NASA Completes Critical Space Communications Network with Spectacular Launch of Final TDRS Science Relay Satellite

NASA’s Tracking and Data Relay Satellite-M (TDRS-M), which is the third and final in a series of next generation science communications satellites, was successfully launched Aug. 18, 2017 at 8:29 a.m. EDT by a United Launch Alliance (ULA) Atlas V rocket from Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida. TDRS-M has been placed into orbit following separation from the upper stage. Credit: Ken Kremer/kenkremer.com
NASA’s Tracking and Data Relay Satellite-M (TDRS-M), which is the third and final in a series of next generation science communications satellites, was successfully launched Aug. 18, 2017 at 8:29 a.m. EDT by a United Launch Alliance (ULA) Atlas V rocket from Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida. TDRS-M has been placed into orbit following separation from the upper stage. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – Today marked the end of an era for NASA as the last of the agency’s next generation Tracking and Data Relay Satellites (TRDS) that transmit the critical science data and communications for the Hubble Space Telescope and human spaceflight missions to the International Space Station, successfully rocketed to orbit this morning, Fri. Aug 18 from the Florida Space Coast.

The spectacular liftoff of the strangely fish-like TDRS-M science relay comsat atop a United Launch Alliance Atlas V rocket occurred at 8:29 a.m. EDT a.m. (2:29 GMT) Aug. 18 from Space Launch Complex 41 at Cape Canaveral Air Force Station.

The weather cooperated with relatively thin but artistic clouds and low winds and offered spectators a spectacular launch show that will not forget.

NASA’s $408 million next generation Tracking and Data Relay Satellites (TRDS) looks like a giant alien fish or cocooned creature. But actually plays an unparalleled role in relaying critical science measurements, research data and tracking observations gathered by the International Space Station (ISS), Hubble and a plethora of Earth science missions.

“TDRS is a critical national asset have because of its importance to the space station and all of our science missions, primarily the Hubble Space Telescope and Earth science missions that use TDRS,” said Tim Dunn, NASA’s TDRS-M launch director.

NASA’s Tracking and Data Relay Satellite-M (TDRS-M), which is the third and final in a series of next generation science communications satellites, was successfully launched Aug. 18, 2017 at 8:29 a.m. EDT by a United Launch Alliance (ULA) Atlas V rocket from Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida. TDRS-M has been placed into orbit following separation from the upper stage. Credit: Ken Kremer/kenkremer.com

TDRS-M will provide high-bandwidth communications to spacecraft in low-Earth orbit. The TDRS network enables continuous communication with the International Space Station, the Hubble Space Telescope, the Earth Observing System and other programs supporting human space flight, said satellite builder Boeing, the prime contractor for the mission.

TDRS-M is the last of three satellites to be launched in the third generation of TDRS satellites. It is also the final satellite built based on Boeing’s 601 spacecraft bus series.

NASA plans to switch to much higher capacity laser communications for the next generation of TDRS-like satellites and therefore opted to not build a fourth third generation satellite after TDRS-M.

Inside the Astrotech payload processing facility in Titusville, FL,NASA’s massive, insect like Tracking and Data Relay Satellite, or TDRS-M, spacecraft is undergoing preflight processing during media visit on 13 July 2017. TDRS-M will transmit critical science data gathered by the ISS, Hubble and numerous NASA Earth science missions. It is being prepared for encapsulation inside its payload fairing prior to being transported to Launch Complex 41 at Cape Canaveral Air Force Station for launch on a United Launch Alliance (ULA) Atlas V rocket on 3 August 2017. Credit: Ken Kremer/kenkremer.com

“The TDRS fleet is a critical connection delivering science and human spaceflight data to those who can use it here on Earth,” said Dave Littmann, the TDRS project manager at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

“TDRS-M will expand the capabilities and extend the lifespan of the Space Network, allowing us to continue receiving and transmitting mission data well into the next decade.”

Launch of ULA Atlas V on TDRS-M mission for NASA from Cape Canaveral Air Force Station in Florida on Aug. 18, 2017 at 8:29 a.m. EDT. Credit: Julian Leek

TDRS-M joins a constellation of 9 TDRS satellites already in orbit and ups the fleet to ten orbiting satellites.

Evolution of NASA’s Tracking and Data Relay Satellite (TDRS) System. Credit: NASA

The Atlas V rocket and Centaur upper stage delivered TDRS-M to its desired preliminary orbit.
“Trajectory analysis in. Injection accuracy was within 1% of prediction #TDRSM,” tweeted ULA CEO Torey Bruno.

Several hours after the launch ground controllers reported the satellite was in good health.

On tap now is a four month period or orbit checkout by prime contractor Boeing as well as a series of five significant orbit raising maneuvers from its initial orbit to Geostationary orbit over the Pacific Ocean.

“This TDRS-M milestone is another step forward in Boeing’s commitment to developing technologies to support future NASA near-Earth, moon, Mars and deep space missions – and to do so affordably, drawing on our 40-plus years of strong Boeing-NASA partnership,” said Enrico Attanasio, executive director, Department of Defense and Civil Programs, Boeing Satellite Systems.

Ground controllers will then move it to its final orbit over the Atlantic Ocean.

NASA plans to conduct additional tests before putting TDRS-M into service early next year over the Atlantic.

Blastoff of NASA’s Tracking and Data Relay Satellite-M (TDRS-M) on Aug. 18, 2017 at 8:29 a.m. EDT by a United Launch Alliance (ULA) Atlas V rocket from Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida – as seen from the VAB roof. Credit: Ken Kremer/kenkremer.com

The importance of the TDRS constellation of satellites can’t be overstated.

Virtually all the communications relay capability involving human spaceflight, such as the ISS, resupply vehicles like the SpaceX cargo Dragon and Orbital ATK Cygnus and the soon to launch human space taxis like crew Dragon, Boeing Starliner and NASA’s Orion deep space crew capsule route their science results voice, data, command, telemetry and communications via the TDRS network of satellites.

The TDRS constellation enables both space to space and space to ground communications for virtually the entire orbital period.

The two stage Atlas V rocket stands 191 feet tall.

TDRS-M, spacecraft, which stands for Tracking and Data Relay Satellite – M is NASA’s new and advanced science data relay communications satellite that will transmit research measurements and analysis gathered by the astronaut crews and instruments flying abroad the International Space Station (ISS), Hubble Space Telescope and over 35 NASA Earth science missions including MMS, GPM, Aura, Aqua, Landsat, Jason 2 and 3 and more.

The TDRS constellation orbits 22,300 miles above Earth and provide near-constant communication links between the ground and the orbiting satellites.

TRDS-M will have S-, Ku- and Ka-band capabilities. Ka has the capability to transmit as much as six-gigabytes of data per minute. That’s the equivalent of downloading almost 14,000 songs per minute says NASA.

The TDRS program is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

TDRS-M is the third satellite in the third series of NASA’s American’s most powerful and most advanced Tracking and Data Relay Satellites. It is designed to last for a 15 year orbital lifetime.

The first TDRS satellite was deployed from the Space Shuttle Challenger in 1983 as TDRS-A.

