Antares ‘Return to Flight’ Blastoff Soars to Stellar Success

The Orbital ATK Antares rocket topped with the Cygnus cargo spacecraft launches from Pad-0A, Monday, Oct. 17, 2016 at NASA’s Wallops Flight Facility in Virginia. Orbital ATK’s sixth contracted cargo resupply mission with NASA to the International Space Station. Credit: Ken Kremer/kenkremer
The Orbital ATK Antares rocket topped with the Cygnus cargo spacecraft launches from Pad-0A, Monday, Oct. 17, 2016 at NASA’s Wallops Flight Facility in Virginia. Orbital ATK’s sixth contracted cargo resupply mission with NASA to the International Space Station. Credit: Ken Kremer/kenkremer
The Orbital ATK Antares rocket topped with the Cygnus cargo spacecraft launches from Pad-0A, Monday, Oct. 17, 2016 at NASA’s Wallops Flight Facility in Virginia. Orbital ATK’s sixth contracted cargo resupply mission with NASA to the International Space Station. Credit: Ken Kremer/kenkremer

NASA WALLOPS FLIGHT FACILITY, VA – The ‘Return to Flight’ blastoff of Orbital ATK’s upgraded Antares rocket soared to a stellar success this evening, Oct. 17, on a space station bound mission to stock the orbiting outpost with two and a half tons of science and supplies.

The re-engined Orbital ATK Antares/Cygnus OA-5 mission lifted off at 7:45 p.m. EDT, tonight from the Mid-Atlantic Regional Spaceport pad 0A at NASA’s Wallops Flight Facility on Virginia’s picturesque Eastern shore spewing about 1.2 million pounds of liftoff thrust and brilliantly lighting up the evening skies in every direction.

Sporting a pair of more powerful new RD-181 engines, Antares roared off the launch pad somewhat more swiftly than the previous launches and consequently reached its preliminary orbit about one minute earlier.

Cygnus separated from the second stage as planned about 9 minutes after liftoff. The launch marked the first nighttime liftoff of Antares.

“It’s great to see launches to the International Space Station happening again from the Virginia coast – and it shows what can be accomplish with a close partnership of federal and state agencies, along with the U.S. industry, all working together,” said NASA Administrator Charles Bolden.

“I am incredibly proud of what you have all done,” said Bolden in post launch remarks to the launch team at Wallops Launch Control Center. “Thank you for all your hard work.”

Antares launch on Oct. 17, 2016 from NASA's Wallops Flight Facility in Virginia. Credit: © Patrick J. Hendrickson / Highcamera.com
Antares launch on Oct. 17, 2016 from NASA’s Wallops Flight Facility in Virginia. Credit: © Patrick J. Hendrickson / Highcamera.com

This was the first Antares launch in two years following the rockets catastrophic failure just moments after liftoff on Oct. 28, 2014, which doomed the Orb-3 resupply mission to the space station – as witnessed by this author.

The weather was absolutely perfect at 100% GO by launch time and consequently was visible to millions of East Coast residents from the Carolinas to Maine as well as inland regions.

Visibility was aided by cloudless evening skies that afforded a spectacular long distance view of the engine firings for both the first and second stages, as the rocket accelerated to orbit in a southeastwardly direction before arcing over towards the African continent.

The power producing and life giving solar arrays were deployed and unfurled about two hours after liftoff, finished at about 9:40 p.m.

Cygnus is loaded with over 5,100 pounds of science investigations, food, supplies and hardware for the space station and its crew.

Antares launch on Oct. 17, 2016 from NASA's Wallops Flight Facility in Virginia. Credit: © Patrick J. Hendrickson / Highcamera.com
Antares launch on Oct. 17, 2016 from NASA’s Wallops Flight Facility in Virginia. Credit: © Patrick J. Hendrickson / Highcamera.com

After Cygnus arrives at the ISS on Sunday, Oct. 23, Expedition 49 Flight Engineers Takuya Onishi of the Japan Aerospace Exploration Agency and Kate Rubins of NASA will grapple the spacecraft with the space station’s 57 foot long Canadian-built robotic arm. It will take hold of the Cygnus,

Ground controllers will then command the station’s arm to rotate and install it on the bottom of the station’s earth facing Unity module.

