What Is The Great Attractor?

What is at the Center of the Milky Way
Examining the Center of the Milky Way

There’s a strange place in the sky where everything is attracted. And unfortunately, it’s on the other side of the Milky Way, so we can’t see it. What could be doing all this attracting?

Just where the heck are we going? We’re snuggled in our little Solar System, hurtling through the cosmos at a blindingly fast of 2.2 million kilometers per hour. We’re always orbiting this, and drifting through that, and it’s somewhere out in the region that’s not as horrifically terrifying as what some of our celestial neighbors go through. But where are we going? Just around in a great big circle? Or an ellipse? Which is going around in another circle… and it’s great big circles all the way up?

Not exactly… Our galaxy and other nearby galaxies are being pulled toward a specific region of space. It’s about 150 million light years away, and here is the best part. We’re not exactly sure what it is. We call it the Great Attractor.

Part of the reason the Great Attractor is so mysterious is that it happens to lie in a direction of the sky known as the “Zone of Avoidance”. This is in the general direction of the center of our galaxy, where there is so much gas and dust that we can’t see very far in the visible spectrum. We can see how our galaxy and other nearby galaxies are moving toward the great attractor, so something must be causing things to go in that direction. That means either there must be something massive over there, or it’s due to something even more strange and fantastic.

When evidence of the Great Attractor was first discovered in the 1970s, we had no way to see through the Zone of Avoidance. But while that region blocks much of the visible light from beyond, the gas and dust doesn’t block as much infrared and x-ray light. As x-ray astronomy became more powerful, we could start to see objects within that region. What we found was a large supercluster of galaxies in the area of the Great Attractor, known as the Norma Cluster. It has a mass of about 1,000 trillion Suns. That’s thousands of galaxies.

A March 2013 picture of the Shapley Supercluster from the European Space Agency's Planck observatory. ESA describes it as "the largest cosmic structure in the local Universe." Credit: ESA & Planck Collaboration / Rosat/ Digitised Sky Survey
A March 2013 picture of the Shapley Supercluster from the European Space Agency’s Planck observatory. ESA describes it as “the largest cosmic structure in the local Universe.” Credit: ESA & Planck Collaboration / Rosat/ Digitised Sky Survey

While the Norma Cluster is massive, and local galaxies are moving toward it, it doesn’t explain the full motion of local galaxies. The mass of the Great Attractor isn’t large enough to account for the pull. When we look at an even larger region of galaxies, we find that the local galaxies and the Great Attractor are moving toward something even larger. It’s known as the Shapley Supercluster. It contains more than 8000 galaxies and has a mass of more than ten million billion Suns. The Shapley Supercluster is, in fact, the most massive galaxy cluster within a billion light years, and we and every galaxy in our corner of the Universe are moving toward it.

So as we hurtle through the cosmos, gravity shapes the path we travel. We’re pulled towards the Great Attractor, and despite its glorious title, it appears, in fact to be a perfectly normal collection of galaxies, which just happens to be hidden.

What do you think? What are you hoping we’ll discover over in the region of space we’re drifting towards?

And if you like what you see, come check out our Patreon page and find out how you can get these videos early while helping us bring you more great content!

What’s Inside Jupiter?

What's Inside Jupiter?

Jupiter is like a jawbreaker. Dig down beneath the swirling clouds and you’ll pass through layer after layer of exotic forms of hydrogen. What’s down there, deep within Jupiter?

What’s inside Jupiter? Is it chameleons? Candy? Cake? Cheddar? Chemtrails? No one knows. No one can ever know.

Well, that’s not entirely true… or even remotely true. Jupiter is the largest planet in the Solar System and two and a half times the mass of the other planets combined. It’s a gas giant, like Saturn, Uranus, and Neptune. It’s almost 90% hydrogen and 10% helium, and then other trace materials, like methane, ammonia, water and some other stuff. What would be a gas on Earth behaves in very strange ways under Jupiter’s massive pressure and temperatures.