TDRS-M was built by prime contractor Boeing in El Segundo, California and is the third of a three satellite series – comprising TDRS -K, L, and M. They are based on the Boeing 601 series satellite bus and will be keep the TDRS satellite system operational through the 2020s.

TDSR-K and TDRS-L were launched in 2013 and 2014.

Configuration diagram of NASA’s Tracking and Data Relay Satellites. Credit: NASA

The Tracking and Data Relay Satellite project is managed at NASA’s Goddard Space Flight Center.

TDRS-M was built as a follow on and replacement satellite necessary to maintain and expand NASA’s Space Network, according to a NASA description.

The gigantic satellite is about as long as two school buses and measures 21 meters in length by 13.1 meters wide.

It has a dry mass of 1800 kg (4000 lbs) and a fueled mass of 3,454 kilogram (7,615 lb) at launch.

Watch for Ken’s continuing onsite TDRS-M, CRS-12, ORS 5 and NASA and space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

NASA’s Tracking Data Relay Satellite-M Vital for Science Relay Poised for Liftoff Aug. 18 – Watch Live

The United Launch Alliance Atlas V rocket carrying NASA’s Tracking and Data Relay Satellite-M (TDRS-M) stands on the launch pad at Space Launch Complex 41 on Cape Canaveral Air Force Station poised for liftoff on Aug. 18, 2017 The rocket rolled out to the pad two days earlier on Aug. 16. Credit: Ken Kremer/kenkremer.com
The United Launch Alliance Atlas V rocket carrying NASA’s Tracking and Data Relay Satellite-M (TDRS-M) stands on the launch pad at Space Launch Complex 41 on Cape Canaveral Air Force Station poised for liftoff on Aug. 18, 2017. The rocket rolled out to the pad two days earlier on Aug. 16. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – The last of NASA’s next generation Tracking and Data Relay Satellites (TRDS) that looks like a giant alien fish or cocooned creature but actually plays an absolutely vital role in relaying critical science measurements, research data and tracking observations gathered by the International Space Station (ISS), Hubble and a plethora of Earth science missions is poised for blastoff Friday, Aug. 18, morning from the Florida Space Coast.

Liftoff atop a United Launch Alliance Atlas V rocket of NASA’s $408 million eerily insectoid-looking TDRS-M science relay comsat atop a United Launch Alliance (ULA) Atlas V rocket is scheduled to take place from Space Launch Complex 41 at Cape Canaveral Air Force Station at 8:03 a.m. EDT (2:03 GMT) Aug. 18.

Up close clean room visit with NASA’s newest science data relay comsat – Tracking and Data Relay Satellite-M (TDRS-M) inside the Astrotech payload processing facility high bay in Titusville, FL. Two gigantic fold out antennae’s, plus space to ground antenna dish visible inside the ‘cicada like cocoon’ with solar arrays below. Launch on ULA Atlas V slated for August 2017 from Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

The Atlas V/TDRS-M launch stack was rolled out from the ULA Vertical Integration Facility (VIF) to pad 41 Wednesday morning, Aug 16 starting at about 9:10 a.m. EDT. The quarter mile move took about 50 minutes and went off without a hitch.

“The spacecraft, Atlas V rocket and all range equipment are ready,” said NASA launch director Tim Dunn at today’s pre-launch news conference at the Kennedy Space Center. “And the combined government and contractor launch team is prepared to launch TDRS-M — a critical national space asset for space communications.”

The rocket and spacecraft sailed through the Flight Readiness Review (FRR) and Launch Ready Review (LRR) over the past few days conducted by NASA, ULA and Boeing and the contractor teams.

The two stage Atlas V rocket stands 191 feet tall.

The United Launch Alliance Atlas V rocket carrying NASA’s Tracking and Data Relay Satellite-M (TDRS-M) stands on the launch pad at Space Launch Complex 41 on Cape Canaveral Air Force Station poised for liftoff on Aug. 18, 2017. The rocket rolled out from the VIF the pad two days earlier on Aug. 16. Credit: Ken Kremer/kenkremer.com

You can witness the launch with you own eyes from many puiblic beaches, parks and spots ringing the Kennedy Space Center.

If you can’t personally be here to witness the launch in Florida, you can always watch NASA’s live coverage on NASA Television and the agency’s website.

The NASA/ULA/TDRS-M launch coverage will be broadcast on NASA TV beginning at 7:30 a.m. as the countdown milestones occur on Aug. 18 with additional commentary on the NASA launch blog:

https://blogs.nasa.gov/tdrs/

You can watch the launch live at NASA TV at – http://www.nasa.gov/nasatv

The launch window opens at 8:03 a.m. EDT extends for 40 minutes from 8:03 a.m. to 8:43 a.m.

In the event of delay for any reason, the next launch opportunity is Saturday, Aug. 19 with NASA TV coverage starting about 7:30 a.m. EDT. The launch window opens at 7:59 a.m. EDT.

The United Launch Alliance Atlas V rocket carrying NASA’s Tracking and Data Relay Satellite-M (TDRS-M) stands on the launch pad at Space Launch Complex 41 on Cape Canaveral Air Force Station poised for liftoff on Aug. 18, 2017 The rocket rolled out to the pad two days earlier on Aug. 16. Credit: Ken Kremer/kenkremer.com

The weather looks quite good at this time with an 80% chance of favorable conditions at launch time according to U.S. Air Force meteorologists with the 45th Space Wing Weather Squadron at Patrick Air Force Base. The primary concerns on Aug. 18 are for thick clouds and cumulus clouds.

The odds remain at 80% favorable for the 24 hour scrub turnaround day on Aug. 19.

The launch was originally scheduled for Aug. 3 but was delayed a few weeks when the satellite’s Omni S-band antenna was damaged during final spacecraft closeout activities.

The Omni S-band antenna was bumped during final processing activities prior to the planned encapsulation inside the nosecone, said a Boeing official at the prelaunch media briefing and had to be replaced and then retested. It is critical to the opening phases of the mission for attitude control.

Inside the Astrotech payload processing facility in Titusville, FL,NASA’s massive, insect like Tracking and Data Relay Satellite, or TDRS-M, spacecraft is undergoing preflight processing during media visit on 13 July 2017. TDRS-M will transmit critical science data gathered by the ISS, Hubble and numerous NASA Earth science missions. It is being prepared for encapsulation inside its payload fairing prior to being transported to Launch Complex 41 at Cape Canaveral Air Force Station for launch on a United Launch Alliance (ULA) Atlas V rocket on 3 August 2017. Credit: Ken Kremer/kenkremer.com

The importance of the TDRS constellation of satellites can’t be overstated.

Virtually all the communications relay capability involving human spaceflight, such as the ISS, resupply vehicles like the SpaceX cargo Dragon and Orbital ATK Cygnus and the soon to launch human space taxis like crew Dragon, Boeing Starliner and NASA’s Orion deep space crew capsule route their science results voice, data, command, telemetry and communications via the TDRS network of satellites.

The TDRS constellation enables both space to space and space to ground communcations for virtually the entire orbital period.