The Cygnus spacecraft will spend about five weeks attached to the space station. Cygnus will remain at the space station until November, when the spacecraft will depart the station and begin a fire experiment dubbed Saffire-II.

The 14 story tall commercial Antares rocket launched for the first time in the upgraded 230 configuration – powered by a pair of the new Russian-built RD-181 first stage engines.

For the OA-5 mission, the Cygnus advanced maneuvering spacecraft was loaded with approximately 2,425 kg (5,346 lb.) of supplies and science experiments for the International Space Station (ISS). The cargo was packed inside 56 cargo bags of multiple sizes.

The experiments will support dozens of new and existing investigations as the space station crews of Expeditions 49 and 50 contribute to about 250 science and research studies.

Among the science payloads aboard the Cygnus OA-5 mission is the Saffire II payload experiment to study combustion behavior in microgravity. Data from this exp,eriment will be downloaded via telemetry. In addition, a NanoRack deployer will release Spire Cubesats used for weather forecasting. These secondary payload operations will be conducted after Cygnus departs the space station.

Here is the Cygnus payload manifest:

Payloads:
• Spacecraft Fire Experiment-II (Saffire-II)
• Fast Neuron Spectrometer
• ACM and Experiment Tray
• SLMMD
Cargo:
• ISS Experiment Hardware
• EVA Equipment– EMU Repair Kit– EVA Supplies
• Emergency Equipment
• Photo/TV and Computer Resources– Computer – iPad Air 2
– Laptop – T61P and Connectors – Camera – Nikon D4
• ISS Hardware and Spare ORUs – Cupola Scratch Panes
– Water ORU
• Food, Crew Supplies and Crew Provisions
• Flight Crew Equipment
• Cargo Environment SensorsAdditional payload details can be found at www.nasa.gov/iss-science.

Streak shot of Orbital ATK Antares rocket carrying Cygnus supply ship soars to orbit on Oct. 17, 2016  from Pad-0A at NASA’s Wallops Flight Facility in Virginia.  Credit: Ken Kremer/kenkremer
Streak shot of Orbital ATK Antares rocket carrying Cygnus supply ship soars to orbit on Oct. 17, 2016 from Pad-0A at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer

The Cygnus spacecraft for the OA-5 mission is named the S.S. Alan G. Poindexter in honor of former astronaut and Naval Aviator Captain Alan Poindexter.

Under the Commercial Resupply Services (CRS) contract with NASA, Orbital ATK will deliver approximately 28,700 kilograms of cargo to the space station. OA-5 is the sixth of these missions.

Watch for Ken’s continuing Antares/Cygnus mission and launch reporting. He is reporting from on site at NASA’s Wallops Flight Facility, VA during the launch campaign.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Cygnus cargo spacecraft atop Orbital ATK Antares rocket on Pad-0A prior to blastoff on Oct. 17, 2016 from NASA’s Wallops Flight Facility in Virginia on Orbital ATK’s sixth contracted cargo resupply mission with NASA to the International Space Station. Credit: Ken Kremer/kenkremer
Cygnus cargo spacecraft atop Orbital ATK Antares rocket on Pad-0A prior to blastoff on Oct. 17, 2016 from NASA’s Wallops Flight Facility in Virginia on Orbital ATK’s sixth contracted cargo resupply mission with NASA to the International Space Station. Credit: Ken Kremer/kenkremer

