A Star-Making Blob from the Cosmic Dawn

This image shows one of the most distant galaxies known, called GN-108036, dating back to 750 million years after the Big Bang that created our universe. Credit: NASA, ESA, JPL-Caltech, STScI, and the University of Tokyo

[/caption]

Looking back in time with some of our best telescopes, astronomers have found one of the most distant and oldest galaxies. The big surprise about this blob-shaped galaxy, named GN-108036, is how exceptionally bright it is, even though its light has taken 12.9 billion years to reach us. This means that back in its heyday – which astronomers estimate at about 750 million years after the Big Bang — it was generating an exceptionally large amount of stars in the “cosmic dawn,” the early days of the Universe.

“The high rate of star formation found for GN-108036 implies that it was rapidly building up its mass some 750 million years after the Big Bang, when the Universe was only about five percent of its present age,” said Bahram Mobasher, from the University of California, Riverside. “This was therefore a likely ancestor of massive and evolved galaxies seen today.”


An international team of astronomers, led by Masami Ouchi of the University of Tokyo, Japan, first identified the remote galaxy after scanning a large patch of sky with the Subaru Telescope atop Mauna Kea in Hawaii. Its great distance was then confirmed with the W.M. Keck Observatory, also on Mauna Kea. Then, infrared observations from the Spitzer and Hubble space telescopes were crucial for measuring the galaxy’s star-formation activity.

“We checked our results on three different occasions over two years, and each time confirmed the previous measurement,” said Yoshiaki Ono, also from the of the University of Tokyo.

Astronomers were surprised to see such a large burst of star formation because the galaxy is so small and from such an early cosmic era. Back when galaxies were first forming, in the first few hundreds of millions of years after the Big Bang, they were much smaller than they are today, having yet to bulk up in mass.

The team says the galaxy’s star production rate is equivalent to about 100 suns per year. For reference, our Milky Way galaxy is about five times larger and 100 times more massive than GN-108036, but makes roughly 30 times fewer stars per year.

Astronomers refer to the object’s distance by a number called its “redshift,” which relates to how much its light has stretched to longer, redder wavelengths due to the expansion of the universe. Objects with larger redshifts are farther away and are seen further back in time. GN-108036 has a redshift of 7.2. Only a handful of galaxies have confirmed redshifts greater than 7, and only two of these have been reported to be more distant than GN-108036.

About 380,000 years after the Big Bang, a decrease in the temperature of the Universe caused hydrogen atoms to permeate the cosmos and form a thick fog that was opaque to ultraviolet light, creating what astronomers call the cosmic dark ages.

“It ended when gas clouds of neutral hydrogen collapsed to generate stars, forming the first galaxies, which probably radiated high-energy photons and reionized the Universe,” Mobasher said. “Vigorous galaxies like GN-108036 may well have contributed to the reionization process, which is responsible for the transparency of the Universe today.”

“The discovery is surprising because previous surveys had not found galaxies this bright so early in the history of the universe,” said Mark Dickinson of the National Optical Astronomy Observatory in Tucson, Ariz. “Perhaps those surveys were just too small to find galaxies like GN-108036. It may be a special, rare object that we just happened to catch during an extreme burst of star formation.”

Sources: Science Paper by: Y. Ono et al., Subaru , Spitzer Hubble

Hubble’s Snow Angel

The bipolar star-forming region, called Sharpless 2-106, looks like a soaring, celestial snow angel. The outstretched “wings” of the nebula record the contrasting imprint of heat and motion against the backdrop of a colder medium. Twin lobes of super-hot gas, glowing blue in this image, stretch outward from the central star. This hot gas creates the “wings” of our angel. A ring of dust and gas orbiting the star acts like a belt, cinching the expanding nebula into an “hourglass” shape. Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA)

[/caption]

If you need a little help getting into the holiday spirit, the Hubble Space Telescope is here to assist. This gorgeous new image shows a bipolar star-forming region, called Sharpless 2-106, (S106 for short) which looks like a soaring, celestial snow angel. The outstretched “wings” of the nebula are actually the contrasting imprint of heat and motion against the backdrop of a colder medium. Twin lobes of super-hot gas, glowing blue in this image, stretch outward from the central star, forming the wings.

Hubble snapped this image in February 2011, using the Wide Field Camera 3. Visible narrow-band filters that isolate the hydrogen gas were combined with near-infrared filters that show structure in the cooler gas and dust.

