We enjoy the light from the Sun during the day, and then the comforting glow of the Moon at night. But the light coming from the Moon is an illusion. As you know, you’re actually seeing the reflected light from the Sun, bouncing off the Moon which acts like a mirror. A really terrible mirror.
When astronauts walked on the surface, they reported that it was dark grey, the color of pavement. Because of its dark color and bumpy surface, it only reflects about 12% of the light that hits it. Additionally, the amount of light we get from the Moon depends on the point of its orbit.
During its first and last quarters, the Moon is half illuminated, but it’s only 8% as bright when it’s full. Just imagine the surface when its only partly illuminated. With the Sun at a steep angle, the mountains cast long shadows. This makes the lunar surface much darker than when it’s directly illuminated.
During the full Moon, it’s so bright that it obscures fainter objects in the night sky. Many astronomers put their telescopes away during this phase, and wait for it to go away. When the Moon is highly illuminated, it reflects so much light we can even see it during the day.
[/caption]
The brightness of the daytime sky completely washes out the light from the stars, but the Moon is even brighter, and so we can can see it in the sky during the day. The Moon follows an elliptical orbit around the Earth, changing its distance and brightness quite a bit. When it is at its closest point, and it’s full, this is known as a supermoon. This Moon can be 20% brighter than normal.
You’ve probably experienced how the Moon can cast shadows. In fact, there are three objects in the sky that can cast shadows. The Sun, of course, the Moon… and Venus.
Venus is the next brightest object in the sky, after the Moon. It reflects 65% of the sunlight that hits it. Every few months, Venus reaches its brightest time – that’s when you can see your shadow. On a night with no Moon, head far away from city lights. Let your eyes adjust and watch as your hand casts a shadow on a white piece of paper, illuminated only by Venus.
One last thought on reflected light.We talked about how bad a mirror the Moon is, reflecting only 12% of the light that hits it. That’s nothing. Saturn’s moon Enceladus, on the other hand, reflects about 99% of the light that falls on it. If astronauts ever get the chance to walk on the surface of Enceladus, it’ll feel like freshly fallen snow.
Gravity. The average person probably doesn’t think about it on a daily basis, but yet gravity affects our every move. Because of gravity, we fall down (not up), objects crash to the floor, and we don’t go flying off into space when we jump in the air. The old adage, “everything that goes up must come down” makes perfect sense to everyone because from the day we are born, we are seemingly bound to Earth’s surface due to this all-pervasive invisible force.
But physicists think about gravity all the time. To them, gravity is one of the mysteries to be solved in order to get a complete understanding of how the Universe works.
So, what is gravity and where does it come from?
To be honest, we’re not entirely sure.
We know from Isaac Newton and his law of gravitation that any two objects in the Universe exert a force of attraction on each other. This relationship is based on the mass of the two objects and the distance between them. The greater the mass of the two objects and the shorter the distance between them, the stronger the pull of the gravitational forces they exert on each other.
We also know that gravity can work in a complex system with several objects. For example, in our own Solar System, not only does the Sun exert gravity on all the planets, keeping them in their orbits, but each planet exerts a force of gravity on the Sun, as well as all the other planets, too, all to varying degrees based on the mass and distance between the bodies. And it goes beyond just our Solar System, as actually, every object that has mass in the Universe attracts every other object that has mass — again, all to varying degrees based on mass and distance.
With his theory of relativity, Albert Einstein explained how gravity is more than just a force: it is a curvature in the space-time continuum. That sounds like something straight out of science fiction, but simply put, the mass of an object causes the space around it to essentially bend and curve. This is often portrayed as a heavy ball sitting on a rubber sheet, and other smaller balls fall in towards the heavier object because the rubber sheet is warped from the heavy ball’s weight.
In reality, we can’t see curvature of space directly, but we can detect it in the motions of objects. Any object ‘caught’ in another celestial body’s gravity is affected because the space it is moving through is curved toward that object. It is similar to the way a coin would spiral down one of those penny slot cyclone machines you see at tourist shops, or the way bicycles spiral around a velodrome.
We can also see the effects of gravity on light in a phenomenon called gravitational lensing. If an object in space is massive enough – such as a large galaxy or cluster of galaxies — it can cause an otherwise straight beam of light to curve around it, creating a lensing effect.