Plus it’s a super busy time at the Kennedy Space Center. Because, if all goes well Friday’s launch will be the second this week!

The excitement of space travel got a big boost at the beginning of the week with the lunchtime blastoff of a SpaceX Falcon 9 and Dragon spacecraft on a cargo mission carrying 3 tons of science and supplies to the space station. Read my onsite articles here.

Blastoff of SpaceX Dragon CRS12 on its 12th resupply mission to the International Space Station from NASA’s Kennedy Space Center in Florida at 12:31 p.m. EDT on Monday, Aug. 14, 2017 as seen from the VAB roof. Credit: Ken Kremer/Kenkremer.com

The success of Monday’s SpaceX cargo Dragon rendezvous and berthing to the ISS is virtually entirely dependent on the TDRS network of satellites. That network will be enhanced with Fridays planned liftoff of NASA’s TDRS-M science relay comsat.

TDRS-M looks like a giant insect – or a fish depending on your point of view. It was folded into flight configuration for encapsulation in the clean room and the huge pair of single access antennas resembled a cocoon or a cicada. The 15 foot diameter single access antennas are large parabolic-style antennas and are mechanically steerable.

What does TDRS do? Why is it important? How does it operate?

“The existing Space Network of satellites like TDRS provide constant communications from other NASA satellites like the ISS or Earth observing satellites like Aura, Aqua, Landsat that have high bandwidth data that needs to be transmitted to the ground,” TDRS Deputy Project Manager Robert Buchanan explained to Universe Today during an interview in the Astrotech clean room.

“TRDS tracks those satellites using antennas that articulate. Those user satellites send the data to TDRS, like TDRS-M we see here and nine other TDRS satellites on orbit now tracking those satellites.”

“That data acquired is then transmitted to a ground station complex at White Sands, New Mexico. Then the data is sent to wherever those user satellites want the data to be sent is needed, such as a science data ops center or analysis center.”

The United Launch Alliance Atlas V rocket carrying NASA’s Tracking and Data Relay Satellite-M (TDRS-M) stands on the launch pad at Space Launch Complex 41 on Cape Canaveral Air Force Station poised for liftoff on Aug. 18, 2017. The rocket rolled out to the pad two days earlier on Aug. 16. Credit: Ken Kremer/kenkremer.com

TDRS-M, spacecraft, which stands for Tracking and Data Relay Satellite – M is NASA’s new and advanced science data relay communications satellite that will transmit research measurements and analysis gathered by the astronaut crews and instruments flying abroad the International Space Station (ISS), Hubble Space Telescope and over 35 NASA Earth science missions including MMS, GPM, Aura, Aqua, Landsat, Jason 2 and 3 and more.

The TDRS constellation orbits 22,300 miles above Earth and provide near-constant communication links between the ground and the orbiting satellites.

Tracking and Data Relay Satellite artwork explains how the TDRS constellation enables continuous, global communications coverage for near-Earth spacecraft. Credit: NASA

TRDS-M will have S-, Ku- and Ka-band capabilities. Ka has the capability to transmit as much as six-gigabytes of data per minute. That’s the equivalent of downloading almost 14,000 songs per minute says NASA.

The TDRS program is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

TDRS-M is the third satellite in the third series of NASA’s American’s most powerful and most advanced Tracking and Data Relay Satellites. It is designed to last for a 15 year orbital lifetime.

The first TDRS satellite was deployed from the Space Shuttle Challenger in 1983 as TDRS-A.

TDRS-M was built by prime contractor Boeing in El Segundo, California and is the third of a three satellite series – comprising TDRS -K, L, and M. They are based on the Boeing 601 series satellite bus and will be keep the TDRS satellite system operational through the 2020s.

TDRS-K and TDRS-L were launched in 2013 and 2014.

The Tracking and Data Relay Satellite project is managed at NASA’s Goddard Space Flight Center.

TDRS-M was built as a follow on and replacement satellite necessary to maintain and expand NASA’s Space Network, according to a NASA description.

The gigantic satellite is about as long as two school buses and measures 21 meters in length by 13.1 meters wide.

It has a dry mass of 1800 kg (4000 lbs) and a fueled mass of 3,454 kilogram (7,615 lb) at launch.

TDRS-M will blastoff on a ULA Atlas V in the baseline 401 configuration, with no augmentation of solid rocket boosters on the first stage. The payload fairing is 4 meters (13.1 feet) in diameter and the upper stage is powered by a single-engine Centaur.

TDRS-M will be launched to a Geostationary orbit some 22,300 miles (35,800 km) above Earth.

“The final orbital location for TDRS-M has not yet been determined,” Buchanen told me.

The Atlas V booster was assembled inside the Vertical Integration Facility (VIF) at SLC-41 and was rolled out to the launch pad 2 days before liftoff with the TDRS-M science relay comsat comfortably encapsulated inside the nose cone.

Carefully secured inside its shipping container, the TDRS-M satellite was transported on June 23 by a US Air Force cargo aircraft from Boeing’s El Segundo, California facility to Space Coast Regional Airport in Titusville, Florida, for preflight processing at Astrotech.

Watch for Ken’s continuing onsite TDRS-M, CRS-12, ORS 5 and NASA and space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about the upcoming ULA Atlas TDRS-M NASA comsat on Aug. 18, 2017 , SpaceX Dragon CRS-12 resupply launch to ISS on Aug. 14, Solar Eclipse, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

Aug 17-18: “TDRS-M NASA comsat, SpaceX CRS-12 resupply launches to the ISS, Intelsat35e, BulgariaSat 1 and NRO Spysat, SLS, Orion, Commercial crew capsules from Boeing and SpaceX , Heroes and Legends at KSCVC, ULA Atlas/John Glenn Cygnus launch to ISS, SBIRS GEO 3 launch, GOES-R weather satellite launch, OSIRIS-Rex, Juno at Jupiter, InSight Mars lander, SpaceX and Orbital ATK cargo missions to the ISS, ULA Delta 4 Heavy spy satellite, Curiosity and Opportunity explore Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Sunshield Layers Installed on NASA’s James Webb Space Telescope as Mirror Cryo Cooling Testing Commences

All 5 layers of the Webb telescope sunshield installed at Northrop Grumman's clean room in Redondo Beach, California. The five sunshield membrane layers are each as thin as a human hair. Credits: Northrop Grumman Corp.
All 5 layers of the Webb telescope sunshield installed at Northrop Grumman’s clean room in Redondo Beach, California. The five sunshield membrane layers are each as thin as a human hair. Credits: Northrop Grumman Corp.

The complex multilayered sunshield that will protect the delicate optics and state of the art infrared science instruments of NASA’s James Webb Space Telescope (JWST) is now fully installed on the spacecraft bus in California, completing another major milestone on the path to launch, NASA announced.

Meanwhile a critical cryogenic cooling test of Webb’s mirrors and science instrument bus has commenced inside a giant chamber at NASA’s Johnson Space Center in Texas, marking another major milestone as the mammoth telescope comes together after years of development.