So what’s deep down inside Jupiter? What are the various layers and levels, and can I keep thinking of it like a jawbreaker? At the very center of Jupiter is its dense core. Astronomers aren’t sure if there’s a rocky region deep down inside. It’s actually possible that there’s twelve to forty five Earth masses of rocky material within the planet’s core. Now this could be rock, or hydrogen and helium under such enormous forces that it just acts that way. But you couldn’t stand on it. The temperatures are 35,000 degrees C. The pressures are incomprehensible.

Surrounding the core is a vast region made up of hydrogen. But it’s not a gas. The pressure and temperature transforms the hydrogen into an exotic form of liquid metallic hydrogen, similar to the liquid mercury you’d see in a thermometer. This metallic hydrogen region turns inside the planet, and acts like an electric dynamo. Similar to our planet’s own iron core, this gives the planet a powerful magnetic field.

The next level up is still liquid hydrogen, but the pressure’s lower, so it’s not metallic any more. And then above this is the planet’s atmosphere. The upper layers of Jupiter’s atmosphere is the only part we can see. Those bands on the planet are clouds of ammonia that rotate around the planet in alternating directions. The lighter color zones are colder ammonia ice upwelling from below. Here’s the exciting part. Astronomers aren’t sure what the darker regions are.

This animated gif shows Voyager 1's approach to Jupiter during a period of over 60 Jupiter days in 1979.  Credit: NASA.
This animated gif shows Voyager 1’s approach to Jupiter during a period of over 60 Jupiter days in 1979. Credit: NASA.

Still think you want to descend into Jupiter, to try and walk on its rocky interior? NASA tried that. In order to protect Jupiter’s moons from contamination, NASA decided to crash the Galileo spacecraft into the planet at the end of its mission. It only got point two percent of the way down through Jupiter’s radius before it was completely destroyed.

Jupiter is a remarkably different world from our own. With all that gravity, normally lightweight hydrogen behaves in completely exotic ways. Hopefully in the future we’ll learn more about this amazing planet we share our Solar System with.

What do you think? Is there a rocky core deep down inside Jupiter?

And if you like what you see, come check out our Patreon page and find out how you can get these videos early while helping us bring you more great content!

How Many Ways Can the Sun Kill You?

How Many Ways Can the Sun Kill You?

The Sun has a Swiss army knife of ways it can do you in, from radiation to solar flares. And when it dies, it’s taking you with it. What are the various ways the Sun can do you in?

There’s a terrifying ball of fire a short 150 million km away. Which, in galactic terms, is right on our doorstep. This super-heated ball of plasma-y death, has temperatures and pressures so high that atoms of hydrogen are crushed into helium.

We’ve told ourselves we’re a safe distance away, and generally understate the dangers of being gravitationally bound to a massive ongoing nuclear explosion which is catastrophically larger than anything we’ve ever managed to create here on Earth. We take its warmth and life-giving light for granted, and barely give it a second thought as we sunbathe, or laugh gregariously while frying eggs on sidewalks on days when it’s scorchingly hot out.

Have we been lulled into a false sense of security by an ancient and secret society of bananas crazy sun cultists? Instead of worshiping the giant BBQ death ball, should we be cowering in fear, waiting for the next great solar flare? So, how dangerous is that thing? What are all the ways the Sun could do us in? And how many of them does my insurance cover?

First, in 4.5 billion years nothing has managed to destroy our planet. In fact, life itself has existed for almost Earth’s entire history, and nothing has scoured the planet clear of all forms of life. So, don’t worry the most reasonable risk we face from the Sun in our lifetimes is from a solar flare – a sudden blast of brightness on the surface of the Sun.

These occur when the Sun’s magnetic field lines snap and reconfigure, releasing an enormous amount of energy. It’s the equivalent of hundreds of billions of tonnes of TNT and if we’re staring down the barrel of this blast, it’ll fire a stream of high energy particles right up our nose.

Solar flares on the Sun
Solar flares on the Sun

Fortunately, the Earth has evolved in a highly radioactive environment. We’re blasted by radiation from the Sun all the time. The Earth’s magnetic field lines channel the particles towards the poles, which is why we get to see the beautiful auroral displays.