The Orbital ATK Antares rocket, with the Cygnus OA-5 spacecraft onboard, is raised into the vertical position on launch Pad-0A for planned launch on Oct. 17, 2016, at NASA's Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer
The Orbital ATK Antares rocket, with the Cygnus OA-5 spacecraft onboard, is raised into the vertical position on launch Pad-0A for planned launch on Oct. 17, 2016, at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer
2 Moons and Antares on the launch pad on the evening of Oct. 15, 2016 at NASA's Wallops Flight Facility in Virginia in this water reflection shot.  Liftoff of the OA-5 mission to the ISS is planned for Oct. 17, 2016. Credit: Ken Kremer/kenkremer
2 Moons and Antares on the launch pad on the evening of Oct. 15, 2016 at NASA’s Wallops Flight Facility in Virginia in this water reflection shot. Liftoff of the OA-5 mission to the ISS is planned for Oct. 17, 2016. Credit: Ken Kremer/kenkremer

Antares Return to Flight Set for Magnificent Monday Night Launch – Watch Live

The Orbital ATK Antares rocket, with the Cygnus OA-5 spacecraft onboard, is raised into the vertical position on launch Pad-0A for planned launch on Oct. 17, 2016, at NASA's Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer
The Orbital ATK Antares rocket, with the Cygnus OA-5 spacecraft onboard, is raised into the vertical position on launch Pad-0A for planned launch on Oct. 17, 2016, at NASA's Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer
The Orbital ATK Antares rocket, with the Cygnus OA-5 spacecraft onboard, is raised into the vertical position on launch Pad-0A for planned launch on Oct. 17, 2016, at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer

NASA WALLOPS FLIGHT FACILITY, VA – The ‘Return to Flight’ blastoff of Orbital ATK’s upgraded Antares rocket will have to wait one more day to come to fruition with a magnificent Monday night launch – after a technical scrub was called this afternoon, Oct. 16, at NASA’s Virginia launch base due to a faulty cable.

The launch potentially offers a thrilling skyshow to millions of US East Coast spectators if all goes well.

Antares Launch Viewing Map. This “first-sight” map indicates potential to see Orbital ATK’s Antares rocket in the minutes following its launch on the OA-5 mission to the ISS on October 16, 2016. Credit: Orbital ATK
Antares Launch Viewing Map. This “first-sight” map indicates potential to see Orbital ATK’s Antares rocket in the minutes following its launch on the OA-5 mission to the ISS on October 16, 2016. Credit: Orbital ATK

Despite picture perfect Fall weather, technical gremlins intervened to halt Sunday nights planned commercial cargo mission for NASA carrying 2.5 tons of science and supplies bound for the International Space Station (ISS).

The launch of the Orbital ATK CRS-5 mission is now scheduled for October 17 at 7:40 p.m. EDT, from the Mid-Atlantic Regional Spaceport pad 0A at NASA’s Wallops Flight Facility on Virginia’s picturesque Eastern shore.

You can watch the launch live on NASA TV as well as the agency’s website beginning at 6:30 p.m. EDT Oct 17.

Mondays liftoff is slated to take place approximately 23 minutes earlier then Sunday’s hoped for time of 8:03 p.m. EDT in order to match the moment when the orbital plane of the station passes on NASA Wallops.

The weather outlook on Monday remains extremely favorable with a 95 percent chance of acceptable conditions at launch time.

A nearly full moon has risen over Antares the past few days at the launch pad.

2 Moons and Antares on the launch pad on the evening of Oct. 15, 2016 at NASA's Wallops Flight Facility in Virginia in this water reflection shot.  Liftoff of the OA-5 mission to the ISS is planned for Oct. 17, 2016. Credit: Ken Kremer/kenkremer
2 Moons and Antares on the launch pad on the evening of Oct. 15, 2016 at NASA’s Wallops Flight Facility in Virginia in this water reflection shot. Liftoff of the OA-5 mission to the ISS is planned for Oct. 17, 2016. Credit: Ken Kremer/kenkremer

Announcement of the launch scrub of the mission – also known as OA-5 – came just as the six hour countdown was set to begin after engineers discovered the bad cable.