But these effects – where there are basically curves, hills and valleys in space — occur for reasons we can’t fully really explain. Besides being a characteristic of space, gravity is also a force (but it is the weakest of the four forces), and it might be a particle, too. Some scientists have proposed particles called gravitons cause objects to be attracted to one another. But gravitons have never actually been observed. Another idea is that gravitational waves are generated when an object is accelerated by an external force, but these waves have never been directly detected, either.
Our understanding of gravity breaks down at both the very small and the very big: at the level of atoms and molecules, gravity just stops working. And we can’t describe the insides of black holes and the moment of the Big Bang without the math completely falling apart.
The problem is that our understanding of both particle physics and the geometry of gravity is incomplete.
“Having gone from basically philosophical understandings of why things fall to mathematical descriptions of how things accelerate down inclines from Galileo, to Kepler’s equations describing planetary motion to Newton’s formulation of the Laws of Physics, to Einstein’s formulations of relativity, we’ve been building and building a more comprehensive view of gravity. But we’re still not complete,” said Dr. Pamela Gay. “We know that there still needs to be some way to unite quantum mechanics and gravity and actually be able to write down equations that describe the centers of black holes and the earliest moments of the Universe. But we’re not there yet.”
And so, the mystery remains … for now.
This “Minute Physics” video helps explain what we know about gravity:
This article was originally published on Aug 10, 2012. We’ve updated it and added this cool new video!
Sending spacecraft to Mars is all about precision. It’s about blasting off from Earth with a controlled explosion, launching a robot into space in the direction of the Red Planet, navigating the intervening distance between our two planets, and landing with incredible precision.
This intricate and complicated maneuver means knowing the exact distance from Earth to Mars. Since Mars and Earth both orbit the Sun – but at different distance, with different eccentricities, and with different orbital velocities – the distance between then is constantly changing
The first person to ever calculate the distance to Mars was the astronomer Giovanni Cassini, famous for his observations of Saturn. Giovanni made observations of Mars in 1672 from Paris, while his colleague, Jean Richer made the same observation from Cayenne, French Guiana. They used the parallax method to calculate the distance to Mars with surprising accuracy.
However, astronomers now calculate the distance to objects in the Solar System using the speed of light. They measure the time it takes for signals to reach spacecraft orbiting other planets. They can bounce powerful radar off planets and measure the time it takes for signals to return. This allows them to measure the distance to planets, like Mars, with incredible accuracy.
Distance Between Earth and Mars:
So, how far away is Mars? The answer to that question changes from moment to moment because Earth and Mars are orbiting the Sun. It also requires a little explanation about the orbital mechanics of each. Both Earth and Mars are following elliptical orbits around the Sun, like two cars travelling at different speeds on two different racetracks.
Sometimes the planets are close together, and other times they’re on opposite sides of the Sun. And although they get close and far apart, those points depend on where the planets are on their particular orbits. So, the Earth Mars distance is changing from minute to minute.
The planets don’t follow circular orbits around the Sun, they’re actually traveling in ellipses. Sometimes they’re at the closest point to the Sun (called perihelion), and other times they’re at the furthest point from the Sun (known as aphelion).
To get the closest point between Earth and Mars, you need to imagine a situation where Earth and Mars are located on the same side of the Sun. Furthermore, you want a situation where Earth is at aphelion, at its most distant point from the Sun, and Mars is at perihelion, the closest point to the Sun.
Earth and Mars Opposition:
When Earth and Mars reach their closest point, this is known as opposition. It’s the time that Mars appears as a bright red star of the sky; one of the brightest objects, rivaling the brightness of Venus or Jupiter. There’s no question Mars is bright and close, you can see it with your own eyes. And theoretically at this point, Mars and Earth will be only 54.6 million kilometers from each other.
But here’s the thing, this is just theoretical, since the two planets haven’t been this close to one another in recorded history. The last known closest approach was back in 2003, when Earth and Mars were only 56 million km (or 33.9 million miles) apart. And this was the closest they’d been in 50,000 years.