We’re at little risk from flares from the Sun, but our technology isn’t so lucky. The increase of geomagnetic activity in our vicinity can overload electrical grids and take satellites offline. The most powerful geomagnetic storm in history, known as the Carrington Event in 1859, generated auroras as far south as Cuba. It didn’t cause any damage then, but it would cause a lot of damage to our fragile technology today.

For those of you now resting comfortably I say… Not so fast. This episode isn’t over yet. Our Sun is heating up, and its energy output is increasing.

As it uses up the hydrogen in its core, this region of the Sun contracts a little, and the Sun increases in temperature to balance things out. Over the next few hundred million years, temperatures on Earth will rise and rise. Within a billion years, the surface of the planet will be an inhospitable oven.

Mercury seen by Mariner 10. Image credit: NASA
The Earth will one day be as dry and baked as Mercury. Image credit: NASA

Eventually the oceans will boil and the hydrogen will be blown out of the atmosphere by the Sun’s solar wind. Even though the Sun will remain in its main sequence phase for another 4 billion years after that, any life will need to be living underground.

Of course, as we’ve discussed in previous episodes, the Sun’s final act of destruction will happen when it runs out of hydrogen fuel in its core. The core will contract and the Sun will puff up into a red giant, consuming the orbits of Mercury, Venus and possibly the Earth. And even if it doesn’t consume the Earth, it’ll hit our planet with so much heat and radiation that it’ll finally get around to scouring any life off the surface.

So, like your fanatical sun cultist friends. Don’t worry about the Sun. It might make sense to keep some spare batteries around for the times when solar flares knock out the lights for a few days, but the Sun is remarkably safe and stable. We’ve got billions of years of warm light and heat from our star. But after that, it might make sense to shop for a new home.

So what do you think? Where do you think we should move when the temperature of the Sun heats up?

Why Do People Go Crazy During a Full Moon?

Why Do People Go Crazy During a Full Moon?

Have you ever heard that people go crazy during a full Moon? What’s going on to cause all this lunacy? Or maybe, just maybe, it’s all a myth and nothing special ever happens during full moons.

If I went crazy, like real actual cluster-cuss crazy, you might call me a lunatic. Or you might say I suffered from lunacy. What does that even mean? This word comes from lunaticus, meaning “of the moon” or moonstruck. It was more popular during the late 1800’s, yet it still hangs around.

Surely it must still be an important and useful diagnostic medical term. As when the Moon is full, everyone goes crazy. It’s called the lunar effect. Everyone knows that. Right?

People have theorized for thousands of years that the Moon has all kinds of impacts on us. It affects fertility, crime rates, dog attacks, and increases blood loss during surgery. It must be a full Moon, they say. Full moon tomorrow night! All the crazies will be out! they say.

So what causes all this moon madness. What makes us sprout metaphorical canines and race around in a fugue state hungry for manflesh when the moon is full? Are we experiencing tidal forces from the Moon on our internal organ juices? Is it a result of us evolving lockstep with the lunar cycle? Perhaps the light coming from the Moon affects our visual cortex in a way to stimulate the animalistic parts of the brain? It has been with us for so long as a belief, there must be something to it. Right?

Nope, it’s all a myth. All of it. Tidal effects on behaviour aren’t happening. We experience two high and two low tides every day, and it has nothing to do with the phase of the Moon. In fact, your body experiences more gravity from your chair than it does from the Moon. If the motion of blood was somehow that reactive, should you step into a full elevator everyone would pass out with all the blood rushing to their extremities pulled by your gravity.

No way! You say! It’s true! Because the Moon is closer when it’s full, and its tug on our “materia” and “humors” is stronger. Unfortunately for this theory, our Moon travels an elliptical orbit, and the time when the Moon is closest has nothing to do with when it’s full.

The Moon can be full and close – supermoon. Or it can be full but farther away – minimoon.

Full Moon Rising Over Northwest Georgia on June 22nd, 2013. Credit and copyright: Stephen Rahn.
Full Moon Rising Over Northwest Georgia on June 22nd, 2013. Credit and copyright: Stephen Rahn.

