Note: To celebrate the 20th anniversary of the Hubble Space Telescope, for ten days, Universe Today has featured highlights from two year slices of the life of the Hubble, focusing on its achievements as an astronomical observatory. Today’s article looks at the last two years, to April 2010.
The stakes for the fifth, and final, Hubble servicing mission couldn’t have been higher; not only were two new instruments to be installed (a relatively straight-forward task), not only was much of key infrastructure to be replaced (batteries, fine-guidance sensors, thermal blankets), but intricate repairs had to be performed on the two most complicated instruments (ACS and STIS), something not in the design, something difficult enough in a well-appointed lab on Earth much less done by astronauts in bulky space suits. The servicing mission was postponed, as it became clear that the work to be done was more extensive; but in May 2009 STS-125, involving five full days of space walks and 11 days in space, met all the objectives.
And a little under four months later, after extensive testing and calibration, the Hubble was back in the astronomy business.
This image is the Hubble Ultra-Deep Field (HUDF), as seen by WFC3 in the infrared (now that Hubble Zoo is live, you will have a chance to analyze fields like this yourself!)
[/caption]
MACS J0025.4-1222 is not as well known as the Bullet Cluster, but perhaps it should be. One of the really big, open questions in astronomy today is the nature of dark matter; observations of the Bullet Cluster point to dark matter being a form of matter that does not interact with normal (baryonic) matter, except gravitationally. But perhaps the Bullet Cluster is just an anomaly, or perhaps we don’t really understand what’s going on? In astronomy, as in all science, independent verification is key, and what better way to provide that, for dark matter, than to observe another interacting cluster? “Revealing the Properties of Dark Matter in the Merging Cluster MACS J0025.4-1222” is the paper to read, and Hubble’s ACS provided many of the key observations.
A direct image of an exoplanet, and an estimate of its orbit; the coronagraph on ACS blocked out most of the light of Fomalhaut so its planet – Fomalhaut b – could be seen.
WFPC2 was removed during SM4 (and replaced by WFC3); this was Hubble’s workhorse camera for some 16 years, the camera which just kept on working. It is fitting then that one of its last images is of Arp 194, dubbed ‘the fountain of youth’.
Happy 20th Birthday to the Hubble Space Telescope! While we should be showering HST with gifts, instead the telescope provides this present to us: an amazing view of what has been nicknamed “Mystic Mountain. ” It is just a small portion of one of the largest known star-birth regions in the galaxy, the Carina Nebula. Three light-year-tall towers of cool hydrogen laced with dust rise from the wall of the nebula. The scene is reminiscent of Hubble’s classic “Pillars of Creation” photo from 1995, but even more striking. “Mystic Mountain has clouds of gas and dust, that have not only baby stars, but also baby solar systems,” said John Grunsfeld, Hubble-hugger, repairman and now the Deputry Director of the Space Telescope Science Institute. “4.5 billion years ago, this may be what our solar system looked like.”
Would you like to wish Hubble a happy birthday?
Hubble fans worldwide are being invited to take an interactive journey with Hubble. They can also visit Hubble Site to share the ways the telescope has affected them. Follow the “Messages to Hubble” link to send an e-mail, post a Facebook message, or send a cell phone text message. Fan messages will be stored in the Hubble data archive along with the telescope’s science data. For those who use Twitter, you can follow @HubbleTelescope or post tweets using the Twitter hashtag #hst20.
Hubble launched on April 24, 1990.
“Hubble is undoubtedly one of the most recognized and successful scientific projects in history,” said Ed Weiler, associate administrator for the Science Mission Directorate at NASA Headquarters in Washington. “Last year’s space shuttle servicing mission left the observatory operating at peak capacity, giving it a new beginning for scientific achievements that impact our society.”
This morning during interviews on NASA TV, Grunsfeld and Weiler said they both felt fortunate to work with Hubble, a telescope who’s legacy will live on, no matter how much longer the telescope operates.
“I’m lucky to have worked on a project that will outlive me,” Weiler said.
“The discovery that I think is so incredible, and could not be imaged was that Hubble has now analyzed the constituents of an atmosphere of a planet around another star,” said Grunsfeld. “It is as if we were exploring that planet – and that’s what Hubble does for us, allows us to visit places we’ll never be able to go.”