Here’s a list of Mars Oppositions from 2007-2020 (source)
Dec. 24, 2007 – 88.2 million km (54.8 million miles)
Jan. 29, 2010 – 99.3 million km (61.7 million miles)
Mar. 03, 2012 – 100.7 million km (62.6 million miles)
Apr. 08, 2014 – 92.4 million km (57.4 million miles)
May. 22, 2016 – 75.3 million km (46.8 million miles)
Jul. 27. 2018 – 57.6 million km (35.8 million miles)
Oct. 13, 2020 – 62.1 million km (38.6 million miles)
2018 should be a very good year, with a Mars looking particularly bright and red in the sky.
Earth and Mars Conjunction:
On the opposite end of the scale, Mars and Earth can be 401 million km apart (249 million miles) when they are in opposition and both are at aphelion. The average distance between the two is 225 million km. When Mars and Earth are at their closest, you have your launch window.
Mars and Earth reach this closest point to one another approximately every two years. And this is the perfect time to launch a mission to the Red Planet. If you look back at the history of launches to Mars, you’ll notice they tend to launch about every two years.
Here’s an example of recent Missions to Mars, and the years they launched:
MER-A Spirit – 2003
MER-B Opportunity – 2003
Mars Reconnaissance Orbiter – 2005
Phoenix – 2007
Fobos-Grunt – 2011
MSL Curiosity – 2011
See the trend? Every two years. They’re launching spacecraft when Earth and Mars reach their closest point.
Spacecraft don’t launch directly at Mars; that would use up too much fuel. Instead, spacecraft launch towards the point that Mars is going to be in the future. They start at Earth’s orbit, and then raise their orbit until they intersect the orbit of Mars; right when Mars is at that point. The spacecraft can then land on Mars or go into orbit around it. This journey takes about 250 days.
Communicating with Mars:
With these incredible distances between Earth and Mars, scientists can’t communicate with their spacecraft in real time. Instead, they need to wait for the amount of time it takes for transmissions to travel from Earth to Mars and back again.
When Earth and Mars are at their theoretically closest point of 54.6 million km, it would take a signal from Earth about 3 minutes to make the journey, and then another 3 minutes for the signals to get back to Earth. But when they’re at their most distant point, it takes more like 21 minutes to send a signal to Mars, and then another 21 minutes to receive a return message.
This is why the spacecraft sent to Mars are highly autonomous. They have computer systems on board that allow them to study their environment and avoid dangerous obstacles completely automatically, without human intervention.
The distance from Earth to Mars is the main reason that there has never been a manned flight to the Red Planet. Scientists around the world are working on ways to shorten the trip with the goal of sending a human into Martian orbit within the next decade.
For more information, this website lists every Mars opposition time, from recent past all the way in the far future. You can also use NASA’s Solar System Simulator to see the current position of any object in the Solar System.
We owe our entire existence to the Sun. Well, it and the other stars that came before. As they died, they donated the heavier elements we need for life. But how did they form?
Stars begin as vast clouds of cold molecular hydrogen and helium left over from the Big Bang. These vast clouds can be hundreds of light years across and contain the raw material for thousands or even millions of times the mass of our Sun. In addition to the hydrogen, these clouds are seeded with heavier elements from the stars that lived and died long ago. They’re held in balance between their inward force of gravity and the outward pressure of the molecules. Eventually some kick overcomes this balance and causes the cloud to begin collapsing.
That kick could come from a nearby supernova explosion, collision with another gas cloud, or the pressure wave of a galaxy’s spiral arms passing through the region. As this cloud collapses, it breaks into smaller and smaller clumps, until there are knots with roughly the mass of a star. As these regions heat up, they prevent further material from falling inward.
At the center of these clumps, the material begins to increase in heat and density. When the outward pressure balances against the force of gravity pulling it in, a protostar is formed. What happens next depends on the amount of material.
Some objects don’t accumulate enough mass for stellar ignition and become brown dwarfs – substellar objects not unlike a really big Jupiter, which slowly cool down over billions of years.
If a star has enough material, it can generate enough pressure and temperature at its core to begin deuterium fusion – a heavier isotope of hydrogen. This slows the collapse and prepares the star to enter the true main sequence phase. This is the stage that our own Sun is in, and begins when hydrogen fusion begins.