In 1985, a team of scientists did a meta study, looking at 37 separate research papers that attempted to study the Moon’s impact on all aspects of humanity. They found papers that demonstrated a correlation, and then promptly found the mistakes in the research. They found absolutely no evidence. We don’t get into more car accidents. Hospital rooms aren’t more crowded. Werewolves aren’t apparently a thing.

We do notice the coincidences, when something strange occurs and there happens to be a full Moon. But we don’t notice all the times when there wasn’t a full Moon. To learn more about this, I’d suggest heading over to the wonderful blog “You are not so smart” by David McRaney, and reading up on “Confirmation Bias”.

So, where did this idea come from? Historians suspect it’s possible that the brightness of a full moon disturbed people’s sleep schedules.

I’m partial to the idea that in history, the full Moon was a high time for people to be active at night, favoring work or travel by the light of the full moon. So, perhaps there were more accidents.

But not any more. People are superstitious about mundane things like black cats, ladders and broken mirrors, it’s not surprising they’re superstitious about our beautiful and bright companion prettying up the sky almost every night.

What do you think? What’s your favorite full moon superstition? Tell us in the comments below.

How Can We Move the Earth?

How Can We Move the Earth?

Sooner or later we’re going to want to move the Earth further away from the Sun. It turns out, there are a few techniques that might actually make this possible. Not easy, but possible.

You live here. I live here. Everybody lives here. For now.

In 500 million years the gradual heating of the Sun will burn away all life on Earth. Then we might have to move. Even if we get past the 500 million year deadline, the Sun will die as a red giant in about 5 billion years.

Let’s review our options? We could die… orrrr we could move the Earth. Just like any other mad science scheme, there’s a hundred ways to skin this cat. We could launch powerful rockets off the Earth, which would push the Earth a little bit in the opposite direction.

We could build a giant teleporter and disassemble the Earth atom by atom into a new location. We could repeatedly smash things into the Earth. Eventually knocking it off orbit, possibly also changing its axis and or rotation.

We could paint half the Earth silver, stop it rotating and let the Sun push it away. We could dig a giant hole down to the core and repeatedly detonate warheads inside the Earth forcing molten material to fly off into space, propelling us forwards like a deflating balloon.

Sure, maybe that does all sound a little crazy. We could build a gravity tug, and slowly pull the Earth away from the Sun. What’s a gravity tug? I’m so glad you asked.

You could build a solar sail with a huge mass connected to it. This gigantic weight would want to fall towards the Earth, and the Earth slowly drifts towards the weight. The solar sail is being pushed away by the Sun dragging both the weight and as a result the Earth along with it. This would take a very, very, very long time.

The Solar Sail demonstration mission.  Credit: NASA
The Solar Sail demonstration mission. Credit: NASA

Here’s the best idea scientists have come up with so far. Gravity assists: Attach rockets to an asteroid, comet or Kuiper belt object and have it fall on a trajectory that takes it close to the Earth. Earth and this space rock would exchange a little momentum.

The rock slows down a bit and goes into a new orbit, and the Earth speeds up a little. That additional momentum pushes our orbit up a tiny little bit, and now we’re further away from the Sun. You’d need to do this tens of thousands or even a million times.

You might think, “Hey, that’s crazy. Where would you get all this stuff to hurl past the Earth?”. Don’t worry, the Oort cloud alone has billions of objects with a total of 30 times the mass of the Earth.

To prepare for Roastpocalypse, If we started now, we should cause a close pass with a large object every few thousand years. We bring them within 10,000 km of the surface of the Earth, which would have the likely side effect of causing severe tides and storms.

The layout of the solar system, including the Oort Cloud, on a logarithmic scale. Credit: NASA
The layout of the solar system, including the Oort Cloud, on a logarithmic scale. Credit: NASA

Oh, and get the math wrong and you’ll smash an asteroid into the Earth. Just so you know, these would be way bigger than the object that killed the dinosaurs. One hit from a 100km diameter object would sterilize the biosphere.

