science Page on asteroids. And here’s Hubblesite’s News Releases about Asteroids.

We have recorded two episodes of Astronomy Cast about asteroids. There’s Episode 55: The Asteroid Belt, and here’s Episode 29: Asteroids Make Bad Neighbors.

References:
JPL’s Near Earth Objects Program
HubbleSite
Pan-STARRS “Threat to Earth From Asteroids and Comets”
IPAC Cool Cosmos

Where’s All The Antimatter?

Protons, neutrons, electrons - particles in an atom.

One of the biggest mysteries in the Universe is the fact there there’s matter, and not antimatter. Where did it all go?

When we look around, everything we can see is made of matter. For every type of matter from electrons, protons and quarks there is a similar type of matter known as antimatter. So why aren’t there piles of antimatter rocks, cars and chocolate bars just lying around? Why does Scotty always have a little extra kicking around in his liquor cabinet? And where do I get mine?

The primary difference between matter and antimatter is that they have opposite electric charge. Which seems pretty mundane. The negatively charged electron has an antiparticle known as the positron, which has a positive electric charge.

Anti-protons have a negative charge, and are just flat out grumpy. We’ve been able to create these particles in the lab, and have even been able to create small amounts of anti-hydrogen consisting of a positron bound to an antiproton, when examined closely there’s were shown to have a goatee and a little colorful sash or dagger.

When we create particles in accelerators such as the Large Hadron Collider, we seem to get equal amounts of matter and antimatter. This suggests that when particles were formed soon after the big bang, there should have been equal amounts of matter and antimatter.

Particle Collider
Large Hadron Collider (CERN/LHC/GridPP)

But the universe we observe is only made of matter, and… here’s the best part… we have no idea why. Why didn’t the matter and antimatter completely annihilate each other? How come we ended up with a little more matter? This delightful mystery is known as baryon asymmetry.

We do have a few ideas, and by we, I mean some giant brained crackerjacks have come up with a few plausible options. The most popular is that somehow antimatter behaves a little differently than matter. This could cause an imbalance between matter and antimatter. After particles collided in the early universe, there would still be matter left over, hence the matter we observe.

Another idea is that the observable universe just happens to be in a region dominated by matter. Other parts of the multiverse could have observable universes dominated by antimatter. Baryon asymmetry is one of the big mysteries of modern cosmology.

Zero Gravity Flight
Stephen Hawking, weightless (courtesy Zero Gravity Corporation)

There is an even crazier idea. Antimatter might have anti-gravity. In other words, an atom of anti-hydrogen would fall up instead of down. If that is the case, then matter and antimatter would repel each other, and you might have matter universes and antimatter universes that are forever separate.There have been some initial experiments to test this idea, but so far there have been no conclusive results.

What do you think? Where’s all our antimatter and how do we track it down? I’d sure love to bring some home and show my friends…

And if you like what you see, come check out our Patreon page and find out how you can get these videos early while helping us bring you more great content!

What’s Causing The Universe To Expand?

What's Causing The Universe To Expand?

We’ve all heard that the Universe is expanding, but why is it expanding? What’s the force pushing everything outwards?

If still you don’t know that we live in an expanding Universe, then I’m clearly not doing my job.

And so once more, with feeling… the Universe is expanding. But that certainly doesn’t answer all the questions that go along with the it.

Like what’s the Universe expanding into? Which we did in another video, which I’ll list at the end of this episode. You might also want to know why is the Universe expanding? What’s making this happen? Did it give up its gym membership? Did it sign up for the gallon of ice cream of the month club? Has it completely embraced the blerch?

Edwin Hubble, the astronomer made famous by being named after a space telescope, provided the definitive evidence that the Universe was expanding. Observing distant galaxies, he observed they were fleeing outwards, in fact he was able to come up with calculations to show just how fast they were moving away from us.

Or to be more precise, he was able to show how fast all the galaxies are moving away from each other. Which was your question! Just like a minute ago! See you’re just as smart as Hubble!

So up until about 15 years ago, the only answer was momentum. The idea was that the Universe received all the energy it needed for its expansion in the first few moments after the Big Bang.

Imagine the beginning of the Universe, BOOM, like an explosion from a gun. And all the rest of the expansion is the Universe coasting outwards. For the longest time, astronomers were trying to figure out what this momentum would mean for the future of the Universe.