“Today’s launch of Orbital ATK’s Antares rocket is postponed 24 hours due to a ground support equipment (GSE) cable that did not perform as expected during the pre-launch check out,” officials at NASA Wallops said.

The faulty cable was a component of the rocket’s hold down system at the pad, Orbital ATK officials told Universe Today after the scrub was announced.

Technicians have spares on hand and are working now to replace the cable in time to permit a Monday evening launch.

“We have spares on hand and rework procedures are in process. The Antares and Cygnus teams are not currently working any technical issues with the rocket or the spacecraft.”

Besides the cable the rocket is apparently in perfect shape.

“The Antares and Cygnus teams are not currently working any technical issues with the rocket or the spacecraft.”

Antares launches have been on hold for two years after it was grounded following its catastrophic failure just moments after liftoff on Oct. 28, 2014 that doomed the Orb-3 resupply mission to the space station – as witnessed by this author.

Orbital ATK’s Antares commercial rocket had to be overhauled with the completely new RD-181 first stage engines- fueled by LOX/kerosene – following the destruction of the Antares rocket and Cygnus supply ship two years ago.

The 14 story tall commercial Antares rocket also will launch for the first time in the upgraded 230 configuration – powered by new Russian-built first stage engines designed and manufactured by Energomesh.

The 133-foot-tall (40-meter) Antares was rolled out to pad 0A on Thursday, Oct. 13 – three days prior to Sunday’s intended launch date. It was raised to the vertical launch position on Friday.

The Orbital ATK Antares rocket, with the Cygnus OA-5 spacecraft onboard, is raised into the vertical position on launch Pad-0A for planned launch on Oct. 17, 2016, at NASA's Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer
The Orbital ATK Antares rocket, with the Cygnus OA-5 spacecraft onboard, is raised into the vertical position on launch Pad-0A for planned launch on Oct. 17, 2016, at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer

The two stage Antares will carry the Orbital OA-5 Cygnus cargo freighter to orbit on a flight bound for the ISS and its multinational crew of astronauts and cosmonauts.

The launch marks the first nighttime liftoff of the Antares – and it could be visible up and down the eastern seaboard if weather and atmospheric conditions cooperate to provide a spectacular viewing opportunity to the most populated region in North America.

The Cygnus spacecraft for the OA-5 mission is named the S.S. Alan G. Poindexter in honor of former astronaut and Naval Aviator Captain Alan Poindexter.

Under the Commercial Resupply Services (CRS) contract with NASA, Orbital ATK will deliver approximately 28,700 kilograms of cargo to the space station. OA-5 is the sixth of these missions.

Antares and the Moon at the pad at NASA's Wallops Flight Facility in Virginia as seen from a boat off shore in the Atlantic Ocean on Oct. 15, 2016. Credit: © Patrick J. Hendrickson / Highcamera.com
Antares and the Moon at the pad at NASA’s Wallops Flight Facility in Virginia as seen from a boat off shore in the Atlantic Ocean on Oct. 15, 2016. Credit: © Patrick J. Hendrickson / Highcamera.com

Watch for Ken’s continuing Antares/Cygnus mission and launch reporting. He will be reporting from on site at NASA’s Wallops Flight Facility, VA during the launch campaign.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Orbital ATK on the Rebound With Antares Return to Flight in 2016

Two RD-181 integrated with the Orbital ATK Antares first stage air frame at the Wallops Island, Virginia Horizontal Integration Facility (HIF). Return to flight launch is expected sometime during Spring 2016. Credit: NASA/ Terry Zaperach

Orbital ATK is on the rebound with return to flight of their Antares rocket slated in early 2016 following the catastrophic launch failure that doomed the last Antares in October 2014 on a resupply mission for NASA to the International Space Station (ISS).

Engineers are making “excellent progress” assembling a modified version of Antares that is currently on track to blast off as soon as March 2016 with the company’s Cygnus resupply ship and resume critical deliveries of research experiments and life sustaining provisions to the multinational crews serving aboard the orbiting outpost.