If we pushed the Earth out to about 1.5 times its current orbit, which might get a little too cozy with Mars for comfort, we’d give the Earth another 5 billion years of habitability,

Then the Sun turns into a red giant, and then dies as a white dwarf. And nothing can help us then… except perhaps some kind of planet sized star gate.

What do you think? What’s the best suggestion you’ve got to move the Earth out to a safe distance? Tell us in the comments below.

Why is Everything Spherical?

Why is Everything Spherical?

Have you ever noticed that everything in space is a sphere? The Sun, the Earth, the Moon and the other planets and their moons… all spheres. Except for the stuff which isn’t spheres. What’s going on?

Have you noticed that a good portion of things in space are shaped like a sphere? Stars, planets, and moons are all spherical.

Why? It all comes down to gravity. All the atoms in an object pull towards a common center of gravity, and they’re resisted outwards by whatever force is holding them apart. The final result could be a sphere… but not always, as we’re about to learn.

Consider a glass of water. If you could see the individual molecules jostling around, you’d see them trying to fit in as snugly as they can, tension making the top of the water smooth and even.

Imagine a planet made entirely of water. If there were no winds, it would be perfectly smooth. The water molecules on the north pole are pulling towards the molecules on the south pole. The ones on the left are pulling towards the right. With all points pulling towards the center of the mass you would get a perfect sphere.

Gravity and surface tension pull it in, and molecular forces are pushing it outward. If you could hold this massive water droplet in an environment where it would remain undisturbed, eventually the water would reach a perfect balance. This is known as “hydrostatic equilibrium”.

Stars, planets and moons can be made of gas, ice or rock. Get enough mass in one area, and it’s going to pull all that stuff into a roughly spherical shape. Less massive objects, such as asteroids, comets, and smaller moons have less gravity, so they may not pull into perfect spheres.

UT Jupiter Oval BA Chris Go
Jupiter Credit: Christopher Go

As you know, most of the celestial bodies we’ve mentioned rotate on an axis, and guess what, those ones aren’t actually spheres either. The rapid rotation flattens out the middle, and makes them wider across the equator than from pole to pole. Earth is perfect example of this, and we call its shape an oblate spheroid.

Jupiter is even more flattened because it spins more rapidly. A day on Jupiter is a short 9.9 hours long. Which leaves it a distorted imperfect sphere at 71,500 km across the equator and just 66,900 from pole to pole.

Stars are similar. Our Sun rotates slowly, so it’s almost a perfect sphere, but there are stars out there that spin very, very quickly. VFTS 102, a giant star in the Tarantula nebula is spinning 100 times faster than the Sun. Any faster and it would tear itself apart from centripetal forces.

This oblate spheroid shape helps indicate why there are lots of flattened disks out there. This rapid spinning, where centripetal forces overcome gravitational attraction that creates this shape. You can see it in black hole accretion disks, solar systems, and galaxies.

Objects tend to form into spheres. If they’re massive enough, they’ll overcome the forces preventing it. But… if they’re spinning rapidly enough, they’ll flatten out all the way into disks.

What Does a Supernova Sounds Like?

What Does a Supernova Sounds Like?

We’ve all been ruined by science fiction, with their sound effects in space. But if you could watch a supernova detonate from a safe distance away, what would you hear?

Grab your pedantry tinfoil helmet and say the following in your best “Comic Book Guy” voice: “Don’t be ridiculous. Space does not have sound effects. You would not hear the Death Star exploding. That is wrong.” There are no sounds in space. You know that. Why did you even click on this?

Wait! I still have thing I want to teach you. Keep that tinfoil on and stick around. First, a quick review. Why are there sounds? What are these things we detect with our ear shell-flaps which adorn the sides of our hat-resting orb?

Sounds are pressure waves moving through a medium, like air, water or beer. Talking, explosions, and music push air molecules into other molecules. Through all that “stuff” pushing other “stuff” it eventually pushes the “stuff” that we call our eardrum, and that lets us hear a thing. So, much like how there’s not enough “stuff” in space to take a temperature reading. There’s not enough “stuff” in space to be considered a medium for sound to move through.

