Hubble has edged in close to the Tarantula Nebula, peering into its bright center of ionized gases, dust and still-forming stars. The Tarantula is already a go-to celestial marvel, because its hydrogen-fueled young stars shine with such intense ultraviolet light that they ionize and redden the surrounding gas — making the nebula visible without a telescope for Earth-bound observers 170,000 light-years away. The new image may make this popular beacon, in our neighboring galaxy the Large Magellanic Cloud, even more famous.
The wispy arms of the Tarantula Nebula (RA 05h 38m 38s dec -69° 05.7?) were originally thought to resemble spindly spider legs, giving the nebula its unusual name. The part of the nebula visible in the new image is criss-crossed with tendrils of dust and gas churned up by recent supernovae. These remnants include NGC 2060, visible above and to the left of the center of the image, which contains the brightest known pulsar.
The tarantula’s bite goes beyond NGC 2060. Near the edge of the nebula, outside the frame, below and to the right, lie the remains of supernova SN 1987a, the closest supernova to Earth to be observed since the invention of telescopes in the 17th century. Hubble and other telescopes have been returning to spy on this stellar explosion regularly since it blew up in 1987, and each subsequent visit shows an expanding shockwave lighting up the gas around the star, creating a pearl necklace of glowing pockets of gas around the remains of the star. SN 1987a is visible in wide field images of the nebula, such as that taken by the MPG/ESO 2.2-meter telescope.
A compact and extremely bright star cluster called RMC 136 lies above and to the left of this field of view, providing much of the radiation that powers the multi-coloured glow. Until recently, astronomers debated whether the source of the intense light was a tightly bound cluster of stars, or perhaps an unknown type of super-star thousands of times bigger than the sun. It is only in the last 20 years, with the fine detail revealed by Hubble and the latest generation of ground-based telescopes, that astronomers have been able to conclusively prove that it is, indeed, a star cluster.
But even if the Tarantula Nebula doesn’t contain this hypothetical super-star, it still hosts some extreme phenomena, making it a popular target for telescopes. Within the bright star cluster lies star RMC 136a1, which was recently found to be the heaviest ever discovered: the star’s mass when it was born was around 300 times that of the sun. This heavyweight is challenging astronomers’ theories of star formation, smashing through the upper limit they thought existed on star mass.
Astronomers using NASA’s Hubble Space Telescope have ruled out an alternate theory on the nature of dark energy after recalculating the expansion rate of the universe to unprecedented accuracy.
The universe appears to be expanding at an increasing rate. Some believe that is because the universe is filled with a dark energy that works in the opposite way of gravity. One alternative to that hypothesis is that an enormous bubble of relatively empty space eight billion light-years across surrounds our galactic neighborhood. If we lived near the center of this void, observations of galaxies being pushed away from each other at accelerating speeds would be an illusion.
This hypothesis has been invalidated because astronomers have refined their understanding of the universe’s present expansion rate. Adam Riess of the Space Telescope Science Institute (STScI) and Johns Hopkins University in Baltimore, Md., led the research. The Hubble observations were conducted by the SHOES (Supernova H0 for the Equation of State) team that works to refine the accuracy of the Hubble constant to a precision that allows for a better characterization of dark energy’s behavior. The observations helped determine a figure for the universe’s current expansion rate to an uncertainty of just 3.3 percent. The new measurement reduces the error margin by 30 percent over Hubble’s previous best measurement in 2009. Riess’s results appear in the April 1 issue of The Astrophysical Journal.
“We are using the new camera on Hubble like a policeman’s radar gun to catch the universe speeding,” Riess said. “It looks more like it’s dark energy that’s pressing the gas pedal.”
Riess’ team first had to determine accurate distances to galaxies near and far from Earth. The team compared those distances with the speed at which the galaxies are apparently receding because of the expansion of space. They used those two values to calculate the Hubble constant, the number that relates the speed at which a galaxy appears to recede to its distance from the Milky Way. Because astronomers cannot physically measure the distances to galaxies, researchers had to find stars or other objects that serve as reliable cosmic yardsticks. These are objects with an intrinsic brightness, brightness that hasn’t been dimmed by distance, an atmosphere, or stellar dust, that is known. Their distances, therefore, can be inferred by comparing their true brightness with their apparent brightness as seen from Earth.
