Astronomers See Stars Changing Right Before Their Eyes in Orion Nebula

This new view of the Orion nebula highlights fledging stars hidden in the gas and clouds. Image credit: NASA/ESA/JPL-Caltech/IRAM

[/caption]

A gorgeous new image from the tag team effort of the Herschel and Spitzer Space telescopes shows a rainbow of colors within the Orion nebula. The different colors reflect the different wavelengths of infrared light captured by the two space observatories, and by combining their observations, astronomers can get a more complete picture of star formation. And in fact, astronomers have spotted young stars in the Orion nebula changing right before their eyes, over a span of just a few weeks!

Astronomers with Herschel mapped this region of the sky once a week for six weeks in the late winter and spring of 2011. Notice the necklace of stars strung across the middle of the image? Over just that short amount of time, a discernible change in the stars took place as they appeared to be rapidly heating up and cooling down. The astronomers wondered if the stars were actually maturing from being star embryos, moving towards becoming full-fledged stars.

To monitor for activity in protostars, Herschel’s Photodetector Array Camera and Spectrometer stared in long infrared wavelengths of light, tracing cold dust particles, while Spitzer took a look at the warmer dust emitting shorter infrared wavelengths. In this data, astronomers noticed that several of the young stars varied in their brightness by more than 20 percent over just a few weeks.

As this twinkling comes from cool material emitting infrared light, the material must be far from the hot center of the young star, likely in the outer disk or surrounding gas envelope. At that distance, it should take years or centuries for material to spiral closer in to the growing starlet, rather than mere weeks.

The astronomers said a couple of scenarios could account for this short span. One possibility is that lumpy filaments of gas funnel from the outer to the central regions of the star, temporarily warming the object as the clumps hit its inner disk. Or, it could be that material occasionally piles up at the inner edge of the disk and casts a shadow on the outer disk.

“Herschel’s exquisite sensitivity opens up new possibilities for astronomers to study star formation, and we are very excited to have witnessed short-term variability in Orion protostars,” said Nicolas Billot, an astronomer at the Institut de Radioastronomie Millimétrique (IRAM) in Grenada, Spain who is preparing a paper on the findings along with his colleagues. “Follow-up observations with Herschel will help us identify the physical processes responsible for the variability.”

Source: NASA

We Are Stardust… We Are Cold Then

This new image shows the Large Magellanic Cloud galaxy in infrared light as seen by the Herschel Space Observatory, a European Space Agency-led mission with important NASA contributions, and NASA's Spitzer Space Telescope. Image credit: ESA/NASA/JPL-Caltech/STScI

[/caption]

When we think of stars, we might think of their building blocks as white hot… But that’s not particularly the case.The very “stuff” that creates a sun is cold dust and in this combined image produced by the Herschel Space Observatory, a European Space Agency-led mission with important NASA contributions; and NASA’s Spitzer Space Telescope, we’re taking an even more incredible look into the environment which forms stars. This new image peers into the dusty arena of both the Large and Small Magellanic Clouds – just two of our galactic neighbors.

Through the infra-red eyes of the Herschel-Spitzer observation, the Large Magellanic Cloud would almost appear to look like a gigantic fireball. Here light-years long bands of dust permeate the galaxy with blazing fields of star formation seen in the center, center-left and top right (the brightest center-left region is called 30 Doradus, or the Tarantula Nebula. The Small Magellanic Cloud is much more disturbed looking. Here we see a huge filament of dust to the left – known as the galaxy’s “wing” – and, to the right, a deep bar of star formation.

This new image shows the Small Magellanic Cloud galaxy in infrared light from the Herschel Space Observatory a European Space Agency-led mission with important NASA contributions, and NASA's Spitzer Space Telescope. Image credit: ESA/NASA/JPL-Caltech/STScI

What makes these images very unique is that they are indicators of temperature within the Magellanic Clouds. The cool, red areas are where star formation has ceased or is at its earliest stages. Warm areas are indicative of new stars blooming to life and heating the dust around them. “Coolest areas and objects appear in red, corresponding to infrared light taken up by Herschel’s Spectral and Photometric Imaging Receiver at 250 microns, or millionths of a meter. Herschel’s Photodetector Array Camera and Spectrometer fills out the mid-temperature bands, shown in green, at 100 and 160 microns.” says the research team. “The warmest spots appear in blue, courtesy of 24- and 70-micron data from Spitzer.”