A massive, young star, IRS 4 (Infrared Source 4), is responsible for all the activity here. A ring of dust and gas orbiting the star acts like a belt, cinching the expanding nebula into an hourglass shape. Hubble’s sharp resolution reveals ripples and ridges in the gas as it interacts with the cooler interstellar medium.

Although you can’t see them here, detailed studies of the nebula have also uncovered several hundred brown dwarfs. At purely infrared wavelengths, more than 600 of these sub-stellar objects appear. These “failed” stars weigh less than a tenth of the Sun. Because of their low mass, they cannot produce energy through nuclear fusion like the Sun does.

Supernova Candidate Stars May Signal “Impending Doom”

This Large Binocular Telescope image below of the Whirlpool Galaxy, otherwise known as M51, is part of a new galaxy survey by Ohio State University, where astronomers are searching for signs that stars are about to go supernova. The insets show one particular binary star system before (left) and after (right) one of its stars went supernova. Image by Dorota Szczygiel, courtesy of Ohio State University.

[/caption] This past year has given both backyard and professional astronomers a rare treat – a very visible supernova event. Hosted in the Whirlpool Galaxy (M51), these stellar death throes may have been clued to us by a rather ordinary binary star system. In a recent study done by researchers at Ohio State University, a galaxy survey may have captured evidence of a “stellar signal” just before it went supernova!

Employing the Large Binocular Telescope located in Arizona, the OSU team was undertaking a survey of 25 galaxies for stars that changed their magnitude in usual ways. Their goal was to find a star just before it ended its life – a three-year undertaking. As luck would have it, a binary star system located in M51 produced just the results they were looking for. One star dropped amplitude just a short period of time before the other exploded. While the probability factor of them getting the exact star might be slim, chances are still good they caught its brighter partner. Despite that, principal investigator Christopher Kochanek, professor of astronomy at Ohio State and the Ohio Eminent Scholar in Observational Cosmology, remains optimistic as their results prove a theory.

“Our underlying goal is to look for any kind of signature behavior that will enable us to identify stars before they explode,” he said. “It’s a speculative goal at this point, but at least now we know that it’s possible.”

“Maybe stars give off a clear signal of impending doom, maybe they don’t,” said study co-author Krzystof Stanek, professor of astronomy at Ohio State, “But we’ll learn something new about dying stars no matter the outcome.”

Postdoctoral researcher Dorota Szczygiel, the leader of the supernova study tells us why the galaxy survey remains paramount.

“The odds are extremely low that we would just happen to be observing a star for several years before it went supernova. We would have to be extremely lucky,” she said. “With this galaxy survey, we’re making our own luck. We’re studying all the variable stars in 25 galaxies, so that when one of them happens go supernova, we’ve already compiled data on it.”

On May 31, 2011, the whole astronomy world was abuzz when SN2011dh gave both amateurs and professionals a real thrill as an easily observable event. As luck would have it, it was a binary star system being studied by the OSU team, and consisted of both a blue and red star. At this point, the astronomers surmise the red star was the one that dimmed significantly over the three-year period while the blue one blew its top. When reviewing the LBT data, the Ohio team found that when compared with Hubble images, the red star dimmed at about 10% over the final three-year period at an estimated 3% per previous years. As a curiosity, the researchers surmise the red star may have actually survived the supernova event.

“After the light from the explosion fades away, we should be able to see the companion that did not explode,” Szczygiel said.

As the team continues to collect valuable information, they estimate they could also detect another candidate set of stars at a rate of about one per year. There is also a strong possibility these detections could act as a type of test bed to predict future supernova events… looking for signals of impending doom. However, according to the news release, the Sun won’t be one to bother with.

“There’ll be no supernova for the Sun – it’ll just fizzle out,” Kochanek said. “But that’s okay – you don’t want to live around an exciting star.”

Original Story Source: Ohio State Research News.