To calculate longer distances, Riess’ team chose a special class of exploding stars called Type 1a supernovae. These stellar explosions all flare with similar luminosity and are brilliant enough to be seen far across the universe. By comparing the apparent brightness of Type 1a supernovae and pulsating Cepheid stars, the astronomers could measure accurately their intrinsic brightness and therefore calculate distances to Type Ia supernovae in far-flung galaxies.
Using the sharpness of the new Wide Field Camera 3 (WFC3) to study more stars in visible and near-infrared light, scientists eliminated systematic errors introduced by comparing measurements from different telescopes.
“WFC3 is the best camera ever flown on Hubble for making these measurements, improving the precision of prior measurements in a small fraction of the time it previously took,” said Lucas Macri, a collaborator on the SHOES Team from Texas A&M in College Station.
Knowing the precise value of the universe’s expansion rate further restricts the range of dark energy’s strength and helps astronomers tighten up their estimates of other cosmic properties, including the universe’s shape and its roster of neutrinos, or ghostly particles, that filled the early universe.
“Thomas Edison once said ‘every wrong attempt discarded is a step forward,’ and this principle still governs how scientists approach the mysteries of the cosmos,” said Jon Morse, astrophysics division director at NASA Headquarters in Washington. “By falsifying the bubble hypothesis of the accelerating expansion, NASA missions like Hubble bring us closer to the ultimate goal of understanding this remarkable property of our universe.”
The galaxies above are among the oldest objects astronomers have ever laid eyes — er, telescopes — on, formed when the Universe was less than a quarter of its current age. In a new study out in the journal Astronomy & Astrophysics, a team of researchers has announced that they’ve used a fleet of the world’s most powerful telescopes to measure the distance from here to there.
And things look awfully familiar.
“The surprising thing is that when we look closely at this galaxy cluster it doesn’t look young — many of the galaxies have settled down and don’t resemble the usual star-forming galaxies seen in the early Universe,” said lead author Raphael Gobat of Université Paris Diderot in France.
Clusters of galaxies are the largest structures in the Universe that are held together by gravity. Astronomers expect these clusters to grow over time so that massive clusters would be rare in the early Universe. Although even more distant clusters have been seen, they appear to be young clusters in the process of formation, not settled mature systems.
The international team of astronomers used the powerful VIMOS and FORS2 instruments on ESO’s Very Large Telescope (VLT) to measure the distances to some of the blobs in a curious patch of very faint red objects first observed with the Spitzer space telescope. This grouping, named CL J1449+0856 for its position in the sky, had all the hallmarks of being a very remote cluster of galaxies. The results showed that we are indeed seeing a galaxy cluster as it was when the Universe was about three billion years old.
Once the team knew the distance to this very rare object, they looked carefully at the component galaxies using both Hubble and ground-based telescopes, including the VLT. They found evidence suggesting that most of the galaxies in the cluster were not forming stars, but were composed of stars that were already about one billion years old. This makes the cluster a mature object, similar in mass to the Virgo Cluster, the nearest rich galaxy cluster to the Milky Way.
Further evidence that this is a mature cluster comes from observations of X-rays coming from CL J1449+0856 made with ESA’s XMM-Newton space observatory. The cluster is giving off X-rays that must be coming from a very hot cloud of tenuous gas filling the space between the galaxies and concentrated towards the center of the cluster. This is another sign of a mature galaxy cluster, held firmly together by its own gravity, as very young clusters have not had time to trap hot gas in this way.
As Gobat concludes, “These new results support the idea that mature clusters existed when the Universe was less than one quarter of its current age. Such clusters are expected to be very rare according to current theory, and we have been very lucky to spot one. But if further observations find many more then this may mean that our understanding of the early Universe needs to be revised.”
Messier 82’s galactic windstorms emanate from many young star clusters, rather than any single source, say astronomers who released this new image today.
The international team of scientists, led by Poshak Gandhi of the Japan Aerospace Exporation Agency (JAXA), has used the Subaru Telescope to produce a new view of M 82 at infrared wavelengths that are 20 times longer than those visible to the human eye.
M 82 (09h 55m 52.2s, +69° 40′ 47″) is located close to the ladle of the Big Dipper in the constellation Ursa Major and is the nearest starburst galaxy, at a distance of about 11 million light years from Earth.