Don’t get me wrong there’s “stuff” there. There’s particles. Even in intergalactic depths there are a few hundred particles every cubic meter, and there’s much more in a galaxy. They’re so far apart though, the particles don’t immediately collide with each other allowing a sound wave to pass through a grouping of them.

So, even if you did watch the Death Star explode, you couldn’t hear it. This includes zapping lasers, and exploding rockets. Unless two astronauts touched helmets together, then they could talk. The sound pressure moves through the air molecules in one helmet, through the glass transferring from one helmet to the other, and then pushes against the air inside the helmet of the listening astronaut. Then they could talk, or possibly hear one another scream, or just make muffled noises under the face-hugger that had been hiding in their boot.

There’s no sound in space, so you can’t hear what a supernova sounds like. But if you’re willing to consider swapping out your listening meats for other more impressive cybernetic components, there are possibilities. Perhaps I could offer you something in a plasma detection instrument, and you could hear the Sun.

Artist's concept of NASA's Voyager spacecraft. Image credit: NASA/JPL-Caltech
Artist’s concept of NASA’s Voyager spacecraft. Image credit: NASA/JPL-Caltech

Voyager 1 detects waves of particles streaming from the Sun’s solar wind. It was able to hear when it left the heliosphere, the region where the Sun’s solar wind buffets against the interstellar medium.

Or you could try something in the Marconi Auralnator 2000 which is the latest in radio detector implants I just made up. If there was such a thing, you could hear the plasma waves in Earth’s radiation belts. Which would be pretty amazing, but perhaps somewhat impractical for other lifestyle purposes such as watching Ellen.

So, if you wanted to hear a supernova you’d need a different kind of ear. In fact, something that’s not really an ear at all. There are some exceptions out there. With dense clouds of gas and dust at the heart of a galaxy cluster, you could have a proper medium. NASA’s Chandra X-Ray Observatory has detected sound waves moving through these dust clouds. But you would need ears millions of billions of times more sensitive to hear them.

NASA and other space agencies work tirelessly to convert radio, plasma and other activity into a sound pressure format that we can actually hear. There are beautiful things happening space. I’ve included a few links below which will take you to a few of these, and they are really quite incredible.

Earthsong

Lightning on Saturn, Helium in the atmosphere, etc.

How Much of the Universe is Black Holes?

How Much of the Universe is Black Holes?

We all fear black holes, but how many of them are there out there, really? Between the stellar mass black holes and the supermassive ones, just how much of our Universe is black holes?

There are two kinds of black holes in the Universe that we know of: There’s stellar mass black holes, formed from massive stars, and a supermassive black holes which lives at the hearts of galaxies.

About 1 in a 1000 stars have enough mass to become a black hole when they die. Our Milky Way has 100 billion stars, this means it could have up to 100 million stellar mass black holes. As there are hundreds of billions of galaxies in the observable Universe, there are lots, lots more out there. In fact, the math suggests there’s a new black hole forming every second or so. So just to recap, the entire Universe is about 1/1000th “regular flavor” stellar mass black holes.

Supermassive black holes are a slightly different story. Our central galactic black hole is about 26,000 light years away from us. Formally, it’s called Sagittarius A-star, but for our purposes I’m going to call it Kevin. Just so you know they don’t throw that term “supermassive” around for no reason, Kevin contains 4.1 million times the mass of the Sun.

Kevin is gigantic and horrible. We can only imagine what it’s like to be in the region of space near Kevin. What percentage of the galaxy do you think Kevin makes up, mass wise?

Kevin, whilst absolutely super-massive, is a tiny, tiny 1/10,000 of a percent of the Milky Way galaxy’s mass. So, to be precise, if we add Kevin’s mass to the mass of all the stellar mass black holes aka. “mini-Kevins”, we get a very minor 11/10000s of a %.

As it turns out this ratio holds up on a Universal scale and is approximately the same for all the mass in the Universe. So, 11 ten thousandths of a percent is the answer to the question. As far as we know.