Dark Energy
The Hubble Space Telescope image of the inner regions of the lensing cluster Abell 1689 that is 2.2 billion light?years away. Light from distant background galaxies is bent by the concentrated dark matter in the cluster (shown in the blue overlay) to produce the plethora of arcs and arclets that were in turn used to constrain dark energy. Image courtesy of NASA?ESA, Jullo (JPL), Natarajan (Yale), Kneib (LAM)

Would the mutual gravity of all the objects in the Universe cause it to slow to a halt at some point in the distant future, or maybe even collapse in on itself, leading to a Big Crunch? Or just clump up in piles and stay on the couch all summer because it’s maybe a little lazy and isn’t ready to start going back to the gym yet?

In 1999, astronomers discovered something completely unexpected… dark energy. As they were doing their observations to figure out exactly how the Universe would coast to a stop, they discovered that it’s actually speeding up. It’s as if that bullet is actually a rocket and it’s accelerating.

Now it appears that the Universe will not only expand forever, but the speed of its expansion will continue to accelerate faster and faster. So what’s causing this expansion? Currently, we believe it’s mostly momentum left over from the Big Bang, and the force of dark energy will be accelerating this expansion. Forever.

How do you feel about a rapidly accelerating expanding Universe? Tell us in the comments below.

And if you like what you see, come check out our Patreon page and find out how you can get these videos early while helping us bring you more great content!

Why Doesn’t The Sun Steal The Moon?

On Sept. 18, 1977, Voyager 1 took three images of the Earth and Moon that were combined into this one image. The moon is artificially brightened to make it show up better. Credit: NASA

The Sun has so much more mass than the Earth. So, so, so much more mass. Almost everything in the Solar System is orbiting the Sun, and yet, the Moon refuses to leave our side. What gives?

The Sun contains 99.8% of the entire mass of the Solar System. It looks to us like everything seems to orbit the Sun, so why doesn’t the Sun capture the Moon from Earth like a schoolyard bully snatching the Earth’s lunch money. That would make sense right? It all fits in with our skewed view of social hierarchy based on an entities volume.

Good news! It’s already happened, In a way. The Sun has already captured the Moon. If you look at the orbit of the Moon, it orbits the Sun similar to the way Earth does. Normally the motion of the Moon around the Sun is drawn as a kind of Spirograph pattern, but its actual motion is basically the same orbit as Earth with a small wobble to it.

The Moon also orbits the Earth. You might think this is because the Earth is much closer to the Moon than the Sun. After all, the strength of gravity depends not only on the mass of an object, but also on its distance from you. But this isn’t the case. The Sun is about 400 times more distant from the Moon than the Earth, but the Sun is about 330,000 times more massive.

If you’re up for some napkin calculations, you little mathlete, by using Newton’s law of gravity, you find that even with its greater distance, the Sun pulls on the Moon about twice as hard as the Earth does.
So why can’t the Moon escape the Earth?

In order to escape the gravitational pull of a body, you need to be moving fast enough *relative to that body* to escape its pull. This is known as the escape velocity of the object.

It takes two to tango. The moon’s gravity raises a pair of watery bulges in the Earth’s oceans creating the tides, while Earth's gravity stretches and compresses the moon to warm its interior. Illustration: Bob King
It takes two to tango. The moon’s gravity raises a pair of watery bulges in the Earth’s oceans creating the tides, while Earth’s gravity stretches and compresses the moon to warm its interior. Illustration: Bob King

So, yes, the Sun is totally trying to rip the Moon away from the Earth, but the Earth is super clingy.
The speed of the Moon around the Earth is about 1 km/s. At the Moon’s distance from the Earth, the escape velocity is about 1.2 km/s. The Moon simply isn’t moving fast enough to escape the Earth.

Man, those numbers sure are close. I wonder if we could kickstart a rocket to stick on the side? So, even though the Moon can’t escape the Earth, it is gradually moving away. This is due to the tidal interactions between the Earth and Moon, which we talk about another video we’ll link at the end of this one.

So even though the Moon will never escape the Earth, it will continue to move away. So, what do you think? What kind of devious project should we start to get the Moon that little boost so it finally escapes the clingy Earth and all its clingy Klingon clingyness? Tell us in the comments below.

And if you like what you see, come check out our Patreon page and find out how you can get these videos early while helping us bring you more great content!

What Did Isaac Newton Discover?

Godfrey Kneller's 1689 portrait of Isaac Newton at age 46. Image credit: Isaac Newton Insitute

Isaac Newton – who lived from December 25th, 1642, to March 20th, 1727 – was an English scientist, mathematician, and “natural philosopher”. In his time, he played a vital role in the Scientific Revolution, helping to advance the fields of physics, astronomy, mathematics and the natural sciences. From this, he established a legacy that would dominate the sciences for the next three centuries.

In fact, the term “Newtonian” came to be used by subsequent generations to describe bodies of knowledge that owed their existence to his theories. And because of his extensive contributions, Sir Isaac Newton is regarded as one of the most influential scholars in the history of science. But what exactly did he discover?