Both the LMC and SMC are the two largest satellite galaxies of the Milky Way and are cataloged as dwarf galaxies. While they are large in their own right, this pair contains fewer essential star-forming elements such as hydrogen and helium – slowing the rate of star growth. Although star formation is generally considered to have reached its apex some 10 billion years ago, some galaxies were left with less basic materials than others.

“Studying these galaxies offers us the best opportunity to study star formation outside of the Milky Way,” said Margaret Meixner, an astronomer at the Space Telescope Science Institute, Baltimore, Md., and principal investigator for the mapping project. “Star formation affects the evolution of galaxies, so we hope understanding the story of these stars will answer questions about galactic life cycles.”

Original Story Source: NASA/Herschel News.

Water, Water Everywhere… And A Few Drops For Saturn, Too!

Recent Cassini images of Saturn's moon Enceladus backlit by the sun show the fountain-like sources of the fine spray of material that towers over the south polar region. This image was taken looking more or less broadside at the "tiger stripe" fractures observed in earlier Enceladus images. It shows discrete plumes of a variety of apparent sizes above the limb (edge) of the moon. This image was acquired on Nov. 27, 2005. Image Credit: NASA/JPL/Space Science Institute

[/caption]

In 2005, NASA’s Cassini spacecraft gave us an incredible view of Enceladus chuffing out fountains of water vapor and ice. This action creates an enormous halo of gas, dust and ice that surrounds this Saturnian satellite and enables the planet’s E ring. Now Enceladus is once again in the spotlight as the only moon in the Solar System known to significantly contribute to its parent planet’s chemistry.

Earlier this year, ESA announced that its Herschel Space Observatory had observed a huge torus of water vapor around Saturn which apparently originated from Enceladus. It spans approximately 600,000 kilometers across and runs about 60,000 kilometers deep, but more so than its size is what it appears to be doing… adding water to Saturn’s upper atmosphere. Because the vapor isn’t detectable at visible wavelengths, this observation came as revelation for the Herschel scope.

“Herschel is providing dramatic new information about everything from planets in our own solar system to galaxies billions of light-years away,” said Paul Goldsmith, the NASA Herschel project scientist at NASA’s Jet Propulsion Laboratory, Pasadena, California.

While the Herschel infrared observation is new, the indication of a vapor torus around Saturn isn’t. NASA’s Voyager and Hubble missions had given astronomers clues in the past. In 1997, the European Space Agency’s Infrared Space Observatory cited water in Saturn’s atmosphere and two years later NASA’s Submillimeter Wave Astronomy Satellite confirmed it again. But this confirmation only added up to a puzzle. Water found in Saturn’s lower cloud levels couldn’t rise past the colder, upper deck… So where was the water coming from? The answer came in the form of Herschel’s observations and some very astute computer modeling.

“What’s amazing is that the model, which is one iteration in a long line of cloud models, was built without knowledge of the observation.” says Tim Cassidy, a recent post-doctoral researcher at JPL who is now at the University of Colorado’s Laboratory for Atmospheric and Space Physics, Boulder. “Those of us in this small modeling community were using data from Cassini, Voyager and the Hubble telescope, along with established physics. We weren’t expecting such detailed ‘images’ of the torus, and the match between model and data was a wonderful surprise.”

Through these simulations, researchers hypothesized that much of the water in the torus was simply lost to space and some is pulled back by gravity to add material to Saturn’s rings. However, it’s the 3-5% that made it back to Saturn’s atmosphere that’s the most interesting. Just how much water vapor is out there? Thanks to combining information from both Herschel and the Ultraviolet Imaging Spectrograph (UVIS) instrument aboard the Cassini spacecraft, we’ve learned that about 12,000 kilograms is being ejected from Enceladus every minute. Can you image how much that would add up to in the period of a year… or more?!