NASA’s $8.8 Billion James Webb Space Telescope is the most powerful space telescope ever built and is the scientific successor to the phenomenally successful Hubble Space Telescope (HST).

The sunshield layers work together to reduce the temperatures between the hot and cold sides of the observatory by approximately 570 degrees Fahrenheit. Each successive layer of the sunshield, which is made of Kapton, is cooler than the one below. The sunshield is in the clean room at Northrop Grumman Aerospace Systems in Redondo Beach, California.
Credits: Northrop Grumman Corp.

The Webb telescopes groundbreaking tennis court sized sunshield subsystem consists of five layers of kapton that will keep the optics and instruments incredibly cool, by reducing the incoming sunside facing temperature more than 570 degrees Fahrenheit. Each layer is as thin as a human hair.

“The sunshield layers work together to reduce the temperatures between the hot and cold sides of the observatory by approximately 570 degrees Fahrenheit,” according to NASA. “Each successive layer of the sunshield is cooler than the one below.”

The painstaking work to integrate the five sunshield membranes was carried out in June and July by engineers and technicians working at the Northrop Grumman Corporation facility in Redondo Beach, California.

“All five sunshield membranes have been installed and will be folded over the next few weeks,” said Paul Geithner, deputy project manager – technical for the Webb telescope at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, in a statement.

Deployment tests of the folded sunshield start in August.

Webb’s four research instruments cannot function without the essential cooling provided by the sunshield deployment.

Northrop Grumman designed the Webb telescope’s optics and spacecraft bus for NASA’s Goddard Space Flight Center in Greenbelt, Maryland, which manages Webb.

Two sides of the James Webb Space Telescope (JWST). Credit: NASA

“This is a huge milestone for the Webb telescope as we prepare for launch,” said Jim Flynn, Webb sunshield manager, Northrop Grumman Aerospace Systems.

“The groundbreaking tennis court sized sunshield will shield the optics from heat and assist in providing the imaging of the formation of stars and galaxies more than 13.5 billion years ago.”

The 18-segment gold coated primary mirror of NASA’s James Webb Space Telescope is raised into vertical alignment in the largest clean room at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, on Nov. 2, 2016. The secondary mirror mount booms are folded down into stowed for launch configuration. Credit: Ken Kremer/kenkremer.com

Webb is designed to look at the first light of the Universe and will be able to peer back in time to when the first stars and first galaxies were forming. It will also study the history of our universe and the formation of our solar system as well as other solar systems and exoplanets, some of which may be capable of supporting life on planets similar to Earth.

After successfully passing a rigorous series of vibration and acoustic environmental tests earlier this year at NASA Goddard in March, the mirror and instrument assembly was shipped to NASA Johnson in May for the cryo cooling tests.

“Those tests ensured Webb can withstand the vibration and noise created during the telescope’s launch into space. Currently, engineers are analyzing this data to prepare for a final round of vibration and acoustic testing, once Webb is joined with the spacecraft bus and sunshield next year,” says NASA.

The cryogenic cooling test will last 100 days and is being carried out inside the giant thermal vacuum known as Chamber A at the Johnson Space Center in Houston.

NASA’s James Webb Space Telescope sits in Chamber A at NASA’s Johnson Space Center in Houston awaiting the colossal door to close in July 2017 for cryogenic testing. Credits: NASA/Chris Gunn

“A combination of liquid nitrogen and cold gaseous helium will be used to cool the telescope and science instruments to their operational temperature during high-vacuum operations,” said Mark Voyton, manager of testing effort, who works at the NASA Goddard Space Flight Center in Greenbelt, Maryland.

Next year, the tennis-court sized sunshield and spacecraft bus will be combined to make up the entire observatory.

The first layer of the Webb telescope sunshield installed at Northrop Grumman’s clean room in Redondo Beach, California. Credits: Northrop Grumman Corp.

The Webb Telescope is a joint international collaborative project between NASA, the European Space Agency (ESA) and the Canadian Space Agency (CSA).

Assembly of the Webb telescope is currently on target and slated to launch on an ESA Ariane V booster from the Guiana Space Center in Kourou, French Guiana in October 2018.

NASA and ESA are currently evaluating a potential launch scheduling conflict with ESA’s BepiColombo mission to Mercury.

Technicians work on the James Webb Space Telescope in the massive clean room at NASA’s Goddard Space Flight Center, Greenbelt, Maryland, on Nov. 2, 2016, as the completed golden primary mirror and observatory structure stands gloriously vertical on a work stand, reflecting incoming light from the area and observation deck. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s onsite space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Artist’s concept of the James Webb Space Telescope (JWST) with Sunshield at bottom. Credit: NASA/ESA

………….

Learn more about the upcoming SpaceX Dragon CRS-12 resupply launch to ISS on Aug. 14, ULA Atlas TDRS-M NASA comsat on Aug. 18, 2017 Solar Eclipse, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

Aug 11-14: “SpaceX CRS-12 and CRS-11 resupply launches to the ISS, Inmarsat 5, BulgariaSat 1 and NRO Spysat, EchoStar 23, SLS, Orion, Commercial crew capsules from Boeing and SpaceX , Heroes and Legends at KSCVC, ULA Atlas/John Glenn Cygnus launch to ISS, SBIRS GEO 3 launch, GOES-R weather satellite launch, OSIRIS-Rex, Juno at Jupiter, InSight Mars lander, SpaceX and Orbital ATK cargo missions to the ISS, ULA Delta 4 Heavy spy satellite, Curiosity and Opportunity explore Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Hubble Eyes Stratosphere Around a Very Hot, Watery Jupiter!

Artist's concept of the hot Jupiter WASP-121b, which presents the best evidence yet of a stratosphere on an exoplanet - generated using Engine House VFX. Credit: Bristol Science Centre/University of Exeter

Extra-solar planet discoveries have been exploding in recent years. In fact, as of Aug. 1st, 2017, astronomers have identified 3,639 exoplanets in 2,729 planetary systems and 612 multiple planetary systems. And while the majority of these have been discovered by Kepler – which has detected a total of 5,017 candidates and confirmed the existence of 2,494 exoplanets since 2009 – other instruments have played an important role in these discoveries as well.

This includes the Hubble Space Telescope, which in recent years has been dedicated to the detection of atmospheres around distant planets. Most recently, it was used in a survey that produced the strongest evidence to date for the existence of a stratosphere – a layer of atmosphere in which temperature increases with altitude – around a gas giant located about 900 light-years from our Solar System.

The study, titled “An ultrahot gas-giant exoplanet with a stratosphere“, recently appeared in the journal Nature. Led by Thomas Evans, a Research Fellow from the Astrophysics Group at the University of Exeter, the team relied on data provided by NASA’s Hubble Space Telescope to study a planet known as WASP-121b, a gas giant that orbits a yellow-white star that is slightly larger than our own.

The top of the planet’s atmosphere is heated to a blazing 2,500 °C (4,600 °F), hot enough to boil some metals. Credit: NASA/ESA/G. Bacon (STSci)

The planet itself has roughly 1.2 times the mass of Jupiter, has a radius that is about 1.9 times that of Jupiter, and has an orbital period of just 1.3 days. This is due to its close proximity to its sun, which makes it a particularly “Hot Jupiter”. In fact, if this exoplanet were any closer to its star, it is estimated that WASP-121’s gravity would begin to tear it apart.