NGC 1846 – Hubble Reveals Peculiar Life And Death Of A Stellar Population

NASA's Hubble Finds Stellar Life and Death in a Globular Cluster - Credit: HST/NASA

[/caption]

About 160,000 light years away in the direction of southern constellation Doradus, sits a globular cluster. It’s not a new target for the Hubble Space Telescope, but it has had a lot to say for itself over the last twelve years. It’s actually part of the Large Magellanic Cloud, but it’s no ordinary ball of stars. When it comes to age, this particular region is mighty complex…

In a 34 minute exposure taken almost a half dozen years ago, the Hubble snapped both life and death combined in an area where all stars were once assumed to be the same age. Globular clusters, as we know, are spherical collections of stars bound by gravity which orbit the halo of many galaxies. At one time, astronomers assumed their member stars were all the same age – forming into their own groups at around the same time the parent galaxy formed. But now, evidence points toward these balls of stars as having their own agenda – and may have evolved independently over the course of several hundreds of million years. What’s more, we’re beginning to learn that globular cluster formation may differ from galaxy to galaxy, too. Why? Chances are they may have encountered additional molecular clouds during their travels which may have triggered another round of star formation.

“An increasing number of photometric observations of multiple stellar populations in Galactic globular clusters is seriously challenging the paradigm of GCs hosting single, simple stellar populations.” says Giampaolo Piotto of the University of Padova, Italy. “These multiple populations manifest themselves in a split of different evolutionary sequences as observed in the cluster color-magnitude diagrams. Multiple stellar populations have been identified in Galactic and Magellanic Cloud clusters.”

However, it’s not the individual stars which make this Hubble image such a curiosity, it’s the revelation of a planetary nebula. This means a huge disparity in the member star’s ages…. one of up to 300 million years. Is it possible that the shell and remains of this dead star is a line-of-sight phenomenon, or is it truly a cluster member?

“We report on Hubble Space Telescope/ACS photometry of the rich intermediate-age star cluster NGC 1846 in the Large Magellanic Cloud, which clearly reveals the presence of a double main-sequence turn-off in this object. Despite this, the main-sequence, subgiant branch and red giant branch are all narrow and well defined, and the red clump is compact.” says A. D. Mackey and P. Broby Nielsen. ” We examine the spatial distribution of turn-off stars and demonstrate that all belong to NGC 1846 rather than to any field star population. In addition, the spatial distributions of the two sets of turn-off stars may exhibit different central concentrations and some asymmetries. By fitting isochrones, we show that the properties of the colour–magnitude diagram can be explained if there are two stellar populations of equivalent metal abundance in NGC 1846, differing in age by around 300 million years.”

So what’s wrong with the picture? Apparently nothing. The findings have been studied and studied again for errors and even “contamination” by field stars in relation to NGC1846’s main sequence turn off. It’s simply a bit of a cosmic riddle just waiting for an explanation.

“We propose that the observed properties of NGC 1846 can be explained if this object originated via the tidal capture of two star clusters formed separately in a star cluster group in a single giant molecular cloud.” concludes Mackey and Nielson. “This scenario accounts naturally for the age difference and uniform metallicity of the two member populations, as well as the differences in their spatial distributions.”

Original Story Source: NASA’s Hubble Finds Stellar Life and Death in a Globular Cluster. For Further Reading: A double main-sequence turn-off in the rich star cluster NGC 1846 in the Large Magellanic Cloud, Population Parameters of Intermediate-Age Star Clusters in the Large Magellanic Cloud. I. NGC 1846 and its Wide Main-Sequence Turnoff and Multiple stellar populations in three rich Large Magellanic Cloud star clusters.

Grunsfeld May Lead NASA Science Division

John Grunsfeld was one of the astronauts involved in fixing the Hubble Space Telescope. Credit: NASA
John Grunsfeld was one of the astronauts involved in fixing the Hubble Space Telescope. Credit: NASA

[/caption]The current buzz amongst those in the know say that astrophysicist/astronaut, John Grunsfeld, has been chosen to lead NASA’s science mission directorate. Self-confessed “Hubble Hugger” and telescope repair man may very well become NASA associate administrator in September, according to a news article in Nature. As current deputy director of the Space Telescope Science Institute in Baltimore, Maryland, Grunsfeld will be replacing the resigning Ed Weiler.

“John is a very capable guy,” Weiler was quoted by writer Eric Hand in Nature. “He knows both the human and robotic sides. He’s a very solid citizen.”

However, NASA spokesman Trent Perrotto says no appointment has yet been made official.

Nature reports that the five-time shuttle astronaut could likely be the top choice of NASA administrator Charles Bolden, also a former shuttle pilot, and may display just a bit of favoritism towards fellow astronauts. “Clearly, he’s Charlie’s pick,” says one person with knowledge of the selection.