Newton’s Three Laws of Motion:

For starters, his magnum opus – Philosophiæ Naturalis Principia Mathematica (“Mathematical Principles of Natural Philosophy”), which was first published in 1687 – laid the foundations for classical mechanics. In it, he formulated his Three Laws of Motion, which were derived from Johann Kepler’s Laws of Planetary Motion and his own mathematical description of gravity.

William Blake's Newton (1795), depicted as a divine geometer. Image Credit: William Blake Archive/Wikipedia
William Blake’s Newton (1795), depicting him as a divine geometer. Image Credit: William Blake Archive/Wikipedia

The first law, known as the “law of inertia”, states that: “An object at rest will remain at rest unless acted on by an unbalanced force. An object in motion continues in motion with the same speed and in the same direction unless acted upon by an unbalanced force.” The second law states that acceleration is produced when a force acts on a mass – ergo, the greater the mass of the object, the greater the force required to accelerate it. The third and final law states that “for every action, there is an equal but opposite reaction”.

Universal Gravitation:

He also formulated his law of Universal Gravitation in the Principia, which states that every point mass attracts every single other point mass by a force pointing along the line intersecting both point. According to his calculations, this force is proportional to the product of the two masses and inversely proportional to the square of the distance between them. The formula for this theory can be expressed as:

F = G frac{m_1 m_2}{r^2}

Newton would go on to use these principles to account for the trajectories of comets, the tides, the precession of the equinoxes, and other astrophysical phenomena. This effectively removed the last doubts about the validity of the heliocentric model of the cosmos which argued that the Sun (not the Earth) was at the center of the planetary system. His work also demonstrated that the motion of objects on Earth and of celestial bodies could be described by the same principles.

Sapling of the reputed original tree that inspired Sir Isaac Newton to consider gravitation. Credit: Wikipedia Commons/Loodog
Sapling of the reputed original tree that inspired Sir Isaac Newton to consider gravitation. Credit: Wikipedia Commons/Loodog

Though Newton’s inspiration for his theories on gravity are often attributed to the “Apple Incident” – i.e. where he watched an apple fall from a tree – the story is considered apocryphal by modern sources who argue that he came to his conclusions over time. However, Newton himself described the incident, and contemporaries of his defend this assertion.

Shape of the Earth:

Additional contributions include his prediction that the Earth was likely shaped as an “oblate spheroid” – i.e. a sphere that experienced flattening at the poles. This theory would later be vindicated by the measurements of Maupertuis, La Condamine, and others. This in turn helped convince most Continental European scientists of the superiority of Newtonian mechanics over the earlier system of Descartes.

In terms of mathematics, he contributed to the study of power series, generalized the binomial theorem to non-integer exponents, developed Newton’s method for approximating the roots of a function, and classified most of the cubic plane curves. He also shares credit with Gottfried Leibniz for the development of calculus.

These discoveries represented a huge leap forward for the fields of math, physics, and astronomy, allowing for calculations that more accurately modeled the behavior of the universe than ever before.

Optics:

In 1666, Newton began contributing to the field of optics, first by observing that color was a property of light by measuring it through a prism. From 1670 to 1672, he lectured at the University of Cambridge on optics and investigated the refraction of light, demonstrating that the multicolored spectrum produced by a prism could be recomposed into white light by a lens and a second prism.

Sunlight passing through a prism. Image credit: NASA
Sunlight passing through a prism. Image credit: NASA

As a result of his research, he came to theorize that color is the result of objects interacting with already-colored light rather than objects generating the color themselves, which is known as Newton’s theory of color.

In addition, he concluded that the lens of any refracting telescope would suffer from the dispersion of light into colors (chromatic aberration). As a proof of the concept, he constructed a telescope using a mirror as the objective to bypass that problem. This was the first known functional reflecting telescope in existence, the design of which is now known as a Newtonian telescope.

Other Achievements:

He also formulated an empirical law of cooling, studied the speed of sound, and introduced the notion of a Newtonian fluid. This term is used to describe any fluid where the viscous stresses arising from its flow, at every point, are linearly proportional to the rate of change of its deformation over time.

Beyond his work in mathematics, optics and physics, he also devoted a significant amount of time studying Biblical chronology and alchemy, but most of his work in these areas remained unpublished until long after his death.

So what did Isaac Newton discover? Theories that would dominate the fields of science, astronomy, physics and the natural world for centuries to come. His ideas would go on to influence such luminaries as Joseph-Louis Lagrange and Albert Einstein, the latter of whom is the only scientists believed to have left a comparable legacy.