It is also this close proximity that super-heats the planet’s atmosphere, driving temperatures up to 2,500 °C (4,600 °F). As Mark Marley, a researcher with NASA’s Ames Research Center and a co-author on the study, indicated in a NASA press statement:

“This result is exciting because it shows that a common trait of most of the atmospheres in our solar system — a warm stratosphere — also can be found in exoplanet atmospheres. We can now compare processes in exoplanet atmospheres with the same processes that happen under different sets of conditions in our own solar system.”

Whereas Hubble has found possible signs of stratospheres around WASP-33b and other hot Jupiters in the past, this new study presents the strongest evidence to date for the existence of an exoplanet stratosphere. The reason for this has to do with the spectrographic data obtained by Hubble of WASP-121b’s atmosphere, which indicated the presence of water vapor – which is a first as far as hot-Jupiter’s are concerned.

As Tom Evans – also a Research Fellow at the University of Exeter and the lead author on the paper – explained, these findings confirmed something that astronomers have suspected for some time. “Theoretical models have suggested stratospheres may define a distinct class of ultra-hot planets, with important implications for their atmospheric physics and chemistry,” he said. “Our observations support this picture.”

To study WASP-121b’s stratosphere, the team relied on spectroscopic data gathered by Hubble’s Wide Field Camera 3. After analyzing the different wavelengths that were part of WASP-121b’s light cure, they noted that certain  wavelengths were glowing rather brightly in the infrared band. This, they concluded, was due to the presence of water vapor at the top of the planet’s atmosphere.

“The emission of light from water means the temperature is increasing with height,” Tiffany Kataria, one of the co-authors on the study from NASA’s Jet Propulsion Laboratory, said. “We’re excited to explore at what longitudes this behavior persists with upcoming Hubble observations.”

Beyond being the most convincing case so far of an exoplanet having a stratosphere, WASP-121b is also interesting because of just how hot this hot Jupiter is. Based on their data, the team concluded that temperatures in the atmosphere increased with altitude – a defining characteristic of a stratosphere. In Earth’s stratosphere, this process is driven by ozone, which traps the Sun’s ultraviolet light and raises the temperature of the surrounding molecules.

Artist’s concept of “hot Jupiter” exoplanet, a gas giant that orbits very close to its star. Credit: NASA/JPL-Caltech)

However, the temperature of Earth’s stratosphere does not exceed 270 K (-3°C; 26.6°F). When one considers other Solar Planets that also have stratosphere’s – like Saturn’s moon Titan, which experiences heating due to the interaction of solar radiation, energetic particles and methane – temperatures don’t change by more than 56 °C (100 °F). But in the case of WASP-121b, temperatures in the stratosphere increase by about 560 °C (1,000 °F).

Not even Venus, the hottest planet in the Solar System, can compete with that! On Earth’s “Sister Planet”, temperatures remain steady at about 735 K (462 °C; 863 °F), which is hot enough to melt lead. But on WASP-121b,  temperatures reach over four times as high! This means the planet’s atmosphere is hot enough to melt stainless steel and other metals – like beryllium, platinum and zirconium.

At present, scientists do not now what chemicals are driving this temperature increase. Some possibilities have been suggested though, such as vanadium oxide and titanium oxide. Not only are these compounds believed to be common to brown dwarfs (aka. “failed stars”, which have much in common with gas giants), they also require the hottest temperatures possible in order to keep them in a gaseous state.

In any case, this distant gas giant has proven to be an interesting case study. In the future, research into this and other “super-hot Jupiters” is likely to challenge and expand our current understanding of how atmospheric forms and behave over time.

Further Reading: NASA, Nature

Hubble Finds a Dead Galaxy that was Finished Making Stars Just a Few Billion Years After the Big Bang

Artist's Concept of Milky Way vs Galaxy MACS2129-1. Credit: hubblesite.org

Thanks to recent improvements in space-based and ground-based telescopes, astronomers have been able to probe deeper into the Universe than ever before. By looking billions of years back in time, we are able to test our theories about the history of galactic formation and evolution. Unfortunately, studying the very early Universe is a daunting task, and one that is beyond the capabilities of our current instruments.

But by combining the power of the Hubble Space Telescope with a technique known as gravitational lensing, a team of astronomers made the first discovery of a compact galaxy that stopped making stars just a few billion years after the Big Bang. The discovery of such a galaxy existing so early in the Universe is unprecedented and represents a major challenge to \theories of how massive galaxies form and evolve.

Their findings were reported in a study titled “A Massive, Dead Disk Galaxy in the Early Universe“, which appeared in the June 22 issue of the journal Nature. As is indicated in the study, the team relied on data from Hubble which they combined with gravitational lensing – where a massive cluster of galaxies magnifies and stretches images of more distant galaxies beyond them – to study the distant galaxy known as MACS 2129-1.

Image of the Galaxy Cluster MACS J2129-0741, as part of CLASH. Credit: hubblesite.org

What they found was completely unexpected. Given the age of the galaxy – dated to just three billion years after the Big Bang – they expected to see a chaotic ball of stars that were forming due to early galaxies merging. Instead, they noticed that the galaxy, which was disk-shaped (like the Milky Way), was effectively dead – meaning that star formation had already ceased within it.

This was a surprise, seeing as how astronomers did not expect to see this so early in the Universe. What’s more, it was the first time that direct evidence has been obtained that shows how at least some of the earliest “dead” galaxies in the Universe evolved from disk-shaped objects to become the giant elliptical galaxies that we regularly see in the Universe today.

As Sune Toft – a researcher from the Dark Cosmology Center at the Niels Bohr Institute and the lead author on the study – explained, this may force a rethink of how galaxies evolved in the early Universe:

“This new insight may force us to rethink the whole cosmological context of how galaxies burn out early on and evolve into local elliptical-shaped galaxies, Perhaps we have been blind to the fact that early “dead” galaxies could in fact be disks, simply because we haven’t been able to resolve them.”

In previous studies, it was assumed that distant dead galaxies were similar in structure to the local elliptical galaxies they eventually evolved into. Prior to this study, confirmation of this hypothesis was not possible since current instruments are not powerful enough to see that far into space. But by combining the power of gravitational lensing with Hubble’s high resolution, Toft and his team were able to see this dead galaxy clearly.

Galaxy Cluster MACS J2129-0741 and Lensed Galaxy MACS2129- Credit: hubblesite.org

Combining rotational velocity measurements from the ESO’s Very Large Telescope (VLT) with archival data from the Cluster Lensing And Supernova survey with Hubble (CLASH), they were able to determine the size of the galaxy, mass, and age as well as its (defunct) rate of star formation. Ultimately, they found that the remote galaxy is three times as massive as the Milky Way, though only half its size, and is spinning more than twice as fast.