“With the Herschel measurements of the torus from 2009 and 2010 and our cloud model, we were able to calculate a source rate for water vapor coming from Enceladus,” said Cassidy. “It agrees very closely with the UVIS finding, which used a completely different method.”

“We can see the water leaving Enceladus and we can detect the end product — atomic oxygen — in the Saturn system,” said Cassini UVIS science team member Candy Hansen, of the Planetary Science Institute, Tucson, Ariz. “It’s very nice with Herschel to track where it goes in the meantime.”

A tiny percentage adds up to some mighty big numbers, and the water molecules from the torus impact Saturn’s atmosphere to a great degree by contributing hydrogen and oxygen.

“When water hangs out in the torus, it is subject to the processes that dissociate water molecules,” said Hansen, “first to hydrogen and hydroxide, and then the hydroxide dissociates into hydrogen and atomic oxygen.” This oxygen is dispersed through the Saturn system. “Cassini discovered atomic oxygen on its approach to Saturn, before it went into orbit insertion. At the time, no one knew where it was coming from. Now we do.”

Very few days go by that we don’t learn something new about the Solar System and its inner workings. Thanks to observations like those done by the Herschel Space Observatory and missions like Cassini-Huygens, we’re able to further understand the dynamics behind the beauty… and how a tiny player can carry a major role.

“The profound effect this little moon Enceladus has on Saturn and its environment is astonishing,” said Hansen.

Original Story Source: JPL News Release.

Gas, Not Galaxy Collisions Responsible for Star Formation in Early Universe

Artist concept of how a galaxy might accrete mass from rapid, narrow streams of cold gas. These filaments provide the galaxy with continuous flows of raw material to feed its star-forming at a rather leisurely pace. Credit: ESA–AOES Medialab

[/caption]

Was the universe a kinder, gentler place in the past that we have thought? The Herschel space observatory has looked back across time with its infrared eyes and has seen that galaxy collisions played only a minor role in triggering star births in the past, even though today the birth of stars always seem to be generated by galaxies crashing into each other. So what was the fuel for star formation in the past?

Simple. Gas.

The more gas a galaxy contained, the more stars were born.

Scientists say this finding overturns a long-held assumption and paints a nobler picture of how galaxies evolve.

Astronomers have known that the rate of star formation peaked in the early Universe, about 10 billion years ago. Back then, some galaxies were forming stars ten or even a hundred times more vigorously than is happening in our Galaxy today.

In the nearby, present-day Universe, such high birth rates are very rare and always seem to be triggered by galaxies colliding with each other. So, astronomers had assumed that this was true throughout history.

GOODS-North is a patch of sky in the northern hemisphere that covers an area of about a third the size of the Full Moon. Credit: ESA/GOODS-Herschel consortium/David Elbaz

But Herschel’s observations of two patches of sky show a different story.

Looking at these regions of the sky, each about a third of the size of the full Moon, Herschel has seen more than a thousand galaxies at a variety of distances from the Earth, spanning 80% of the age of the cosmos.

In analyzing the Herschel data, David Elbaz, from CEA Saclay in France, and his team found that even though some galaxies in the past were creating stars at incredible rates, galaxy collisions played only a minor role in triggering star births. The astronomers were able to compare the amount of infrared light released at different wavelengths by these galaxies, the team has shown that the star birth rate depends on the quantity of gas they contain, not whether they are colliding.

They say these observations are unique because Herschel can study a wide range of infrared light and reveal a more complete picture of star birth than ever seen before.

However, their work compliments other recent studies from data from the Spitzer Space Telescope and the Very Large Telescope which found ancient galaxies fed on gas,not collisions

“It’s only in those galaxies that do not already have a lot of gas that collisions are needed to provide the gas and trigger high rates of star formation,” said Elbaz.

Today’s galaxies have used up most of their gaseous raw material after forming stars for more than 10 billion years, so they do rely on collisions to jump-start star formation, but in the past galaxies grew slowly and gently from the gas that they attracted from their surroundings.

This study was part of the GOODS observations with Herschel, the Great Observatories Origins Deep Survey.