Unless… dark matter is black holes. Dark matter accounts for more than ¾ of the mass of the Universe. It doesn’t absorb light or interact with matter in any way. We’re only aware of its presence through its gravitational influence.

Artistic view of a radiating black hole.  Credit: NASA
Artistic view of a radiating black hole. Credit: NASA

As it turns out, Astronomers think that one explanation for dark matter might be primordial black holes. These microscopic black holes would have the mass of an asteroid or more and could only form in the high pressure, high temperature conditions after the Big Bang.

Experiments to search for primordial black holes have yet to turn up any evidence, and most scientists don’t think they’re a viable explanation. But if they were, then the Universe is almost entirely composed of the physics inspired nightmare that are black holes.

If it’s not the case now, in the far future, everything could be. Given enough time, all those stellar black holes and supermassive Kevins will scoop up all the available material in the Universe.

In 10 quintillion years everything in the Universe will have either fallen into a black hole, or been flung out on an escape trajectory. And then those black holes will slowly evaporate over time, as predicted by Stephen Hawking.

In 10^66 years the smallest stellar black holes will have evaporated. The most massive supermassive black holes could take 10^100 years. And then, there won’t be any black holes at all.

What do you think? Is it mostly black holes or almost no black holes? Tell us what you suspect in the comments below.

Why Isn’t the Asteroid Belt a Planet?

Why Isn’t the Asteroid Belt a Planet?

It seems like there’s a strange gap in between Mars and Jupiter filled with rocky rubble. Why didn’t the asteroid belt form into a planet, like the rest of the Solar System?

Beyond the orbit of Mars lies the asteroid belt its a vast collection of rocks and ice, leftover from the formation of the solar system. It starts about 2 AU, ends around 4 AU. Objects in the asteroid belt range from tiny pebbles to Ceres at 950 km across.

Star Wars and other sci-fi has it all wrong. The objects here are hundreds of thousand of kilometers apart. There’d be absolutely no danger or tactical advantage to flying your spacecraft through it.

To begin with, there actually isn’t that much stuff in the asteroid belt. If you were to take the entire asteroid belt and form it into a single mass, it would only be about 4% of the mass of our Moon. Assuming a similar density, it would be smaller than Pluto’s moon Charon.

There’s a popular idea that perhaps there was a planet between Mars and Jupiter that exploded, or even collided with another planet. What if most of the debris was thrown out of the solar system, and the asteroid belt is what remains?

We know this isn’t the case for a few of reasons. First, any explosion or collision wouldn’t be powerful enough to throw material out of the Solar System. So if it were a former planet we’d actually see more debris.

Second, if all the asteroid belt bits came from a single planetary body, they would all be chemically similar. The chemical composition of Earth, Mars, Venus, etc are all unique because they formed in different regions of the solar system. Likewise, different asteroids have different chemical compositions, which means they must have formed in different regions of the asteroid belt.

Asteroids
Artist’s depiction of the asteroid belt between Mars and Jupiter. Credit: David Minton and Renu Malhotra

In fact, when we look at the chemical compositions of different asteroids we see that they can be grouped into different families, with each having a common origin. This gives us a clue as to why a planet didn’t form where the asteroid belt is.

If you arrange all the asteroids in order of their average distance from the Sun, you find they aren’t evenly distributed. Instead you find a bunch, then a gap, then a bunch more, then another gap, and so on. These gaps in the asteroid belt are known as Kirkwood gaps, and they occur at distances where an orbit would be in resonance with the orbit of Jupiter.

Jupiter’s gravity is so strong, that it makes asteroid orbits within the Kirkwood gaps unstable. It’s these gaps that prevented a single planetary body from forming in that region. So, because of Jupiter, asteroids formed into families of debris, rather than a single planetary body.

What do you think? What’s your favorite object in the asteroid belt. Tell us in the comments below.

Why is the Moon Leaving Us?

Why is the Moon Leaving Us?