The combination of Subaru Telescope’s large 8.2 m primary mirror and its Cooled Mid-Infrared Camera and Spectrometer (COMICS) allowed the team to obtain a sharp, magnified view of the inner area of the galaxy.
Previous observations of M 82 with infrared telescopes, including the middle and bottom image in the three-part series, have found a very strong wind emanating from it — a ‘superwind’ that is composed of dusty gas and extends over many hundreds of thousands of light years. This high-powered windstorm ejects material from the galaxy at a speed of about a half a million miles per hour, sweeping it up from the central regions and depositing it far and wide over the galaxy and beyond. The contents of this material are seeds for solar systems like our own, and perhaps for life itself. The dusty superwind glows brightly in the infrared, because billions of bright, newly-formed stars heat it up.
With the new Subaru image, scientists have gained insight about the sources of the superwind.
“The wind is found to originate from multiple ejection sites spread over hundreds of light years rather than emanating from any single cluster of new stars. We can now distinguish ‘pillars’ of fast gas, and even a structure resembling the surface of a ‘bubble’ about 450 light years wide,” Gandhi explained.
COMICS has detectors particularly adept at indicating the presence of warm dust, which it found was more than 100 degrees hotter than the bulk of material filling the rest of the galaxy. The widespread, continuous flow of energy from young stars into the galactic expanse keeps the dust hot.
Further insights from the Subaru image emerge when it’s combined with previous images from Hubble and Chandra. Their integration produces a beautiful mosaic, represented in the lead image, that provides the first opportunity to isolate M 82’s infrared properties. Supported by these data, scientists can study the broad spectrum of radiation of different kinds of objects spread over the galaxy’s plane, including supernovae, star clusters, and black holes.
Many questions remain, such as how many more stars the galaxy contains — many could still be obscured by the dust of star formation — and whether or not M 82 hosts an actively growing supermassive black hole.
The results are reported in the article “Diffraction-limited Subaru imaging of M82: sharp mid-infrared view of the starburst core” by P. Gandhi, N. Isobe, M. Birkinshaw, D.M. Worrall, I. Sakon, K. Iwasawa & A. Bamba, in the Publications of the Astronomical Society of Japan, v. 63 (2011), in press.
Looking oddly reminiscent of the “V” depicted in the logo for the sci-fi television series “V,” this has to be one of the strangest objects in space. It’s the Westbrook Nebula — also known as PK166-06, CRL 618 and AFGL 618 — and is a protoplanetary nebula. But this highly irregular bundle of disconnected jets and clouds is the result of a burst of a dying star expelling toxic gases such as carbon monoxide and hydrogen cyanide. Well, toxic to us, anyway, but maybe not to The Visitors!
There are only a few hundred protoplanetary nebulae known in the Milky Way. The appear during a star’s rapid stellar evolution between the late asymptotic giant branch phase and the subsequent planetary nebula phase.
But these short-lived clouds of gas are faint and very hard to see. They emit strong in infrared radiation, and are cool in temperature, so they emit small amounts of visible light. So, astronomers have a few tricks up their telescopic sleeves to try and get images of protoplanetary nebula, and the results are well worth it, as this image demonstrates.
This is a composite image where the astronomers have used exposures in visible light which shows light reflected from the cloud of gas, combined with other exposures in the near-infrared part of the spectrum, showing the dim glow, invisible to human eyes, that is coming from different elements deep in the cloud itself, so this is a kind of reflection nebula.
The Flocculent Spiral NGC 2841, shown above, is known for its profusion of young, blue stars. And yet, until recently, astronomers haven’t been able to use those stars as windows into the still-mysterious phenomenon of star formation.
Hubble’s most recent wide-field camera upgrade is changing that.
The new Wide Field Camera 3 (WFC3) was installed on Hubble in May 2009 during Servicing Mission 4, and replaces the Wide Field and Planetary Camera 2. The new camera is optimized to observe in the infrared and ultraviolet wavelengths emitted by newborn stars, shown by the bright blue clumps in the lead image. Thus, it can peer behind the veil of dust that would otherwise hide those stars from view.