Read the team’s paper in Astronomy & Astrophysics: GOODS–Herschel: an infrared main sequence for star-forming galaxies’ by D. Elbaz et al.

Source: ESA

Book Review: A Dictionary of the Space Age

A Dictionary of the Space Age covers most aspects of space flight but is somewhat lacking in detail. Image Credit: John Hopkins University & Alan Walters/awaltersphoto.com

[/caption]
Writing a dictionary is not the same as writing a novel. While it might seem difficult to mess up a dictionary, even one with terminology that is as complicated as that used within the space industry – getting it right can be challenging. For those that follow space flight having such a dictionary can be invaluable. While A Dictionary of the Space Age does meet the basic requirements easily it fails somewhat in terms of its comprehensiveness.

When normal folks, even space enthusiasts watch launches and other space-related events (EVAs, dockings, landings and such) there are so many acronyms and jargon thrown about – that it is extremely hard to follow. With A Dictionary of the Space Age on hand, one can simply thumb through and find out exactly what is being said, making it both easier to follow along and making the endeavor being witnessed far more inclusive. That is as long if you are only looking for the most general of terms. The book is far from complete – but given the complex nature of the topic – this might not have been possible.

Crewed, unmanned, military space efforts and satellites – all have key terms addressed within the pages of this book.

The book is published by The Johns Hopkins University Press and was compiled and written by aerospace expert Paul Dickson. One can purchase the book on the secondary market (Amazon.com) for around $12 (new for around $25). The dictionary also has a Kindle edition which is available for $37.76. Dickson’s previous works on space flight is Sputnik: The Shock of the Century.

Weighing in at 288 pages, the book briefly covers the primary terms used within the space community. In short, if you are interested in learning more about space flight – or wish to do so – this is a good book for you.

Enceladus Rains Water on Saturn

At least four distinct plumes of water ice spew out from the south polar region of Saturn's moon Enceladus. Credit: NASA/JPL/Space Science Institute

[/caption]

It’s raining on Saturn! Well, kind of. Actually, not really. But there’s some really cool news about Saturn, Enceladus and water – great topics, all. The bubbly water shooting from the moon Enceladus is responsible for the “mystery” water that was found in Saturn’s upper atmosphere several years ago. Observations with the Herschel space observatory has shown that water ice from geysers on Enceladus forms a giant ring of water vapor around Saturn.

Astronomers from the ESA’s Infrared Observatory discovered the presence of trace amounts of water in Saturn’s atmosphere back in 1997, but couldn’t really find an explanation for why it was there and how it got there. Water vapor can’t be seen in visible light, but Herschel’s infrared vision was able to track down the source of the water vapor.

Enceladus expels around 250 kg of water vapor every second, through a collection of jets from the south polar region known as the Tiger Stripes because of their distinctive surface markings. Much of the ice ends up in orbit around Saturn, creating the hazy E ring in which Enceladus resides.

But a small amount reaches Saturn – about 3% to 5% of Enceladus’s ejected water ends up on the home planet of Saturn.

Phil Plait, The Bad Astronomer figured out that a decent rain shower on Earth is 7,000,000,000,000 times heavier than the rainfall on Saturn. So, not a lot of water makes it to Saturn.

But the fact that a moon is having an effect on its planet is unprecedented, as far as we know.

“There is no analogy to this behaviour on Earth,” said Paul Hartogh, Max-Planck-Institut für Sonnensystemforschung, in Germany, who led the collaboration on the analysis of these results. “No significant quantities of water enter our atmosphere from space. This is unique to Saturn.”

The running theory is that Enceladus has a liquid subsurface ocean of Perrier-like bubbly (and maybe salty) water. No one knows yet how much water lies beneath the moon’s surface, but it is thought that the pressure from the rock and ice layers above combined with heat from within force the water up through the Tiger Stripes. When this water reaches the surface it instantly freezes, sending plumes of ice particles hundreds of miles into space.

The total width of the torus is more than 10 times the radius of Saturn, yet it is only about one Saturn radius thick. Enceladus orbits the planet at a distance of about four Saturn radii, replenishing the torus with its jets of water.