If a protostar contains the mass of our Sun, or less, it undergoes a proton-proton chain reaction to convert hydrogen to helium. But if the star has about 1.3 times the mass of the Sun, it undergoes a carbon-nitrogen-oxygen cycle to convert hydrogen to helium. How long this newly formed star will last depends on its mass and how quickly it consumes hydrogen. Small red dwarf stars can last hundreds of billions of years, while large supergiants can consume their hydrogen within a few million years and detonate as supernovae. But how do stars explode and seed their elements around the Universe? That’s another episode.
Come on, admit it, you’ve had this question. “Since astronomers know that the Universe is expanding, what’s it expanding into? What’s outside of the Universe?” Ask any astronomer and you’ll get an unsatisfying answer. We give you the same unsatisfying answer, but really explain it, so your unsatisfaction doesn’t haunt you any more.
The short answer is that this is a nonsense question, the Universe isn’t expanding into anything, it’s just expanding.
The definition of the Universe is that it contains everything. If something was outside the Universe, it would also be part of the Universe too. Outside of that? Still Universe. Out side of THAT? Also more Universe. It’s Universe all the way down. But I know you’re going to find that answer unsatisfying, so now I’m going to break your brain.
Either the Universe is infinite, going on forever, or its finite, with a limited volume. In either case, the Universe has no edge. When we imagine the Universe expanding after the Big Bang, we imagine an explosion, with a spray of matter coming from a single point. But this analogy isn’t accurate.
A better analogy is the surface of an expanding balloon. Not the 3 dimensional balloon, just its 2 dimensional surface. If you were an ant crawling around the surface of a huge balloon, and the balloon was your whole universe, you would see the balloon as essentially flat under your feet.
Imagine the balloon is inflating. In every direction you look, other ants are moving away from you. The further they are, the faster away they’re moving. Even though it feels like a flat surface, walk in any direction long enough and you’d return to your starting point.
You might imagine a growing circle and wonder what it’s expanding into. But that’s a nonsense question. There’s no direction you could crawl that would get you outside the surface. Your 2-dimensional ant brain can’t comprehend an expanding 3-dimensional object. There may be a center to the balloon, but there’s no center to the surface. Just a shape that extends in all directions and wraps in upon itself. And yet, your journey to make one lap around the balloon takes longer and longer as the balloon gets more inflated.
To better understand how this relates to our Universe, we need to scale things up by one dimension, from a 2-d surface embedded in a 3-d world, to a 3-d volume embedded within a 4-d universe. Astronomers think that if you travel in any direction far enough, you’ll return to your starting position. If you could stare far enough into space, you would be looking at the back of your own head.
And so, as the Universe expands, it would take you longer and longer to lap the Universe and return to your starting position. But there’s no direction you could travel in that would take you outside or “off” of the Universe. Even if you could move faster than the speed of light, you’d just return to your starting position more quickly. We see other galaxies moving away from us in all directions just as our ant would see other ants moving away on the surface of the balloon.
A great analogy comes from my Astronomy Cast co-host, Dr. Pamela Gay. Instead of an explosion, imagine the expanding Universe is like a loaf of raisin bread rising in the oven. From the perspective of any raisin, all the other raisins are moving away in all directions. But unlike a loaf of raisin bread, you could travel in any one direction within the bread and eventually return to your starting raisin.
Remember that our entire comprehension is based on 3-dimensions. If we were 4-dimensional creatures, this would make much more sense. For a much deeper explanation, I highly recommend you watch my good friend, Zogg the Alien explain how the Universe has no edge. After watching his videos, you should totally understand the possible topologies of our Universe.
I hope this helps you understand why there’s no answer to “what is the Universe expanding into?” With no edge, it’s not expanding into anything, it’s just expanding.
This question comes from Sheldon Grimshaw. “I’ve heard that there are more stars in our Universe than there are grains of sand on all the beaches on Earth. Is this possible?” Awesome question, and a great excuse to do some math.
As we learned in a previous video, there are 100 to 400 billion stars in the Milky Way and more than 100 billion galaxies in the Universe – maybe as many as 500 billion. If you multiply stars by galaxies, at the low end, you get 10 billion billion stars, or 10 sextillion stars in the Universe – a 1 followed by 22 zeros. At the high end, it’s 200 sextillion.