We have written many interesting articles about Sir Isaac Newton here at Universe Today. Here’s Who was Sir Isaac Newton?, What did Isaac Newton Invent?, Who Discovered Gravity?, What is Absolute Space?, What is the Gravitational Constant?

There are other resources on the internet if you want to learn more about Isaac Newton. This UK site has some great info on his discoveries. You can also check out the PBS website.

You can also check out Astronomy Cast. Episode 44 Einstein’s Theory of Relativity is particularly interesting.

Sources:

When Did the First Stars Form?

When Did the First Stars Form?

Shortly after the Big Bang, the Universe had cooled to the point that the first stars could form out of the primordial hydrogen. How long did it take, and what did these first stars like?

Hydrogen soup. Doesn’t that sound delicious? Perhaps not for humans, but certainly for the first stars!

Early in the Universe, in a spectacular show of stellar soupification, clouds of hydrogen atoms gathered together. They combined with one another. The collected mass got bigger and bigger, and after a time, ignition. The first stars were alive!

Well, alive in the sense that they were burning – not that they had feelings or knew what was going on, or had opinions, or were beginning to write would what would eventually become the first Onion article or anything.

But where did all that gas come from, and can we spot the evidence of those long-ago stars today? As you know, the Big Bang got our Universe off to a speedy start of expansion. It then took 400,000 years for us to see any light at all. Protons and electrons and other small particles were floating around, but it was far too hot for them to interact.

Once the power of the Big Bang finally faded, those protons and electrons paired up and created hydrogen. This is called, rather uninventively, “recombination”. I’d rather just call it hydrogen soup. We’ve got energy. But what is the secret ingredient that sparked these stars? It was just that soup clumping together over time.

A map of the faint microwave radiation left over after the big bang shows superclusters (red circles) and supervoids (blue circles). Credit: B. Granett, M. Neyrinck, I. Szapudi
A map of the faint microwave radiation left over after the big bang shows superclusters (red circles) and supervoids (blue circles). Credit: B. Granett, M. Neyrinck, I. Szapudi

We can’t say to the minute when the first stars formed, but we have a pretty good idea. The Wilkinson Microwave Anisotropy Probe, aka WMAP examined what happened when these clouds of hydrogen molecules got together, creating tiny temperature differences of only a millionth of a degree.

Over time, gravity began to yank matter from spots of lower density into the higher-density regions, making the clumps even bigger. Fantastically bigger. So big that about 200 million years after the clumps were formed, it was possible for these hydrogen molecules to ram into each other at very high speeds.

This process is called nuclear fusion. On Earth, it’s a way to produce energy. Same goes for a star. With enough nuclear reactions happening, the cloud of gas compresses and creates a glow. And these stars weren’t tiny – they were monsters! NASA says the first stars were 30 to 300 times as massive as the sun, shining millions of times brighter.

The supernova that produced the Crab Nebula was detected by naked-eye observers around the world in 1054 A.D. This composite image uses data from NASA’s Great Observatories, Chandra, Hubble, and Spitzer, to show that a superdense neutron star is energizing the expanding Nebula by spewing out magnetic fields and a blizzard of extremely high-energy particles. The Chandra X-ray image is shown in light blue, the Hubble Space Telescope optical images are in green and dark blue, and the Spitzer Space Telescope’s infrared image is in red. The size of the X-ray image is smaller than the others because ultrahigh-energy X-ray emitting electrons radiate away their energy more quickly than the lower-energy electrons emitting optical and infrared light. The neutron star is the bright white dot in the center of the image.
The supernova that produced the Crab Nebula was detected by naked-eye observers around the world in 1054 A.D. This composite image uses data from NASA’s Great Observatories, Chandra, Hubble, and Spitzer.

But this flashy behavior came at a price, because in only a few million years, the stars grew unstable and exploded into supernovae. These stars weren’t only exploding. They were also altering the soup around them. They were big emitters of ultraviolet light. It’s a very energetic wavelength, best known for causing skin cancer.

So, this UV light struck the hydrogen surrounding the stars. This split the atoms apart into electrons and protons again, leaving quite the mess in space. But it’s through this process that we can learn more about these earliest stars.The stars are long gone, but like a criminal fleeing the scene, they left a pile of evidence behind for their existence. Splitting these atoms was their evidence. This re-ionization is one key piece of understanding how these stars came to be.

So it was an action-packed time for the universe, with the Big Bang, then the emergence of soup and then the first stars. It’s quite an exciting start for our galactic history.

What do you think the first stars looked like?

And if you like what you see, come check out our Patreon page and find out how you can get these videos early while helping us bring you more great content!