But Nature quotes another science source that Grunsfeld might not be the right pick. Apparently he/she believes that NASA-backed scientists who aren’t part of the astronomy field shouldn’t be a prime candidate. “His entire reputation is based on fixing space telescopes,” says the scientist. “I think it will be a real tough slog for him.”

Read more in Nature News.

And we’ll keep you posted of any official announcements.

Original Story Source: Nature News.

Do Galaxies Recycle Their Material?

Distant quasars shine through the gas-rich "fog" of hot plasma encircling galaxies. At ultraviolet wavelengths, Hubble's Cosmic Origins Spectrograph (COS) is sensitive to absorption from many ionized heavy elements, such as nitrogen, oxygen, and neon. COS's high sensitivity allows many galaxies that happen to lie in front of the much more distant quasars. The ionized heavy elements serve as proxies for estimating how much mass is in a galaxy's halo. (Credit: NASA; ESA; A. Feild, STScI)

[/caption]

It’s a great question that’s now been validated by the Hubble Space Telescope. Recent observations have shown how galaxies are able to recycle huge amounts of hydrogen gas and heavy elements within themselves. In a process which begins at initial star formation and lasts for billions of years, galaxies renew their own energy sources.

Thanks to the HST’s Cosmic Origins Spectrograph (COS), scientists have now been able to investigate the Milky Way’s halo region along with forty other galaxies. The combined data includes instruments from large ground-based telescopes in Hawaii, Arizona and Chile whose goal was determine galaxy properties. In this colorful instance, the shape and spectra of each individual galaxy would appear to be influenced by gas flow through the halo in a type of “gas-recycling phenomenon”. The results are being published in three papers in the November 18 issue of Science magazine. The leaders of the three studies are Nicolas Lehner of the University of Notre Dame in South Bend, Ind.; Jason Tumlinson of the Space Telescope Science Institute in Baltimore, Md.; and Todd Tripp of the University of Massachusetts at Amherst.

The focus of the research centered on distant stars whose spectra illuminated influxing gas clouds as they pass through the galactic halo. This is the basis of continual star formation, where huge pockets of hydrogen contain enough fuel to ignite a hundred million stars. But not all of this gas is just “there”. A substantial portion is recycled by both novae and supernovae events – as well as star formation itself. It not only creates, but “replenishes”.

The color and shape of a galaxy is largely controlled by gas flowing through an extended halo around it. All modern simulations of galaxy formation find that they cannot explain the observed properties of galaxies without modeling the complex accretion and "feedback" processes by which galaxies acquire gas and then later expel it after chemical processing by stars. Hubble spectroscopic observations show that galaxies like our Milky Way recycle gas while galaxies undergoing a rapid starburst of activity will lose gas into intergalactic space and become "red and dead." (Credit: NASA; ESA; A. Feild, STScI)

However, this process isn’t unique to the Milky Way. Hubble’s COS observations have recorded these recycling halos around energetic star-forming galaxies, too. These heavy metal halos are reaching out to distances of up to 450,000 light years outside the visible portions of their galactic disks. To capture such far-reaching evidence of galactic recycling wasn’t an expected result. According to the Hubble Press Release, COS measured 10 million solar masses of oxygen in a galaxy’s halo, which corresponds to about one billion solar masses of gas – as much as in the entire space between stars in a galaxy’s disk.

So what did the research find and how was it done? In galaxies with rapid star formation, the gases are expelled outward at speed of up to two million miles per hour – fast enough to be ejected to the point of no return – and with it goes mass. This confirms the theories of how a spiral galaxy could eventually evolve into an elliptical. Since the light from this hot plasma isn’t within the visible spectrum, the COS used quasars to reveal the spectral properties of the halo gases. Its extremely sensitive equipment was able to detect the presence of heavy elements, such as nitrogen, oxygen, and neon – indicators of mass of a galaxy’s halo.

So what happens when a galaxy isn’t “green”? According to these new observations, galaxies which have ceased star formation no longer have gas. Apparently, once the recycling process stops, stars will only continue to form for as long as they have fuel. And once it’s gone?

It’s gone forever…

Original Story Source: Hubble Space Telescope News Release.

Live Webcast from American Museum of Natural History Today: Beyond Planet Earth

The American Museum of Natural History in New York will soon be opening up a new exhibition called “Beyond Planet Earth: The Future of Space Exploration,” and they are live-streaming a special public program at 12 Noon EST (17:00 UT), that includes NASA astronauts Mike Massimino and John Grunsfeld, crew members on mission STS-125 to repair the Hubble Space Telescope, and is hosted by Hayden Planetarium Director Neil deGrasse Tyson and Curator Michael Shara.