These are mind bogglingly huge numbers. How do they compare to the number of grains of sand on the collective beaches of an entire planet? This type of sand measures about a half millimeter across.
You could put 20 grains of sand packed in side-by-side to make a centimeter. 8000 grains in one cubic centimeter. If you took 10 sextillion grains of sand, put them into a ball, it would have a radius of 10.6 kilometers. And for the high end of our estimate, 200 sextillion, it would be 72 kilometers across. If we had a sphere bigger than the Earth, it would be an easy answer, but no such luck. This might be close.
So, is there that much sand on all the beaches, everywhere, on this planet? You’d need to estimate the average volume of a sandy beach and the average amount of the world’s coastlines which are beaches.
I’m going to follow the estimates and calculations made by Dr. Jason Marshall, aka, the Math Dude. According to Jason, there about 700 trillion cubic meters of beach of Earth, and that works out to around 5 sextillion grains of sand.
Jason reminds us that his math is a rough estimate, and he could be off by a factor of 2 either way. So it could be 2.5 sextillion or there could be 10 sextillion grains of sand on all the world’s beaches.
So, if the low end estimate for the number of stars matches the high end estimate for the number of grains of sand, it’s the same. But more likely, there are 5 to 10 times more stars than there are grains of sand on all the world’s beaches.
So, there’s your answer, Sheldon. For some “back of the napkin” math we can guess that there are more stars in our Universe than there are grains of sand on all the beaches of Earth.
Oh, one more thing. Instead of grains of sand, what about atoms? How big is 10 sextillion atoms? How huge would something with that massive quantity of anything be? Pretty gigantic. Well, relatively at least. 10 sextillion of anything does sound like a whole lot.
If you were to make a pile of that many atoms… guess how big it would be. It’d be about…. (gesture big then gesture small) 4 times smaller than a dust mite. Which means, a single grain of sand has more atoms than there are stars in the Universe.
They are what is known as the “lighthouses” of the universe – rotating neutron stars that emit a focused beam of electromagnetic radiation that is only visible if you’re standing in it’s path. Known as pulsars, these stellar relics get their name because of the way their emissions appear to be “pulsating” out into space.
Not only are these ancient stellar objects very fascinating and awesome to behold, they are very useful to astronomers as well. This is due to the fact that they have regular rotational periods, which produces a very precise internal in its pulses – ranging from milliseconds to seconds.
Description:
Pulsars are types of neutron stars; the dead relics of massive stars. What sets pulsars apart from regular neutron stars is that they’re highly magnetized, and rotating at enormous speeds. Astronomers detect them by the radio pulses they emit at regular intervals.
Formation:
The formation of a pulsar is very similar to the creation of a neutron star. When a massive star with 4 to 8 times the mass of our Sun dies, it detonates as a supernova. The outer layers are blasted off into space, and the inner core contracts down with its gravity. The gravitational pressure is so strong that it overcomes the bonds that keep atoms apart.
Electrons and protons are crushed together by gravity to form neutrons. The gravity on the surface of a neutron star is about 2 x 1011 the force of gravity on Earth. So, the most massive stars detonate as supernovae, and can explode or collapse into black holes. If they’re less massive, like our Sun, they blast away their outer layers and then slowly cool down as white dwarfs.
But for stars between 1.4 and 3.2 times the mass of the Sun, they may still become supernovae, but they just don’t have enough mass to make a black hole. These medium mass objects end their lives as neutron stars, and some of these can become pulsars or magnetars. When these stars collapse, they maintain their angular momentum.
But with a much smaller size, their rotational speed increases dramatically, spinning many times a second. This relatively tiny, super dense object, emits a powerful blast of radiation along its magnetic field lines, although this beam of radiation doesn’t necessarily line up with it’s axis of rotation. So, pulsars are simply rotating neutron stars.
And so, from here on Earth, when astronomers detect an intense beam of radio emissions several times a second, as it rotates around like a lighthouse beam – this is a pulsar.
History:
The first pulsar was discovered in 1967 by Jocelyn Bell Burnell and Antony Hewis, and it surprised the scientific community by the regular radio emissions it transmitted. They detected a mysterious radio emission coming from a fixed point in the sky that peaked every 1.33 seconds. These emissions were so regular that some astronomers thought it might be evidence of communications from an intelligent civilization.