Why this galaxy stopped forming stars is still unknown, and will require follow-up surveys using more sophisticated instruments. But in the meantime, there are some possible theories. For instance, it could be the result of an active galactic nucleus, where a supermassive black hole at the center of MACS 2129-1 inhibited star formation by heating the galaxy’s gas and expelling it from the galaxy.

Or it may be the result of cold gas being streamed into the galaxy’s center where it was rapidly heated and compressed, thereby preventing it from cooling and forming star-forming clouds. But when it comes to how these types of early, dead galaxies could have led to the elliptical galaxies we see today, Toft and his colleagues think they know the answer. As he explained, it could be through mergers:

“If these galaxies grow through merging with minor companions, and these minor companions come in large numbers and from all sorts of different angles onto the galaxy, this would eventually randomize the orbits of stars in the galaxies. You could also imagine major mergers. This would definitely also destroy the ordered motion of the stars.”

In the coming years, Toft and his team hope to take advantage of the James Webb Telescope (which will be launching in 2018) to search for more early dead galaxies, in the hopes that it can shed light on the unresolved questions this discover raises. And with the ability to probe deeper into space, astronomers anticipate that a great deal more will be revealed about the early Universe.

Further Reading: Hubblesite, Nature

Stunning View of the Crab Nebula Just Got Five Times Better

Astronomers have produced a highly detailed image of the Crab Nebula, by combining data from five telescopes, spanning nearly the entire breadth of the electromagnetic spectrum. Credit: NASA, ESA, G. Dubner (IAFE, CONICET-University of Buenos Aires) et al.; A. Loll et al.; T. Temim et al.; F. Seward et al.; VLA/NRAO/AUI/NSF; Chandra/CXC; Spitzer/JPL-Caltech; XMM-Newton/ESA; and Hubble/STScI.

Images of the Crab Nebula are always a treat because it has such intriguing and varied structure. Also, just knowing that this stellar explosion was witnessed and recorded by people on Earth more than 900 years ago (with the supernova visible to the naked eye for about two years) gives this nebula added fascination.

A new image just might be the biggest Crab Nebula treat ever, as five different observatories combined forces to create an incredibly detailed view, with stunning details of the nebula’s interior region.

Data from the five telescopes span nearly the entire breadth of the electromagnetic spectrum, from radio waves seen by the Karl G. Jansky Very Large Array (VLA) to the powerful X-ray glow as seen by the orbiting Chandra X-ray Observatory. And, in between that range of wavelengths, the Hubble Space Telescope’s crisp visible-light view, and the infrared perspective of the Spitzer Space Telescope.

Astronomers have produced a highly detailed image of the Crab Nebula, by combining data from telescopes spanning nearly the entire breadth of the electromagnetic spectrum. This image combines data from five different telescopes: the VLA (radio) in red; Spitzer Space Telescope (infrared) in yellow; Hubble Space Telescope (visible) in green; XMM-Newton (ultraviolet) in blue; and Chandra X-ray Observatory (X-ray) in purple. Credit: NASA, ESA, G. Dubner (IAFE, CONICET-University of Buenos Aires) et al.; A. Loll et al.; T. Temim et al.; F. Seward et al.; VLA/NRAO/AUI/NSF; Chandra/CXC; Spitzer/JPL-Caltech; XMM-Newton/ESA; and Hubble/STScI.

The Crab is 6,500 light-years from Earth and spans about 10 light-years in diameter. The supernova that created it was first witnessed in 1054 A. D. At its center is a super-dense neutron star that is as massive as the Sun but with only the size of a small town. This pulsar rotates every 33 milliseconds, shooting out spinning lighthouse-like beams of radio waves and light. The pulsar can be seen as the bright dot at the center of the image.

Scientists say the nebula’s intricate shape is caused by a complex interplay of the pulsar, a fast-moving wind of particles coming from the pulsar, and material originally ejected by the supernova explosion and by the star itself before the explosion.

A new x-ray image of the Crab Nebula by the Chandra X-ray Observatory. Credit: X-ray: NASA/CXC/SAO.

For this new image, the VLA, Hubble, and Chandra observations all were made at nearly the same time in November of 2012. A team of scientists led by Gloria Dubner of the Institute of Astronomy and Physics (IAFE), the National Council of Scientific Research (CONICET), and the University of Buenos Aires in Argentina then made a thorough analysis of the newly revealed details in a quest to gain new insights into the complex physics of the object. They are reporting their findings in the Astrophysical Journal (see the pre-print here).

About the central region, the team writes, “The new HST NIR [near infrared] image of the central region shows the well-known elliptical torus around the pulsar, composed of a series of concentric narrow features of variable intensity and width… The comparison of the radio and the X-ray emission distributions in the central region suggests the existence of a double-jet system from the pulsar, one detected in X-rays and the other in radio. None of them starts at the pulsar itself but in its environs.”

“Comparing these new images, made at different wavelengths, is providing us with a wealth of new detail about the Crab Nebula. Though the Crab has been studied extensively for years, we still have much to learn about it,” Dubner said.

A multi-wavelength layout of the Crab Nebula. Credit: (Credit: X-ray: NASA/CXC/SAO; Optical: NASA/STScI; Infrared: NASA/JPL/Caltech; Radio: NSF/NRAO/VLA; Ultraviolet: ESA/XMM-Newton).

Read the team’s paper: Morphological properties of the Crab Nebula: a detailed multiwavelength study based on new VLA, HST, Chandra and XMM-Newton images
Sources: Chandra, Hubble

Hubble Sees Intense Auroras on Uranus

Auroras on Uranus Credit: NASA/ESA
Auroras on Uranus Credit: NASA/ESA
This is a composite image of Uranus by Voyager 2 and two different observations made by Hubble — one for the ring and one for the auroras. These auroras occurred in the planet’s southern latitudes near the planet’s south magnetic pole. Like Jupiter and Saturn, hydrogen atoms excited by blasts of the solar wind are the cause for the glowing white patches seen in both photos. Credit: NASA/ESA

Earth doesn’t have a corner on auroras. Venus, Mars, Jupiter, Saturn, Uranus and Neptune have their own distinctive versions. Jupiter’s are massive and powerful; Martian auroras patchy and weak.

Auroras are caused by streams of charged particles like electrons that originate with solar winds and in the case of Jupiter, volcanic gases spewed by the moon Io. Whether solar particles or volcanic sulfur, the material gets caught in powerful magnetic fields surrounding a planet and channeled into the upper atmosphere. There, the particles interact with atmospheric gases such as oxygen or nitrogen and spectacular bursts of light result. With Jupiter, Saturn and Uranus excited hydrogen is responsible for the show.

These composite images show Uranian auroras, which scientists caught glimpses of through the Hubble in 2011. In the left image, you can clearly see how the aurora stands high above the planet’s denser atmosphere. These photos combine Hubble pictures made in UV and visible light by Hubble with photos of Uranus’ disk from the Voyager 2 and a third image of the rings from the Gemini Observatory in Hawaii and Chile. The auroras are located close to the planet’s north magnetic pole, making these northern lights.
Credit: NASA, ESA, and L. Lamy (Observatory of Paris, CNRS, CNES)

Auroras on Earth, Jupiter and Saturn have been well-studied but not so on the ice-giant planet Uranus. In 2011, the Hubble Space Telescope took the first-ever image of the auroras on Uranus. Then in 2012 and 2014 a team from the Paris Observatory took a second look at the auroras in ultraviolet light using the Space Telescope Imaging Spectrograph (STIS) installed on Hubble.