The image shows a lot of hot, young stars in the disc of NGC 2841, but in reality there are just a few sites of current star formation where hydrogen gas is collapsing into new stars. It is likely that these fiery youngsters destroyed the star-forming regions in which they were formed.
NGC 2841 is about 46 million light years away in the constellation Ursa Major. It’s part of a common group of galaxies called flocculent spirals; flocculent means fluffy or wooly-looking. Rather than boasting well-defined spiral arms, these galaxies display patchy stellar distribution.
Star formation is one of the most important processes shaping the Universe; it plays a pivotal role in the evolution of galaxies and it is also in the earliest stages of star formation that planetary systems first appear. Yet there is still much that astronomers don’t understand, such as how the properties of stellar nurseries vary according to the composition and density of the gas present, and what triggers star formation in the first place. The driving force behind star formation is particularly unclear for flocculent spirals.
An international team of astronomers is using Hubble’s WFC3 to study a sample of nearby, but wildly differing, locations where stars are forming. The observational targets include both star clusters and galaxies, and star formation rates range from the baby-booming starburst galaxy Messier 82 to the much more sedate star producer NGC 2841.
Detailed credit information for the lead image: NASA, ESA and the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration Acknowledgment: M. Crockett and S. Kaviraj (Oxford University, UK), R. O’Connell (University of Virginia), B. Whitmore (STScI) and the WFC3 Scientific Oversight Committee.
[/caption]No Princess is sending holographic help messages. No Hans Solo is warming up a Millenium Falcon to jump into hyperdrive. We don’t even have a Death Star waiting around the corner. But, what we do have is evidence that astronomers have pushed the Hubble Space Telescope to its limits and have seen further back in time than ever before. “We are looking back through 96% of the life of the universe, and in so doing, we have found just one galaxy, but it is one, but it is a remarkable object. The universe was only 500 million years old at that time versus it now being thirteen thousand-seven hundred million years old. ” said Garth Illingworth, Ames Research Scientist. We know about the Hubble Ultra Deep Field, but we invite you to boldy go on…
While studying ultra-deep imaging data from the Hubble Space Telescope, an international group of astronomers have found what may be the most distant galaxy ever seen, about 13.2 billion light-years away. “Two years ago, a powerful new camera was put on Hubble, a camera which works in the infrared which we had never really good capability before, and we have now taken the deepest image of the universe ever using this camera in the infrared.” said Garth Illingworth, professor of astronomy and astrophysics at the University of California, Santa Cruz. “We’re getting back very close to the first galaxies, which we think formed around 200 to 300 million years after the Big Bang.” The study pushed the limits of Hubble’s capabilities, extending its reach back to about 480 million years after the Big Bang, when the universe was just 4 percent of its current age. The dim object, called UDFj-39546284, is a compact galaxy of blue stars that existed 480 million years after the Big Bang, only four percent of the universe’s current age. It is tiny. Over one hundred such mini-galaxies would be needed to make up our Milky Way.
Illingworth and UCSC astronomer Rychard Bouwens (now at Leiden University in the Netherlands) led the study, which will be published in the January 27 issue of Nature. Using infrared data gathered by Hubble’s Wide Field Planetary Camera 3 (WFC3), they were able to see dramatic changes in galaxies over a period from about 480 to 650 million years after the Big Bang. The rate of star birth in the universe increased by ten times during this 170-million-year period, Illingworth said. “This is an astonishing increase in such a short period, just 1 percent of the current age of the universe,” he said. There were also striking changes in the numbers of galaxies detected. “Our previous searches had found 47 galaxies at somewhat later times when the universe was about 650 million years old. However, we could only find one galaxy candidate just 170 million years earlier,” Illingworth said. “The universe was changing very quickly in a short amount of time.”
According to Bouwens, these findings are consistent with the hierarchical picture of galaxy formation, in which galaxies grew and merged under the gravitational influence of dark matter. “We see a very rapid build-up of galaxies around this time,” he said. “For the first time now, we can make realistic statements about how the galaxy population changed during this period and provide meaningful constraints for models of galaxy formation.” Astronomers gauge the distance of an object from its redshift, a measure of how much the expansion of space has stretched the light from an object to longer (“redder”) wavelengths. The newly detected galaxy has a likely redshift value (“z”) of 10.3, which corresponds to an object that emitted the light we now see 13.2 billion years ago, just 480 million years after the birth of the universe. “This result is on the edge of our capabilities, but we spent months doing tests to confirm it, so we now feel pretty confident,” Illingworth said.