“We are on track for the next Antares launch in early 2016,” said David Thompson, President and Chief Executive Officer of Orbital ATK in a progress update.

Resuming Antares launches is a key part of the company’s multipronged effort to fulfil their delivery commitments to NASA under the Commercial Resupply Services (CRS) contract.

“The focus all along has been to do everything we can to fulfill our commitments to delivering cargo to the space station for NASA,” Thompson stated.

“After the Antares launch failure last October … our team has been sharply focused on fulfilling that commitment.”

Pre-launch seaside panorama of Orbital Sciences Corporation Antares rocket at the NASA's Wallops Flight Facility launch pad on Oct 26 - 2 days before the ??Orb-3? launch failure on Oct 28, 2014.  Credit: Ken Kremer - kenkremer.com
Pre-launch seaside panorama of Orbital Sciences Corporation Antares rocket at the NASA’s Wallops Flight Facility launch pad on Oct 26 – 2 days before the Orb-3 launch failure on Oct 28, 2014. Credit: Ken Kremer – kenkremer.com

The key milestone was to successfully re-engine Antares with a new type of first stage engine that completely eliminates use of the original AJ26 engines that were refurbished 40 year leftovers – the NK-33 from Russia’s abandoned manned moon landing program.

After the launch failure, Orbital managers decided to ditch the trouble plagued AJ-26 and “re-engineered” the vehicle with the new RD-181 Russian-built engines that were derived from the RD-191.

Soviet era NK-33 engines refurbished as the AJ26 exactly like pictured here probably caused Antares’ rocket failure on Oct. 28, 2014. Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps. These engines powered the successful Antares liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS. Credit: Ken Kremer – kenkremer.com
Soviet era NK-33 engines refurbished as the AJ26 exactly like pictured here probably caused Antares’ rocket failure on Oct. 28, 2014. Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps. These engines powered the successful Antares liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS. Credit: Ken Kremer – kenkremer.com

Orbital ATK holds a Commercial Resupply Services (CRS) contract from NASA worth $1.9 Billion to deliver 20,000 kilograms of research experiments, crew provisions, spare parts and hardware spread out over eight Cygnus cargo delivery flights to the ISS.

NASA has recently supplemented the CRS contract with three additional Cygnus resupply deliveries in 2017 and 2018.

However, the Cygnus missions were put on hold when the third operational Antares/Cygnus flight was destroyed in a raging inferno about 15 seconds after liftoff on the Orb-3 mission from launch pad 0A at NASA’s Wallops Flight Facility on Virginia’s eastern shore.

Until Antares flights can safely resume, Orbital ATK has contracted with rocket maker United Launch Alliance (ULA) to launch a Cygnus cargo freighter atop an Atlas V rocket for the first time, in early December – as I reported here.

The Antares rocket is being upgraded with the new RD-181 main engines powering the modified first stage core structure that replace the troublesome AJ26 engines whose failure caused the Antares Orb-3 launch explosion on Oct. 28, 2014.

Orbital Sciences Antares rocket explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Orbital Sciences Antares rocket explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

“We are making excellent progress in resuming our cargo delivery service to the International Space Station for NASA under the Commercial Resupply Services (CRS) contract,” said company officials.

Orbital ATK engineering teams have been working diligently on “integrating and testing the new RD-181 main engines.”

After engineers finished acceptance testing and certification of the RD-181, the first dual engine set was shipped to Orbital’s Wallops Island integration facility. They arrived in mid-July. A second set is due to arrive in the fall.

“The RD-181 engine provides extra thrust and higher specific impulse, significantly increasing the payload capacity of the Antares rocket. This state-of-the-art propulsion system is a direct adaptation of the RD-191 engine, which completed an extensive qualification and certification program in 2013, accumulating more than 37,000 seconds of total run time,” said Scott Lehr, President of Orbital ATK’s Flight Systems Group, in a statement.