Although Burnell and Hewis were certain it had a natural origin, they named it LGM-1, which stands for “little green men”, and subsequent discoveries have helped astronomers discover the true nature of these strange objects.
Astronomers theorized that they were rapidly rotating neutron stars, and this was further supported by the discovery of a pulsar with a very short period (33-millisecond) in the Crab nebula. There have been a total of 1600 found so far, and the fastest discovered emits 716 pulses a second.
Later on, pulsars were found in binary systems, which helped to confirm Einstein’s theory of general relativity. And in 1982, a pulsar was found with a rotation period of just 1.6 microseconds. In fact, the first extrasolar planets ever discovered were found orbiting a pulsar – of course, it wouldn’t be a very habitable place.
Interesting Facts:
When a pulsar first forms, it has the most energy and fastest rotational speed. As it releases electromagnetic power through its beams, it gradually slows down. Within 10 to 100 million years, it slows to the point that its beams shut off and the pulsar becomes quiet.
When they are active, they spin with such uncanny regularity that they’re used as timers by astronomers. In fact, it is said that certain types of pulsars rival atomic clocks in their accuracy in keeping time.
Pulsars also help us search for gravitational waves, probe the interstellar medium, and even find extrasolar planets in orbit. In fact, the first extrasolar planets were discovered around a pulsar in 1992, when astronomers Aleksander Wolszczan and Dale Frail announced the discovery of a multi-planet planetary system around PSR B1257+12 – a millisecond pulsar now known to have two extrasolar planets.
It has even been proposed that spacecraft could use them as beacons to help navigate around the Solar System. On NASA’s Voyager spacecraft, there are maps that show the direction of the Sun to 14 pulsars in our region. If aliens wanted to find our home planet, they couldn’t ask for a more accurate map.
Almost all astronomers agree on the theory of the Big Bang, that the entire Universe is spreading apart, with distant galaxies speeding away from us in all directions. Run the clock backwards to 13.8 billion years ago, and everything in the Cosmos started out as a single point in space. In an instant, everything expanded outward from that location, forming the energy, atoms and eventually the stars and galaxies we see today. But to call this concept merely a theory is to misjudge the overwhelming amount of evidence.
There are separate lines of evidence, each of which independently points towards this as the origin story for our Universe. The first came with the amazing discovery that almost all galaxies are moving away from us.
In 1912, Vesto Slipher calculated the speed and direction of “spiral nebulae” by measuring the change in the wavelengths of light coming from them. He realized that most of them were moving away from us. We now know these objects are galaxies, but a century ago astronomers thought these vast collections of stars might actually be within the Milky Way.
In 1924, Edwin Hubble figured out that these galaxies are actually outside the Milky Way. He observed a special type of variable star that has a direct relationship between its energy output and the time it takes to pulse in brightness. By finding these variable stars in other galaxies, he was able to calculate how far away they were. Hubble discovered that all these galaxies are outside our own Milky Way, millions of light-years away.
So, if these galaxies are far, far away, and moving quickly away from us, this suggests that the entire Universe must have been located in a single point billions of years ago. The second line of evidence came from the abundance of elements we see around us.
In the earliest moments after the Big Bang, there was nothing more than hydrogen compressed into a tiny volume, with crazy high heat and pressure. The entire Universe was acting like the core of a star, fusing hydrogen into helium and other elements.
This is known as Big Bang Nucleosynthesis. As astronomers look out into the Universe and measure the ratios of hydrogen, helium and other trace elements, they exactly match what you would expect to find if the entire Universe was once a really big star.
Line of evidence number 3: cosmic microwave background radiation. In the 1960s, Arno Penzias and Robert Wilson were experimenting with a 6-meter radio telescope, and discovered a background radio emission that was coming from every direction in the sky – day or night. From what they could tell, the entire sky measured a few degrees above absolute zero.
Theories predicted that after a Big Bang, there would have been a tremendous release of radiation. And now, billions of years later, this radiation would be moving so fast away from us that the wavelength of this radiation would have been shifted from visible light to the microwave background radiation we see today.