The discussion will focus on themes from Beyond Planet Earth, the STS-125 mission, and the temporary laser art installation From The Distant Past. For more information see the AMNH website, and watch a teaser video of “Beyond Planet Earth” below.

Continue reading “Live Webcast from American Museum of Natural History Today: Beyond Planet Earth”

Hubble Telescope Directly Observes Quasar Accretion Disc Surrounding Black Hole

A team of scientists has used the NASA/ESA Hubble Space Telescope to observe a quasar accretion disc — a brightly glowing disc of matter that is slowly being sucked into its galaxy’s central black hole. Their study makes use of a novel technique that uses gravitational lensing to give an immense boost to the power of the telescope. The incredible precision of the method has allowed astronomers to directly measure the disc’s size and plot the temperature across different parts of the disc. Image credit: NASA, ESA, J.A. Munoz (University of Valencia)

[/caption]

Thanks to the magic of the NASA/ESA Hubble Space Telescope, a team of international astronomers have made an incredible observation – a quasar accretion disc surrounding a black hole. By employing a technique known as gravitation lensing, the researchers have been able to get an accurate size measurement and spectral data. While you might not think this exciting at first, know that this type of observation is akin to spotting individual grains of sand on the Moon!

Of course, we know we can’t see a black hole – but we’ve learned a lot about them with time. One of their properties is a bright, visible phenomenon called a quasar. These glowing discs of matter are engaged in orbit around the black hole, much like a coil on an electric stove. As energy is applied, the “coil” heats up and unleashes bright radiation.

“A quasar accretion disc has a typical size of a few light-days, or around 100 billion kilometres across, but they lie billions of light-years away. This means their apparent size when viewed from Earth is so small that we will probably never have a telescope powerful enough to see their structure directly,” explains Jose Munoz, the lead scientist in this study.

Because of the diminutive size of the quasar, most of our understanding of how they work has been based on theory… but great minds have found a way to directly observe their effects. By employing the gravity of stars in an intervening galaxy like a scanning microscope, astronomers have been able to observe the quasar’s light as the stars move. While most of these types of features would be too small to see, the gravitation lensing effect ramps up the strength of the quasar’s light and allows study of the spectra as it cruises across the accretion disc.

This diagram shows how Hubble is able to observe a quasar, a glowing disc of matter around a distant black hole, even though the black hole would ordinarily be too far away to see clearly. Credit: NASA and ESA

By observing a group of gravitationally lensed quasars, the team was able to paint a vivid color portrait of the activity. They were able to pick out small changes between single images and spectral shifts over a period of time. What causes these kaleidoscopic variances? For the most part, it’s the different properties in the gases and dust of the lensing galaxies. Because they travel at different angles to the quasar’s light, scientists were even able to distinguish extinction laws at work.

But there was something special about one of the quasars. Says the Hubble Team, “There were clear signs that stars in the intervening galaxy were passing through the path of the light from the quasar. Just as the gravitational effect due to the whole intervening galaxy can bend and amplify the quasar’s light, so can that of the stars within the intervening galaxy subtly bend and amplify the light from different parts of the accretion disc as they pass through the path of the quasar’s light.”

By documenting these color changes, the team could build a profile of the accretion disc. Unlike our Earthly electric stove coil which glows red as it heats up, the accretion disc of a black hole turns blue as it gets closer to the event horizon. By measuring the blue hue, the team was able to measure the disc diameter and the various tints gave them an indicator of distances from its center. In this case, they found that the disc is between four and eleven light-days across (approximately 100 to 300 billion kilometres). Of course, these are only rough estimates, but considering just how far away we’re looking at such a small object gives these types of observations great potential for future studies… and even improvements on accuracy.

“This result is very relevant because it implies we are now able to obtain observational data on the structure of these systems, rather than relying on theory alone,” says Munoz. “Quasars’ physical properties are not yet well understood. This new ability to obtain observational measurements is therefore opening a new window to help understand the nature of these objects.”

Original Story Source: ESA/Hubble News Release. For Further Reading: A Study of Gravitational Lens Chromaticity With the Hubble Space Telescope.