Engineers and technicians have now “integrated the two RD-181 engines with a newly designed and built thrust frame adapter and modified first stage airframe.”

Then they will add new propellant feed lines and first stage avionics systems.

Then comes the moment of truth. A “hot fire” test on the launch pad will be conducted by either the end of 2015 or early 2016 “to verify the vehicle’s operational performance and compatibility of the MARS launch complex.”

“Significant progress has been made in the manufacture and test of the modified hardware components, avionics and software needed to support the new engines,” said Mike Pinkston, Vice President and General Manager of Orbital ATK’s Antares Program.

“We are solidly on track to resume flying Antares in 2016.”

Antares rocket raised at NASA Wallops launch pad 0A bound for the ISS on Sept 18, 2013. Credit: Ken Kremer (kenkremer.com)
Antares rocket raised at NASA Wallops launch pad 0A bound for the ISS on Sept 18, 2013. Credit: Ken Kremer (kenkremer.com)

Simultaneously, teams have been working hard to repair the Wallops launch pad which was damaged when the doomed Antares plummeted back to Earth and exploded in a hellish inferno witnessed by thousands of spectators and media including myself.

Repairs are expected to be completed by early 2016 to support a launch tentatively planned for as soon as March 2016.

SpaceX, NASA’s other commercial cargo company under contract to ship supplies to the ISS also suffered a launch failure of with their Falcon 9/Dragon cargo delivery rocket on June 28, 2015.

NASA is working with both forms to restart the critical ISS resupply train as soon as can safely be accomplished.

Be sure to read Ken’s earlier eyewitness reports about last October’s Antares failure at NASA Wallops and ongoing reporting about Orbital ATK’s recovery efforts – all here at Universe Today.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about Orbital ATK, SpaceX, Boeing, ULA, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

Aug 29-31: “MUOS-4 launch, Orion, Commercial crew, Curiosity explores Mars, Antares and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Orion Spacecraft to Launch in 2014

NASA has announced that it will conduct an unmanned test flight called the Exploration Flight Test-1 or EFT-1 in 2014. Image Credit: NASA.gov

[/caption]
CAPE CANAVERAL, Fla – NASA has announced its intention to launch an unmanned flight of the Orion Spacecraft atop a United Launch Alliance (ULA) Delta IV Heavy launch vehicle – by 2014. This flight test will be added to the contract that the space agency has with aerospace firm Lockheed Martin. The Orion Multi-Purpose Crew Vehicle or Orion MPCV as it is more commonly known – will test out systems that will be employed on the Space Launch System (SLS). If successful, this will allow astronauts to travel beyond low-Earth-orbit (LEO) for the first time in over four decades.

“This flight test will provide invaluable data to support the deep space exploration missions this nation is embarking upon,” said NASA Associate Administrator for Communications David Weaver.

The flight has been dubbed Exploration Flight Test or EFT-1 and will be comprised of two high-apogee orbits that will conclude with a high-energy reentry into the Earth’s atmosphere. Like the Mercury, Gemini and Apollo capsules before it, the Orion MPCV will conduct a water landing.

The test mission will lift off from Cape Canaveral Air Force Station located in Florida. It is designed to provide the space agency with vital flight data regarding how the vehicle handles re-entry and other performance issues.

The test flight will be comprised of two high-apogee orbits followed by a splash down. This flight will provide NASA with crucial information that could potentially lead to changes in the Orion spacecraft's design. Image Credit: NASA

“The entry part of the test will produce data needed to develop a spacecraft capable of surviving speeds greater than 20,000 mph and safely return astronauts from beyond Earth orbit,” said Associate Administrator for Human Exploration and Operations William
Gerstenmaier. “This test is very important to the detailed design process in terms of the data we expect to receive.”

Presumably the use of a Delta IV Heavy would allow NASA to accelerate its human exploration objectives at an accelerated rate. Since the flight will be unmanned, there is no need to man-rate the launch vehicle and given the current economic issues facing the United States, the use of so-called “legacy” hardware could ensure that costs are kept down.