The final line of evidence is the formation of galaxies and the large scale structure of the cosmos. About 10,000 years after the Big Bang, the Universe cooled to the point that the gravitational attraction of matter was the dominant form of energy density in the Universe. This mass was able to collect together into the first stars, galaxies and eventually the large scale structures we see across the Universe today.
These are known as the 4 pillars of the Big Bang Theory. Four independent lines of evidence that build up one of the most influential and well-supported theories in all of cosmology. But there are more lines of evidence. There are fluctuations in the cosmic microwave background radiation, we don’t see any stars older than 13.8 billion years, the discoveries of dark matter and dark energy, along with how the light curves from distant supernovae.
So, even though it’s a theory, we should regard it the same way that we regard gravity, evolution and general relativity. We have a pretty good idea of what’s going on, and we’ve come up with a good way to understand and explain it. As time progresses we’ll come up with more inventive experiments to throw at. We’ll refine our understanding and the theory that goes along with it.
Most importantly, we can have confidence when talking about what we know about the early stages of our magnificent Universe and why we understand it to be true.
If you’re into astronomy, or just a fan of any science fiction franchise worth its salt, then chances are you’ve heard the term parsec thrown around. But what is a parsec exactly? Basically, it’s a unit of length used to measure the astronomically large distances between objects beyond our Solar System.
This article was originally written in 2010, but we’ve now updated it and added this spiffy new video.
As you probably know, the Earth is rotating on its axis. This gives us day and night. Of course it’s impossible, but what would happen if the Earth stopped spinning? Remember, this isn’t possible, it can’t happen, so don’t worry.
Everything would be launched in a ballistic trajectory sideways
The first thing to think about is the momentum of everything on the surface of the Earth. You’re held down by gravity and you’re whizzing through space at a rotational velocity of 1,674.4 km/h (at the equator). You can’t feel it because of momentum. Just like how you can’t feel that you’re moving in a car going down the highway. But you feel the effects when you stop, or get into an accident. And so, if the Earth suddenly stopped spinning, everything on the surface of the Earth at the equator would suddenly be moving at more than 1,600 km/hour sideways. The escape velocity of Earth is about 40,000 km/hour, so that isn’t enough to fly off into space; but it would cause some horrible damage as everything flew in a ballistic trajectory sideways. Imagine the oceans sloshing sideways at 1,600 km/hour.
The rotational velocity of the Earth decreases as you head away from the equator, towards the poles. So as you got further away from the equator, your speed would decrease. If you were standing right on the north or south pole, you’d barely even feel it.
A day would last 365 days
The next problem is that day and night wouldn’t work the same any more. Right now the Earth is rotating on its axis, returning the Sun to the same position every 24 hours. But if the Earth stopped spinning, it would then take 365 days for the Sun to move through the sky and return to the same position. Half of the Earth would be baked for half a year, while the other hemisphere was in darkness. It would get very hot on the sunny side, and very cold in the shadowed side. You can imagine how that would be devastating to plants and animals. We get a hint of this at the poles, where you can experience weeks of permanent night and then weeks of permanent day. But imagine 6 months of night, followed by 6 months of day.
The Earth would become a perfect sphere
This might seem minor compared to the other catastrophes, but the Earth would become an almost perfect sphere. The Earth is currently rotating on its axis, completing one turn approximately every 24 hours. This rotational velocity causes the Earth to bulge out around its equator, turning our planet into an oblate spheroid (a flattened ball). Without this spin, gravity would be able to pull the Earth into a nice perfect sphere. This sounds interesting and probably harmless, but it’s actually a *big* problem. Because of the Earth’s bulge in the middle, the oceans are held out at the equator by 8 km. On perfect sphere Earth, the world’s oceans would redistribute, flooding many regions of the planet with an immense volume of water. We’d end up with a single continent around the middle of the planet, with oceans surrounding the north and south poles.
The Earth would no longer be tilted
The Earth’s tilt is defined by how the planet is rotating compared to the Sun. This axis of rotation defines the Earth’s seasons. But without any rotation, the concept doesn’t make sense any more. There’s still a north pole of the planet, where the radiation from the Sun is at its lowest angle, and an equator, where the light hits most directly. But there would no longer be seasons.