Determining The Galaxy Collision Rate

Galactic Wrecks Far from Earth: These images from NASA's Hubble Space Telescope's ACS in 2004 and 2005 show four examples of interacting galaxies far away from Earth. The galaxies, beginning at far left, are shown at various stages of the merger process. The top row displays merging galaxies found in different regions of a large survey known as the AEGIS. More detailed views are in the bottom row of images. (Credit: NASA; ESA; J. Lotz, STScI; M. Davis, University of California, Berkeley; and A. Koekemoer, STScI)

[/caption]

Big galaxies… Little galaxies… But how often do they meet? Thanks to information from some of the latest Hubble surveys, astronomers have been able to more closely estimate galaxy collision rates than ever before. Apparently those that have happened within the last eight to nine billion years have occurred somewhere in-between previous estimates.

When it comes to galaxy evolution, the collision rate is an indicator of how individual galaxies accumulated mass over time. While it’s pretty much a standard measurement, there’s a large margin with no information of how often it might have occurred in the very distant past. By taking a look at in deep-field surveys made by NASA’s Hubble Space Telescope, astronomers were able to get a general look – one that showed a merger rate of anywhere from 5 percent to 25 percent of those studied.

The science team, led by Jennifer Lotz of the Space Telescope Science Institute in Baltimore, Maryland, took a close look at galaxy interactions spaced over vast distances. This allowed the group to essentially study mergers which occurred at different times. What they found was larger galaxies had a merger rate of once every nine billion years, while smaller ones crashed up more often. When taking a look a dwarf galaxies compared to massive ones, the team found it happened three times more often than the rate for large galaxies.

“Having an accurate value for the merger rate is critical because galactic collisions may be a key process that drives galaxy assembly, rapid star formation at early times, and the accretion of gas onto central supermassive black holes at the centers of galaxies,” Lotz explains.

While there were past studies of galaxy mergers done with Hubble information, astronomers used a different method and came up with different results. “These different techniques probe mergers at different ‘snapshots’ in time along the merger process,” Lotz says. “It is a little bit like trying to count car crashes by taking snapshots. If you look for cars on a collision course, you will only see a few of them. If you count up the number of wrecked cars you see afterwards, you will see many more. Studies that looked for close pairs of galaxies that appeared ready to collide gave much lower numbers of mergers than those that searched for galaxies with disturbed shapes, evidence that they’re in smashups.”

To help determine how often the merger rate occurred with time, Lotz and her team had to know how long an encountered galaxy would appear disrupted. In order to get a good working model, the team used computer simulations and then mapped them compared to Hubble images of galaxy interactions. While this effort took a great deal of time, the team did their best to create every possible scenario – from a pair of galaxies with equal mass to disparate ones. They also took into account orbits, collisional events and even orientation. Of these studies, 57 different situations and 10 viewing angles were accounted for. “Viewing the simulations was akin to watching a slow-motion car crash,” Lotz says. These computer created scenarios followed the galaxies for 2 billion to 3 billion years, starting at the merger beginning and ending a billion years later when completed. “Our simulations offer a realistic picture of mergers between galaxies,” explains Lotz.

While it was easy enough to see what happens with a giant galaxy, it was a bit more difficult to observe what happens with diminutive ones. Observing a dwarf merger is far more difficult simply because they are so much more dim – but plentiful. “Dwarf galaxies are the most common galaxy in the universe,” Lotz says. “They may have contributed to the buildup of large galaxies. In fact, our own Milky Way galaxy had several such mergers with small galaxies in its recent past, which helped to build up the outer regions of its halo. This study provides the first quantitative understanding of how the number of galaxies disturbed by these minor mergers changed with time.”

However, studies of this type just don’t happen with a handful of photos. Lotz and the team had to compare the simulations with literally thousands of galaxy images taken from some of Hubble’s largest surveys, including the All-Wavelength Extended Groth Strip International Survey (AEGIS), the Cosmological Evolution Survey (COSMOS), and the Great Observatories Origins Deep Survey (GOODS), as well as mergers identified by the DEEP2 survey with the W.M. Keck Observatory in Hawaii. At the beginning they found a wide variety of merger rates, but ended up with about a thousand merger candidates. “When we applied what we learned from the simulations to the Hubble surveys in our study, we derived much more consistent results,” Lotz says.

What’s next for Lotz and her team? It’s time to take a look at galaxy interactions that happened about 11 billion years ago. Their goal is to check out when star formation across the Universe reached its greatest as compared to the merger rate. Perhaps there might be a correlation between encounters and rapid star birth!