The past year has seen the development of the Orion spacecraft proceed at an accelerated pace. Photo Credit: NASA/Lockheed Martin

NASA has also stated its intention to release competitive solicitations for design proposals for new, advanced liquid or solid boosters to be used on the SLS. Another contract that will be opened for competition will be for payload adaptors for both crewed as well as cargo missions.

The Orion spacecraft was originally part of the Constellation Program. Its design has since been modified – but its mission to one day fly astronauts to the Moon, Mars and beyond – remains. The EFT-1 test flight will allow technicians and NASA officials to better determine what further changes need to be made to best aid the completion of NASA’s exploration goals.

The EFT-1 test flight could pave the way for flights back to the Moon, to the planet Mars and to other destinations throughout the solar system. Image Credit: NASA.gov

Stage Set For SpaceX to Compete for Military Contracts

NASA, the NRO and the U.S. Air Force have signed an agreement that could see smaller space firms competing for large military contracts. Photo Credit: Alan Walters/awaltersphoto.com

[/caption]
The United States Air Force has entered into a Memorandum of Understanding or MOU with the National Reconnaissance Office (NRO) and NASA to bring more players into the launch vehicle arena. On Oct. 14, NASA, the NRO and the U.S. Air Force announced plans to certify commercial rockets so that they could compete for future contracts involving Evolved Expendable Launch Vehicle, or EELVs. This means that Space Exploration Technologies’ (SpaceX) could compete for upcoming military contracts.

“This strategy will provide us with the ability to compete in the largest launch market in the world,” said Kirstin Brost Grantham, a spokeswoman with SpaceX. “There are those who are opposed to competition for space launches, they would prefer to see the status quo protected. But SpaceX has shown it is no longer possible to ignore the benefits competition can bring.”

In terms of sheer numbers of launch vehicles purchased – the U.S. Air Force is the largest customer in the world – with the U.S. taxpayer picking up the tab. Therefore it was considered to be in the Air Force’s best interest to find means to reduce this cost. The U.S. Air Force’s requirements are currently handled by United Launch Alliance (ULA) in what is essentially a monopoly (or duopoly considering that ULA is a collective organization – comprised of both Boeing and Lockheed Martin).

The two launch vehicles that ULA provides are the Delta IV and Atlas V family of rockets. Photo Credit: Alan Walters/awaltersphoto.com

“SpaceX welcomes the opportunity to compete for Air Force launches. We are reviewing the MOU, and we expect to have a far better sense of our task after the detailed requirements are released in the coming weeks,” said Adam Harris, SpaceX vice president of government affairs.

The U.S. Department of Defense (DoD) has decided to go ahead with a five-year, 40-booster “block-buy” plan with ULA – despite the fact that the U.S. General Accounting Office’s (GAO) has requested that the DoD rethink that strategy. The GAO stated on Oct. 17, that they are concerned that the DoD is buying too many rockets and at too high of a price.

Under the Evolved Expendable Launch Vehicle Plan, the DoD is set to spend some $15 billion between 2013 and 2017 to acquire some 40 boosters from ULA to send satellites into orbit. For its part, the DoD conceded that it might need to reassess the manner in which it obtained launch vehicles.

As it stand now, United Launch Alliance has a virtual monopoly on providing launch vehicles for the Department of Defense. Photo Credit: Alan Walters/awaltersphoto.com

The new strategy which is set to allow new participants in to bid on DoD and NRO contracts is an attempt to allow the free-market system drive down the cost of rockets. Recently, the price of these rockets has actually increased. The cause for this price increase has been somewhat attributed to the vacuum created by the end of the space shuttle program.

Firms like SpaceX, which seek to compete for military contracts, will have to meet requirements that are laid out in “new entrant certification guides.”
“Fair and open competition for commercial launch providers is an essential element of protecting taxpayer dollars,” said Elon Musk, SpaceX CEO. “Our American-made Falcon vehicles can deliver assured, responsive access to space that will meet warfighter needs while reducing costs for our military customers.”