The galaxy, a faint smudge of starlight in the Hubble images, is tiny compared to the massive galaxies seen in the local universe. Our own Milky Way, for example, is more than 100 times larger. The researchers also described three other galaxies with redshifts greater than 8.3. The study involved a thorough search of data collected from deep imaging of the Hubble Ultra Deep Field (HUDF), a small patch of sky about one-tenth the size of the Moon. During two four-day stretches in summer 2009 and summer 2010, Hubble focused on one tiny spot in the HUDF for a total exposure of 87 hours with the WFC3 infrared camera.
“NASA continues to reach for new heights, and this latest Hubble discovery will deepen our understanding of the universe and benefit generations to come,” said NASA Administrator Charles Bolden, who was the pilot of the space shuttle mission that carried Hubble to orbit. “We could only dream when we launched Hubble more than 20 years ago that it would have the ability to make these types of groundbreaking discoveries and rewrite textbooks.”
To go beyond redshift 10, astronomers will have to wait for Hubble’s successor, the James Webb Space Telescope (JWST), which NASA plans to launch later this decade. JWST will also be able to perform the spectroscopic measurements needed to confirm the reported galaxy at redshift 10. “It’s going to take JWST to do more work at higher redshifts. This study at least tells us that there are objects around at redshift 10 and that the first galaxies must have formed earlier than that,” Illingworth said.
“After 20 years of opening our eyes to the universe around us, Hubble continues to awe and surprise astronomers,” said Jon Morse, NASA’s Astrophysics Division director at the agency’s headquarters in Washington. “It now offers a tantalizing look at the very edge of the known universe — a frontier NASA strives to explore.” How far back will we go? If you sit around a campfire watching the embers climb skywards and discuss cosmology after an observing night with your astro friends, someone will ultimately bring up the topic of space/time curvature. If you put an X on a balloon and expand it – and trace round its expanse – you will eventually return to your mark. If we see our beginnings, will we also eventually see our end coming up over the horizon? Wow… Pass the marshmallows, please. We’ve got a lot to think about.
Reader Info: Illingworth’s team maintains the First Galaxies website, with information about the latest research on distant galaxies. In addition to Bouwens and Illingworth, the coauthors of the Nature paper include Ivo Labbe of Carnegie Observatories; Pascal Oesch of UCSC and the Institute for Astronomy in Zurich; Michele Trenti of the University of Colorado; Marcella Carollo of the Institute for Astronomy; Pieter van Dokkum of Yale University; Marijn Franx of Leiden University; Massimo Stiavelli and Larry Bradley of the Space Telescope Science Institute; and Valentino Gonzalez and Daniel Magee of UC Santa Cruz. This research was supported by NASA and the Swiss National Science Foundation. Hubble Ultra Deep Field Image and Video courtesy of NASA/STSci.
For a long time, astronomers have known that stars often have troubled childhoods. They suffer from frequent and violent flares. But eventually, as they settle onto the main sequence, stars grow out of their destructive ways, which is thankful for us since large flares could do some serious damage to our biosphere. A new study confirms expectations that some stars never outgrow their roguish ways and that the smallest stars can be prone to the most frequent flares.
The study uses data from the Sagittarius Window Eclipsing Extrasolar Planet Search (SWEEPS) survey conducted by the Hubble Space Telescope. This survey was conducted over a seven day period in 2006 and originally designed to search for transiting planets by repeatedly imaging over 200,000 stars for sings of transits. However, since the exploration contained so many red dwarf stars, the smallest and most common stars in the universe, a team led by Rachel Osten of the Space Telescope Science Institute was able to use it to constrain the rate of flares on these diminutive stars.
The team eventually discovered 100 stellar flares, some of which increased the overall brightness of their parent star by as much as 10%. In general, most flares were short, lasting on average a mere 15 minutes. Some stars flared multiple times. These flares weren’t limited to simply young stars, but also, highly evolved stars, including several variable stars which appeared to flare more often.