Goodbye Moon. Every year, the Moon slips a few centimeters away from us, slowing down our day. Why is the Moon drifting away from us, and how long will it take before the Earth and the Moon are tidally locked to each other?

We had a good run, us and the Moon. Grab your special edition NASA space tissues because today we’re embarking on a tale of orbital companionship, childhood sweethearts and heartache.

You could say we came from the same part of town. A long time ago the Mars-sized object Theia, collided with the Earth and the Moon was formed out of the debris from the collision.

We grew up together. Counting from the very beginning, this relationship has lasted for 4.5 billion years. We had some good times. Some bad times. Gravitationally linked, arm in arm, inside our solar family sedan traversing the galaxy.

But now, tragedy. The Moon, OUR Moon, is moving on to brighter horizons. We used to be much closer when we were younger and time seemed to fly by much faster. In fact, 620 million years ago, a day was only 21 hours long. Now they’ve dragged out to 24 hours and they’re just getting longer, and the Moon is already at a average distance of 384,400 km. It almost feels too far away.

If we think back far enough to when we were kids, there was a time when a day was just 2 – 3 hours long, and the Moon was much closer. It seemed like we did everything together back then. But just like people, massive hunks of rock and materials flying through space change, and their relationships change as well.

Our therapist told us it wasn’t a good idea to get caught up on minutiae, but we’ve done some sciencing using the retroreflector experiments placed by Apollo astronauts, and it looks as though the Moon has always had one foot out the door.

Today it’s drifting away at 1-2 cm/year. Such heartache! We just thought it seemed like the days were longer, but it’s not just an emotional effect of seeing our longtime friend leaving us, there’s a real physical change happening. Our days are getting 1/500th of a second longer every century.

I can’t help but blame myself. If only we knew why. Did the Moon find someone new? Someone more attractive? Was it that trollop Venus, the hottest planet in the whole solar system? It’s really just a natural progression. It’s nature. It’s gravity and tidal forces.

And no, that’s not a metaphor. The Earth and the Moon pull at each other with their gravity. Their shapes get distorted and the pull of this tidal force creates a bulge. The Earth has a bulge facing towards the Moon, and the Moon has a more significant bulge towards the Earth.

A series of photos combined to show the rise of the July 22, 2013 ‘super’ full moon over the Rocky Mountains, shot near Vail, Colorado, at 10,000ft above sea level in the White River National Forest. Moon images are approximately 200 seconds apart. Credit and copyright: Cory Schmitz
A series of photos combined to show the rise of the July 22, 2013 ‘super’ full moon over the Rocky Mountains, shot near Vail, Colorado, at 10,000ft above sea level in the White River National Forest. Moon images are approximately 200 seconds apart. Credit and copyright: Cory Schmitz

These bulges act like handles for gravity, which slows down their rotation. The process allowed the Earth’s gravity to slow the Moon to a stop billions of years ago. The Moon is still working on the Earth to change its ways, but it’ll be a long time before we become tidally locked to the Moon.

This slowing rotation means energy is lost by the Earth. This energy is transferred to the Moon which is speeding up, and as we’ve talked about in previous episodes the faster something orbits, the further and further it’s becomes from the object it’s orbiting.

Will it ever end? We’re so attached, it seems like it’ll take forever to figure out who’s stuff belongs to who and who gets the dog. Fear not, there is an end in sight. 50 billion years from now, 45 billion years after the Sun has grown weary of our shenanigans and become a red giant, when the days have slowed to be 45 hours long, the Moon will consider itself all moved into its brand new apartment ready to start its new life.

What about the neighbors down the street? How are the other orbital relationships faring. I know there’s a lot of poly-moon-amory taking place out there in the Solar System. We’re not the only ones with Moons tidally locked. There’s Phobos and Deimos to Mars, many of the moons of Jupiter and Saturn are, and Pluto and Charon are even tidally locked to each other, forever. Now’s that’s real commitment. So, in the end. The lesson here is people and planets change. The Moon just needs its space, but it still wants to be friends.

What do you think? If you were writing a space opera about the Earth and the Moon break-up, what was it that finally came between them? Tell us in the comments below.