Space Exploration Technologies (SpaceX) CEO Elon Musk applauded the recent announcement that could see his company competing for military contracts. Photo Credit: Alan Walters/awaltersphoto.com

Behind The Scenes: United Launch Alliance’s Horizontal Integration Facility

The Horizontal Integration Facility or HIF, is where United Launch Alliance assembles the massive Delta IV rocket (all variants) for launch. Photo Credit: Jason Rhian

[/caption]

CAPE CANAVERAL, Fla – While the Horizontal Integration Facility or HIF might sound similar to the Vertical Integration Facility or VIF – the buildings requirements and lay out could not be more different. Unlike the VIF, where the Atlas launch vehicle is lifted into the vertical position for launch, the launch vehicles remain on their sides in this structure.

Upon first entering the HIF, one sees what appears, upon first glance, to be a mundane warehouse type of structure. Those similarities cease when one enters the bays that contain the Delta IV rocket. The one resting within the facility now is destined to launch the Wideband Global SATCOM or WGS satellite, currently on track to lift off from Launch Complex-37 early next year.

For an idea of the size of the Delta IV, notice the two ULA technicians near the end of the launch vehicle. Photo Credit: Alan Walters awaltersphoto.com

In preparation for launch a rocket’s first and second stages are brought into the HIF along with any solid rocket boosters that will be needed for that mission. These components are then assembled and the fully-assembled launch vehicle is then ready for the move out to the launch pad.

“The HIF can actually hold three Delta IV’s at any one given time,” said Mike Woolley of United Launch Alliance. “Once the Delta IV leaves the HIF, it takes us about a half-hour to get it to Launch Complex 37. Once we get there we then lift the Delta IV from the horizontal in to the vertical position.”

Ladders on either side of the Delta IV launch vehicle provide one with a stunning look down the length of the rocket. Photo Credit: Alan Walters/awaltersphoto.com

Whereas the VIF’s many decks, shrouds and layers obstruct one’s view of the rocket – nothing is left to the imagination at the HIF. The Delta IV sits out in the open. Visitors are able to walk completely around the massive rocket.

“We use a similar spray-on foam insulation as the one that was used on the space shuttle’s external tank,” Woolley said. “It has that coloration because of the moisture in the air and the Florida heat as it interacts with the foam.”

The HIF is seven-stories tall, white and is comprised of two bays that measure about 250 square feet by 100 feet each. To ensure that the launch vehicles that are brought into the building are kept level – the floors of the HIF, at most, differentiate only about 3/8 inch. This makes the HIF’s floors the most-level in the U.S.

The sheer scale of the Delta IV rocket is seen here, as the rocket stretches out across the length of one of the HIF's bay. Photo Credit: Alan Walters/awaltersphoto.com

In both the VIF and the HIF, the one thing that was apparent was that these are places where work is occurring. At both sites, United Launch Alliance workers were actively working to ensure that the Atlas V at the Vertical Integration Facility and the Delta IV at the Horizontal Integration Facility were ready to lift their individual payloads to orbit.

The WGS is tentatively scheduled to launch early next year (no firm launch date has been announced). WGS 4, 5 and 6 are under construction by the Boeing Company, they will be deployed over the course of the coming years. Like WGS 3 was also launched atop a Delta IV. These satellites are the Block II version of the WGS.

The Delta IV rocket is just as impressive from the front as it is from the rear. Soon the rocket will be moved out to Space Launch Complex 37 in preparation for launch. Photo Credit: Alan Walters/awaltersphoto.com

To get a better idea of what it was like inside of United Launch Alliance’s Horizontal Integration Facility, please check out the video feature below. This package contains a large amount of information provided by United Launch Alliance’s Mike Woolley – including a funny story – that could only happen in Florida.