“We discovered that variable stars are about a thousand times more likely to flare than non-variable stars,” Adam Kowalski, another team member, says. “The variable stars are rotating fast, which may mean they are in rapidly orbiting binary systems. If the stars possess large star spots, dark regions on a star’s surface, that will cause the star’s light to vary when the spots rotate in and out of view. Star spots are produced when magnetic field lines poke through the surface. So, if there are big spots, there is a large area covered by strong magnetic fields, and we found that those stars had more flares.”
Part of the reason that dwarf stars are though to flare more comes from the fact that they have deep convection zones (shown by their lack of lithium in the photosphere which is destroyed by convection which drags it to depths hot enough to destroy it). This bulk movement of ionized particles creates a dynamo and strong magnetic fields on the star. When these fields become especially tangled, they can snap and spontaneously reform in a lower energy state. The energy lost is dumped into the stars outer layers, heating them with tremendous amounts of energy and releasing large amounts of ultraviolet, X-ray, and even gamma radiation as well as charged particles. In more extreme circumstances, the fields don’t immediately reform but swing outwards as they unwind themselves, dragging large amounts of the star with it, and flinging it outwards in a coronal mass ejection (CME).
One of the results of the enhanced magnetic activity is a larger number and size of sunspots. According to Osten, “Sunspots cover less than 1 percent of the Sun’s surface, while red dwarfs can have star spots that cover half of their surfaces.”
Almost four years ago a group of astronomers known as the Galaxy Zoo made a very exciting discovery – one they named “Hanny’s Voorwerp”. Although the action occurred a hundred thousand years ago and somewhere in the neighborhood of 700 million light years away, a once upon a time quasar burned brighter than its neighboring galaxy. While the tidal pull of massive spiral IC 2497 shredded a gas rich dwarf galaxy, the incredible outpouring of ultraviolet and X-ray radiation combined with the quasar ignited the gases to light… but what exactly is it? The Hubble Space Telescope turned its eye in the direction of Leo Minor to find out…
According to the American Astronomical Society press release: “One of the strangest space objects ever seen is being scrutinized by the penetrating vision of the NASA/ESA Hubble Space Telescope. A mysterious, glowing green blob of gas is floating in space near a spiral galaxy. Hubble uncovered delicate filaments of gas and a pocket of young star clusters in the giant object, which is the size of the Milky Way. The Hubble revelations are the latest finds in an ongoing probe of Hannyrquote s Voorwerp (Hanny’s Object in Dutch). It is named after Hanny van Arkel, the Dutch schoolteacher who discovered the ghostly structure in 2007 while participating in the online Galaxy Zoo project. Galaxy Zoo enlists the public to help classify more than a million galaxies catalogued in the Sloan Digital Sky Survey. The project has expanded to include Galaxy Zoo: Hubble, in which the public is asked to assess tens of thousands of galaxies in deep imagery from the Hubble Space Telescope.” In the sharpest view yet of Hanny’s Voorwerp, Hubble’s Wide Field Camera 3 and Advanced Camera for Surveys have uncovered star birth in a region of the green object that faces the spiral galaxy IC 2497 — a bright, energetic object that is powered by a black hole.
This Hubble view reveals new details in colorful clarity – such as a area of star clusters whose members are only a couple of million years old… and the chemically charged yellowish-orange area at the tip of Milky Way sized Hanny’s Voorwerp. The image was made by combining data from the Advanced Camera for Surveys (ACS) and the Wide Field Camera 3 (WFC3) onboard Hubble, with data from the WIYN telescope at Kitt Peak, Arizona, USA. The ACS exposures were taken 12 April 2010; the WFC3 data, 4 April 2010.
“The star clusters are localized, confined to an area that is over a few thousand light-years wide,” explains astronomer William Keel of the University of Alabama in Tuscaloosa, leader of the Hubble study. “The region may have been churning out stars for several million years. They are so dim that they have previously been lost in the brilliant light of the surrounding gas.”
The press release goes on to state that recent X-ray observations have revealed why Hanny’s Voorwerp caught the proverbial eye of astronomers. The galaxy’s rambunctious core produced a quasar, a powerful light beacon powered by a black hole. The quasar shot a broad beam of light in Hanny’s Voorwerp’s direction, illuminating the gas cloud and making it a space oddity. Its bright green color is from glowing oxygen. “We just missed catching the quasar, because it turned off no more than 200,000 years ago, so what we’re seeing is the afterglow from the quasar,” Keel says. “This implies that it might flicker on and off, which is typical of quasars, but we’ve never seen such a dramatic change happen so rapidly.”