The water in Saturn’s upper atmosphere is ultimately transported to lower levels, where it condenses. But scientists say the amounts are so tiny that the resulting clouds are not observable.

Again, despite its enormous size, this torus has it has escaped detection until now because of how water vapor is transparent to visible light but not at the infrared wavelengths Herschel was designed to see.

“Herschel has proved its worth again. These are observations that only Herschel can make,” says Göran Pilbratt, ESA Herschel Project Scientist. “ESA’s Infrared Space Observatory found the water vapour in Saturn’s atmosphere. Then NASA/ESA’s Cassini/Huygens mission found the jets of Enceladus. Now Herschel has shown how to fit all these observations together.”

Read the team’s paper here.

Source: ESA

Herschel Telescope Sees a Twisted Ring at Our Galaxy’s Center

In a strange twist of science, astronomers using the Herschel Space Observatory have discovered that a suspected ring at the center of our galaxy is warped for reasons they cannot explain. Image credit: ESA/NASA/JPL-Caltech

[/caption]

From a Herschel Observatory press release:

Observations with Herschel have revealed unprecedented views of a ring in the centre of our Milky Way galaxy. The ribbon of gas and dust is more than 600 light years across and appears to be twisted, for reasons which have yet to be explained. The origin of the ring could provide insight into the history of the Milky Way.

Professor Bruce Swinyard of the Rutherford Appleton Laboratory said “Herschel’s detectors are ideally suited to see through the dust lying between us and the center of our galaxy, and to find the relatively cold material, at only 15 degrees above absolute zero, which we have learned makes up the ring.” The new results are published in a recent issue of the Astrophysical Journal Letters.

Warmer gas and dust from the center of our galaxy is shown in blue in the above image, while the colder material appears red. The ring, in yellow, is made of gas and dust at a temperature of just 15 degrees above absolute zero. The bright regions are denser, and include some of the most massive and active sites of star formation in our galaxy.

An annotated view of the 'twist' in the galactic center as seen by the Herschel telescope. Credit: ESA/NASA/JPL-Caltech

“Hints of this feature were seen in previous images of the Galactic Centre made from the ground, but no-one realised what it was,” explained Dr. Mark Thompson of the University of Hertfordshire. “It was not until the launch of Herschel, with its unparalleled wavelength coverage, that we could measure the temperature of the dust clouds and determine its true nature.”

The central region of our galaxy is dominated by a bar-like structure, which stirs up the material in the outer galaxy as it rotates over millions of years and is thought to be responsible for its spiral structure. The ring seen by Herschel lies right in the middle of this bar, encircling the region which harbors a super-massive black hole at the center of our galaxy. Professor Glenn White of The Open University and The Rutherford Appleton Laboratory said that “although bars have been seen in other galaxies, this ring of cold material revealed by Herschel, and the way it twists around the Galactic Centre, were completely unexpected, revealing several surprises.”

Firstly, the ring of gas is twisted, so from our vantage point we see two loops which appear to meet in the middle. These are seen in yellow in the image above, tilted slightly such that they run from top-left to bottom-right. Secondly, it seems to be slightly offset from the very center of our Galaxy, where a super-massive black hole lurks. “This is what is so exciting about launching a new space telescope like Herschel,” said Sergio Molinari of the Institute of Space Physics in Rome, Italy, lead author of the new paper. “We have a new and exciting mystery on our hands, right at the center of our own galaxy.”

The reason for the ring’s twist and offset are unknown, but understanding their origin may help explain the origin of the ring itself. Computer simulations indicate that bars and rings such as those we see in the center of our galaxy can be formed by gravitational interactions. It is possible that the structures in the heart of the Milky Way were caused by interactions with our largest neighbor, the Andromeda Galaxy.

“Like all good science experiments, Herschel is creating as many questions as it answers”, said Professor Matt Griffin, of the University of Cardiff, and Principle Investigator on one of Herschel’s detectors used in this study. “Unravelling the mystery of this ring could help us to explore the processes which have taken place deep in the heart of our Galaxy over billions of years.”

See the “twist” in Chromoscope or Google Sky.