From left: Auroras on Earth (southern auroral oval is seen over Antarctica), Jupiter and Saturn. In each case, the rings of permanent aurora are centered on their planets’ magnetic poles which aren’t too far from the geographic poles, unlike topsy-turvy Uranus. Credit: NASA

Two powerful bursts of solar wind traveling from the sun to Uranus stoked the most intense auroras ever observed on the planet in those years. By watching the auroras over time, the team discovered that these powerful shimmering regions rotate with the planet. They also re-discovered Uranus’ long-lost magnetic poles, which were lost shortly after their discovery by Voyager 2 in 1986 due to uncertainties in measurements and the fact that the planet’s surface is practically featureless. Imagine trying to find the north and south poles of a cue ball. Yeah, something like that.

In both photos, the auroras look like glowing dots or patchy spots. Because Uranus’ magnetic field is inclined 59° to its spin axis (remember, this is the planet that rotates on its side!) , the auroral spots appear far from the planet’s north and south geographic poles. They almost look random but of course they’re not. In 2011, the spots lie close to the planet’s north magnetic pole, and in 2012 and 2014, near the south magnetic pole — just like auroras on Earth.

An auroral display can last for hours here on the home planet, but in the case of the 2011 Uranian lights, they pulsed for just minutes before fading away.

Want to know more? Read the team’s findings in detail here.

Supernova Blast Wave Still Visible After 30 Years

To celebrate 30 years since Supernova 1987A was spotted, a new composite image shows the most recent images of the object, and contains X-rays from NASA's Chandra X-ray Observatory (blue), visible light data from NASA's Hubble Space Telescope (green), and submillimeter wavelength data from the international Atacama Large Millimeter/submillimeter Array (ALMA) telescope in Chile (red).

30 years ago today, a supernova explosion was spotted in the southern hemisphere skies. The exploding star was located in the Large Magellanic Cloud — a satellite galaxy of the Milky Way – and Supernova 1987A was the brightest and nearest supernova explosion for modern astronomers to observe. This has provided an amazing opportunity to study the death of a star.

Telescopes around the world and in space have been keeping an eye on this event, and the latest images show the blast wave from the original explosion is still expanding, and it has plowed into a ring expelled by the pre-supernova star. The latest images and data reveal the blast is now moving past the ring.

Got a 3-D printer? You can print out your own version of SN1987A! Find the plans here.

Two different versions of 3-D printed models of SN1987A. Credit: Salvatore Orlando (INAF-Osservatorio Astronomico di Palermo) & NASA/CXC/SAO/A.Jubett et al.

Below is the latest image of this supernova, as seen by the Hubble Space Telescope. You can see it in the center of the image among a backdrop of stars, and the supernova is surrounded by gas clouds.

This new image of the supernova remnant SN 1987A was taken by the NASA/ESA Hubble Space Telescope in January 2017 using its Wide Field Camera 3 (WFC3). Credit: NASA, ESA, and R. Kirshner (Harvard-Smithsonian Center for Astrophysics and Gordon and Betty Moore Foundation) and P. Challis (Harvard-Smithsonian Center for Astrophysics)

Hubble launched in 1990, just three years after the supernova was detected, so Hubble has a long history of observations. In addition, the Chandra X-ray telescope – launched in 1999 – has been keeping an eye on the explosion too.

Here are a few animations and images of SN1987A over the years:

This scientific visualization, using data from a computer simulation, shows Supernova 1987A, as the luminous ring of material we see today.
Credits: NASA, ESA, and F. Summers and G. Bacon (STScI); Simulation Credit: S. Orlando (INAF-Osservatorio Astronomico di Palermo)
This montage shows the evolution of the supernova SN 1987A between 1994 and 2016, as seen by the NASA/ESA Hubble Space Telescope. Credit:
NASA, ESA, and R. Kirshner (Harvard-Smithsonian Center for Astrophysics and Gordon and Betty Moore Foundation) and P. Challis (Harvard-Smithsonian Center for Astrophysics)

Here’s a link to the original astronomer’s telegram announcing the detection.

Astronomers estimate that the ring material was was ejected about 20,000 years before the actual explosion took place. Then, the initial blast of light from the supernova illuminated the rings. They slowly faded over the first decade after the explosion, until the shock wave of the supernova slammed into the inner ring in 2001, heating the gas to searing temperatures and generating strong X-ray emission.

The observations by Hubble, Chandra and telescopes around the world has shed light on how supernovae can affect the dynamics and chemistry of their surrounding environment, and continue to shape galactic evolution.

See additional images and animations at the Chandra website, ESA’s Hubble website , and NASA.

Dream Chaser Spacecraft May Be Used For Hubble Repair Mission

The Dream Chaser Space System, built by the Sierra Nevada Corporation, may be used for one more servicing mission to the Hubble Space Telescope. Image: By NASA - http://mediaarchive.ksc.nasa.gov/detail.cfm?mediaid=66081, Public Domain, https://commons.wikimedia.org/w/index.php?curid=27237176

The final servicing mission to the venerable Hubble Space Telescope (HST) was in 2009. The shuttle Atlantis completed that mission (STS-125,) and several components were repaired and replaced, including the installation of improved batteries. The HST is expected to function until 2030 – 2040. With the retiring of the shuttle program in 2011, it looked like the Hubble mission was destined to play itself out.

But now there’s talk of another servicing mission to the Hubble, to be performed by the Dream Chaser Space System.

A view of the Hubble Space Telescope from inside space shuttle Atlantis on mission STS-125 in 2009, the final repair mission. Credit: NASA

The Hubble was originally deployed by the Space Shuttle Discovery in 1990. It was serviced by crew aboard the shuttles 5 times on 5 different shuttle missions. Unlike the other observatories in NASA’s Great Observatories, the Hubble was designed to be serviced during its lifetime.

Those servicing missions, which took place in 1993, 1997, 1999, 2002, and 2009, were complex missions which required coordination between the Kennedy Space Center, Johnson Space Center, and the Goddard Space Flight Center. Grasping Hubble with the robotic Canadarm and placing it inside the shuttle bay was a methodical process. So was the repair and replacement of components, and the testing of components once Hubble was removed from the cargo bay. Though complicated, these missions were ultimately successful, and the Hubble is still operating.

The robotic Canadarm during STS-72, as Space Shuttle Endeavour mission in 1996. Image: By NASA – https://archive.org/details/STS072-722-041, Public Domain, https://commons.wikimedia.org/w/index.php?curid=29803999

A future servicing mission to the Hubble would be a sort of insurance policy in case there are problems with NASA’s new flagship telescope, the James Webb Space Telescope (JWST.) The JWST is due to be launched in 2018, and its capabilities greatly exceed those of the Hubble. But the James Webb’s destination is LaGrange Point 2 (L2), a stable point in space about 1.5 million km (932,000 miles) from Earth. It will enter a halo orbit around L2, which makes a repair mission difficult. Though deployment problems with the JWST could be corrected by visiting spacecraft, the Telescope itself is not designed to be repaired like the Hubble is.