The quasar’s outburst also may have cast a shadow on the blob. This feature gives the illusion of a gaping hole about 20,000 light-years wide in Hanny’s Voorwerp. Hubble reveals sharp edges around the apparent opening, suggesting that an object close to the quasar may have blocked some of the light and projected a shadow on Hanny’s Voorwerp. This phenomenon is similar to a fly on a movie projector lens casting a shadow on a movie screen. (Or your little brother Tom making a duck face with his hand while your Mom isn’t looking.) Radio studies have revealed that Hanny’s Voorwerp is not just an island gas cloud floating in space awaiting a three-hour tour. The glowing blob is part of a long, twisting rope of gas, or tidal tail, about 300,000 light-years long that wraps around the galaxy. The only optically visible part of the rope is Hanny’s Voorwerp. The illuminated object is so huge that it stretches from 44,000 light-years to 136,000 light-years from the galaxy’s core. The quasar, the outflow of gas that instigated the star birth, and the long, gaseous tidal tail point to a rough life for IC 2497.
“The evidence suggests that IC 2497 may have merged with another galaxy about a billion years ago,” Keel explains. “The Hubble images show in exquisite detail that the spiral arms are twisted, so the galaxy hasn’t completely settled down.” In Keel’s scenario, the merger expelled the long streamer of gas from the galaxy and funneled gas and stars into the center, which fed the black hole. The engorged black hole then powered the quasar, which launched two cones of light. One light beam illuminated part of the tidal tail, now called Hanny’s Voorwerp.” says Keel. “About a million years ago, shock waves produced glowing gas near the galaxy’s core and blasted it outward. The glowing gas is seen only in Hubble images and spectra. The outburst may have triggered star formation in Hanny’s Voorwerp. Less than 200,000 years ago, the quasar dropped in brightness by 100 times or more, leaving an ordinary-looking core.
New images of the galaxy’s dusty core from Hubble’s Space Telescope Imaging Spectrograph show an expanding bubble of gas blown out of one side of the core, perhaps evidence of the sputtering quasar’s final gasps. The expanding ring of gas is still too small for ground-based telescopes to detect. “This quasar may have been active for a few million years, which perhaps indicates that quasars blink on and off on timescales of millions of years, not the 100 million years that theory had suggested,” Keel says. He added that the quasar could light up again if more material is dumped around the black hole.
Fascinating evidence which confirms the team’s original explanation… Go Zoo!
Credits: NASA, ESA, William Keel -University of Alabama, Tuscaloosa, the Galaxy Zoo team and STScI Press releases.
There are some stellar powerhouses inside the Eagle Nebula, and Hubble has captured a collection of these hot, blue stars. These dazzling stars are an open star cluster called NGC 6611, whose fierce ultraviolet glow make the surrounding Eagle Nebula glow brightly. But there are also areas in this image that look dark and empty. Are those areas just empty? No, they are actually very dense regions of gas and dust, which obstruct light from passing through.
Hubble astronomers say that many of these dark areas may be hiding the sites of the early stages of star formation, before the fledgling stars clear away their surroundings and burst into view. Dark nebulae, large and small, are dotted throughout the Universe. If you look up to the Milky Way with the naked eye from a dark, remote site, you can easily spot some huge dark nebulae blocking the background starlight.
This region in the Eagle Nebula formed about 5.5 million years ago and is found approximately 6,500 light-years from the Earth. The cluster and the associated nebula together are also known as Messier 16.
Astronomers refer to areas like the Eagle Nebula as HII regions. This is the scientific notation for ionised hydrogen from which the region is largely made. Extrapolating far into the future, this HII region will eventually disperse, helped along by shockwaves from supernova explosions as the more massive young stars end their brief but brilliant lives.
This picture was created from images from Hubble’s Wide Field Channel of the Advanced Camera for Surveys through the unusual combination of two near-infrared filters (F775W, colored blue, and F850LP, colored red). The image has also been subtly colorized using a ground-based image taken through more conventional filters. The Hubble exposure times were 2000 s in both cases and the field of view is about 3.2 arcminutes across.