Original Story Source: Hubble Space Telescope News.

Astronaut Scholarship Foundation Raising Funds, Awareness With Autograph Show

A light-hearted moment is shared between Apollo 12 Lunar Module Pilot Alan Bean (standing) and Apollo 11 Lunar Module Pilot Buzz Aldrin. Photo Credit: ASF

[/caption]
CAPE CANAVERAL, Fla – It all started – with seven. The original seven Mercury astronauts that is. They wanted to give back to the nation that had allowed them to reach the heights that they had achieved, while at the same time inspiring the nation’s young to follow in their footsteps. What arose was the Astronaut Scholarship Foundation (ASF).

There are more than 80 astronauts that are working with the ASF to ensure that the United States maintains its role as leader in terms of science and technology. The ASF accomplishes this by providing scholarships to students studying engineering, science and math.

Apollo 14 Lunar Module Pilot Edgar Mitchell poses with a guest during a previous ASF astronaut autograph show. Just over his shoulder is former shuttle astronaut Fred Gregory. Photo Credit: ASF

In 1984, the then six surviving Mercury astronauts established the 501 (c) 3 organization along with the widow of the seventh (Betty Grissom, widow of astronaut Virgil “Gus” Grissom. Astronauts Malcolm Scott Carpenter, L. Gordon Cooper Jr., John H. Glenn Jr., Walter M. Schirra, Alan B. Shepard Jr., and Donald K. (Deke) Slayton were also joined by the Mercury Program’s flight surgeon William Douglas M.D. as well as a local business man, Henry Landwirth.

What started with scholarships of only $1,000 has grown to $10,000 each. Twenty-six of these scholarships are handed out every year for a grand total of $260,000. All total? The ASF has handed out $3 million in scholarships to worthy students. The ASF’s current Chairman of its Board of Directors is Apollo 16 Command Module Pilot Charlie Duke; his vice-chair is shuttle veteran Dan Brandenstein.

Apollo 15 Commander Dave Scott poses with a young guest at the ASF's astronaut autograph show. Photo Credit: ASF

The ASF raises funds by a number of means. Astronaut guest appearance, fund-raisers, donations from different entities both public and private and autograph shows. The next of these is scheduled to take place at the Kennedy Space Center Visitor Complex located in Florida from Nov. 4-6. The annual show contains a wide range of events and tours to allow guests the opportunity to learn about the location’s history while picking up a signed item from an astronaut.

Former shuttle astronaut Robert Springer flew twice on the space shuttle and is a current member of the Astronaut Scholarship Foundation. Photo Credit: NASA.gov

Universe Today recently sat down with two-time shuttle veteran Robert C. Springer about his thoughts regarding ASF. Here is what he had to say:

Universe Today: Hi Bob thanks for chatting with us today.

Springer: “My pleasure, thanks for having me!”

Universe Today: How long have you been affiliated with the ASF and how do you view its activities?

Springer: “I have been associated with the Astronaut Scholarship Foundation for the past ten years. The foundation has had phenomenal success, increasing the number of scholarships to the current level of 26 scholarships, each in the amount of $10,000 awarded annually to young men and women who are pursuing degrees in engineering and scientific fields that are related to space exploration.”

Universe Today: What do you find most rewarding or interesting regarding the ASF’s efforts?

Springer: “One of the most interesting aspects of the fund raising effort, is the diversity of individuals who have contributed to the foundation. It has been both a national and international group of individuals who truly believe that we need to continue to invest in our future by providing funding assistance to talented and motivated students to enable them to continue their studies in selected fields.”

Universe Today: So your experience with these folks is rewarding?

Springer: “They are great, but it’s really wonderful to meet the recipients of these scholarships – each year we have the opportunity to hear from some of the individuals who have been awarded the scholarships, and it is remarkable to hear their stories and to understand the kinds of contributions they are making today and have the potential to make in the future.”

Universe Today: I bet that must be really gratifying. It seems we have to wrap, but I wanted to thank you for telling us a bit about your experiences.

Springer: “It was great talking with you!”

For more information regarding the Astronaut Scholarship Foundation’s annual autograph show visit: astronautscholarship.org or call: 321-455-7016.

The ASF astronaut autograph show is normally held during the first week in November and serves to raise funds for scholarships. Photo Credit: ASF