Since the JWST is risky, both in terms of its position in space and its unproven deployment method, some type of insurance policy may be needed to ensure NASA has a powerful telescope operating in space. But without Space Shuttles to visit the Hubble and extend its life, a different vehicle would have to be tasked with any potential future servicing missions. Enter the Dream Chaser Space System (DCSS).

The Dream Chaser Space System is like a smaller Space Shuttle. It can carry seven people into Low-Earth Orbit (LEO). Like the Shuttles, it then returns to Earth and lands horizontally on an airstrip. The DCSS, however, does not have a cargo bay or a robotic arm. If it were used for a Hubble repair mission, all repairs would likely have to be done during spacewalks. The DCSS is designed as a cargo and crew resupply ship for the International Space System. The much larger shuttles were designed with the Hubble in mind, as well as other tasks, like building and servicing the ISS and recovering satellites from orbit.

The DCSS is built by Sierra Nevada Corporation. It will be launched on an Atlas V rocket, and will return to Earth by gliding, where it can land on any commercial runway. The DCSS has its own reaction control system for manoeuvering in space. Like other commercial space ventures, the development of the DCSS has been partly funded by NASA.

The primary mirror of the James Webb Space Telescope is unfolded once it's in space. If it fails to deploy properly, NASA may need to use the Dream Chaser to keep the Hubble Telescope operating instead. Image: NASA/Chris Gunn
The primary mirror of the James Webb Space Telescope. Image: NASA/Chris Gunn

The James Webb has a complex deployment. It will be launched on an Ariane 5 rocket, where it will be folded up in order to fit. The primary mirror on the JWST is made up of 18 segments which must unfold in three sections for the telescope to function. The telescope’s sun shield, which keeps the JWST cool, must also unfold after being deployed. Earlier in the mission, the Webb’s solar array and antennae need to be deployed.

This video shows the deployment of the JWST. It reminds one of a giant insect going through metamorphosis.

If either the mirror, the sunshield, or any of the other unfolding mechanisms fail, then a costly and problematic mission will have to be planned to correct the deployment. If some other crucial part of the telescope fails, then it probably can’t be repaired. NASA needs everything to go well.

People have been waiting for the JWST for a long time. It’s had kind of a tortured path to get this far. We all have our fingers crossed that the mission succeeds. But if there are problems, it may be up to the Hubble to keep doing what it’s always done: provide the kinds of science and stunning images that excites scientists and the rest of us about the Universe.

What Will the Voyager Spacecraft Encounter Next? Hubble Helps Provide a Roadmap

An artist's concept of Voyager 1's view of the Solar System. Voyager 1 is one of our first interstellar probes, though it's an inadvertent one. It has no particular destination. Credit: NASA, ESA, and J. Zachary and S. Redfield (Wesleyan University); Artist's Illustration Credit: NASA, ESA, and G. Bacon (STScI).

The twin Voyager spacecraft are now making their way through the interstellar medium. Even though they are going where none have gone before, the path ahead it is not completely unknown.

Astronomers are using the Hubble Space Telescope to observe the ‘road’ ahead for these pioneering spacecraft, to ascertain what various materials may lay along the Voyagers’ paths through space.

Combining Hubble data with the information the Voyagers are able to gather and send back to Earth, astronomers said a preliminary analysis reveals “a rich, complex interstellar ecology, containing multiple clouds of hydrogen laced with other elements.”

“This is a great opportunity to compare data from in situ measurements of the space environment by the Voyager spacecraft and telescopic measurements by Hubble,” said Seth Redfield of Wesleyan University, who led the study. “The Voyagers are sampling tiny regions as they plow through space at roughly 38,000 miles per hour. But we have no idea if these small areas are typical or rare. The Hubble observations give us a broader view because the telescope is looking along a longer and wider path. So Hubble gives context to what each Voyager is passing through.”

The combined data is also providing new insights into how our Sun travels through interstellar space, and astronomers hope that these combined observations will help them characterize the physical properties of the local interstellar medium.

“Ideally, synthesizing these insights with in situ measurements from Voyager would provide an unprecedented overview of the local interstellar environment,” said Hubble team member Julia Zachary of Wesleyan University.

The initial look at the clouds’ composition shows very small variations in the abundances of the chemical elements contained in the structures.

“These variations could mean the clouds formed in different ways, or from different areas, and then came together,” Redfield said.

In this illustration, NASA’s Hubble Space Telescope is looking along the paths of NASA’s Voyager 1 and 2 spacecraft as they journey through the solar system and into interstellar space. Hubble is gazing at two sight lines (the twin cone-shaped features) along each spacecraft’s path. The telescope’s goal is to help astronomers map interstellar structure along each spacecraft’s star-bound route. Each sight line stretches several light-years to nearby stars. Credit: NASA, ESA, and Z. Levy (STScI).

Astronomers are also seeing that the region that we and our solar system are passing through right now contains “clumpier” material, which may affect the heliosphere, the large bubble that is produced by our Sun’s powerful solar wind. At its boundary, called the heliopause, the solar wind pushes outward against the interstellar medium. Hubble and Voyager 1 made measurements of the interstellar environment beyond this boundary, where the wind comes from stars other than our sun.

“I’m really intrigued by the interaction between stars and the interstellar environment,” Redfield said. “These kinds of interactions are happening around most stars, and it is a dynamic process.”

Both Voyagers 1 and 2 launched in 1977 and both explored Jupiter and Saturn. Voyager 2 went on to visit Uranus and Neptune.

Voyager 1 is now 13 billion miles (20 billion km) from Earth, and entered interstellar space in 2012, the region between the stars that is filled with gas, dust, and material recycled from dying stars. It is the farthest a human-made spacecraft has even traveled. Next big ‘landmark’ for Voyager 2 is in about 40,000 years when it will come within 1.6 light-years of the star Gliese 445, in the constellation Camelopardalis.

Voyager 2, is 10.5 billion miles (16.9 billion km) from Earth, and will pass 1.7 light-years from the star Ross 248 in about 40,000 years.

Of course, neither spacecraft will be operational by then.

But scientists hope that for at least the next 10 years, the Voyagers will be making measurements of interstellar material, magnetic fields, and cosmic rays along their trajectories. The complimentary Hubble observations will help to map interstellar structure along the routes. Each sight line stretches several light-years to nearby stars. Sampling the light from those stars, Hubble’s Space Telescope Imaging Spectrograph measured how interstellar material absorbed some of the starlight, leaving telltale spectral fingerprints.

When the Voyagers run out of power and are no longer able to communicate with Earth, astronomers still hope to use observations from Hubble and subsequent space telescopes to characterize the environment where our robotic emissaries to the cosmos will travel.

Source: HubbleSite