On that note, take a 3-D trip into the Carina Nebula with the video below:
The Hubble Space Telescope is 20 years old on Saturday and, to mark this anniversary, all the world’s space and astronomy fans have a chance to become part of the Hubble team.
As part of the birthday celebrations NASA’s Space Telescope Science Institute and the online astronomy project Galaxy Zoo are making some 200,000 Hubble images of galaxies available to the public at Galaxy Zoo (www.galaxyzoo.org). They hope that volunteers looking for their own favorite galaxies will join forces to give the venerable telescope a present – classifications of each galaxy which will help astronomers understand how the Universe we see around us formed.
“The large surveys that Hubble has completed allow us to trace the Universe’s evolution better than ever before,” said University of Nottingham astronomer and Galaxy Zoo team member Dr. Steven Bamford. “The vast majority of these galaxies will never have been viewed by anyone, and yet we need human intuition to make the most of what they are telling us”.
More than 250,000 people have already contributed to Galaxy Zoo since its launch in 2007, but so far they have been looking only at the ‘local’ Universe, up to a hundred million or so light-years away. The galaxies in HubbleZoo are from some of the big surveys, such as GOODS, and the images were processed by the Galaxy Zoo team alongside Roger Griffith at JPL and the Space Telescope Science Institute (see this article, from my Universe Today series on the Hubble, for more details on GOODS).
“Hubble will enable us to look back in time, to the era when many of the galaxies we see today were forming,” said Dr. Chris Lintott of Oxford University, Galaxy Zoo principal investigator. “As a kid I always wanted a time machine for my birthday, but this is the next best thing!”
“We never dreamt that people would find so many fascinating objects in the original Galaxy Zoo,” said Yale University astronomer Dr. Kevin Schawinski. “Who knows what’s hiding in the Hubble images?” Lintott added: “As we recovered from the launch of the original Galaxy Zoo, we knew we’d want to have a look at Hubble. Now we realize the images are better and the galaxies weirder than we ever thought they would be.”
And how will you, dear zooite-to-be, contribute, and find a hidden gem among the Hubble galaxies? Once you log in, you will asked to answer simple questions about what you are seeing, for example, identifying the number of spiral arms visible, or spotting galaxies in the process of merging. And if you spot something odd, you can bring it to the attention of other zooites, and the Zoo astronomers.
“Every galaxy is special in its own way,” said Stuart Lynn of Oxford University, Galaxy Zoo team member, “but some are worthy of individual attention. Anyone combing through the data using our site could make a spectacular discovery, and that would be the best birthday present of all.”
Sources: NASA, HubbleSite, Oxford University, Galaxy Zoo Forum The two images above, of a galaxy called SDSS J100213.52+020645.9, highlight the sharpness and depth of the Hubble’s images (the SDSS telescope and the Hubble have primary mirrors of approximately the same diameter).
[/caption] Note: To celebrate the 20th anniversary of the Hubble Space Telescope, for ten days, Universe Today will feature highlights from two year slices of the life of the Hubble, focusing on its achievements as an astronomical observatory. Today’s article looks at the period April 2006 to April 2008.
The image of the Antennae galaxies, above, released on October, 17 2006, is bitter-sweet. On the one hand it’s a stunning image, even more spectacular than the one taken nine years earlier with WFPC2; on the other the star instrument which took it, Advanced Camera for Surveys (ACS), failed first in July 2006, and again in January 2007. On top of that, one by one the Hubble’s gyroscopes started to fail, and its batteries too. In October 2006 the new NASA Administrator, Mike Griffin, had given the go-ahead for one last Space Shuttle mission to the Hubble, for a final servicing. With failure following failure, the servicing mission become more and more complex, and it was hard to maintain optimism in the future of Hubble.
The ACS’ failure came after it had completed its part of the Cosmic Evolution Survey (COSMOS), which was a coordinated project involving many of the world’s leading observatories, both on the ground and in space (a bit like GOODS, which I covered in yesterday’s article). Among the successes of COSMOS was this 3D map of the distribution of dark matter.
The way the Hubble keeps its gaze steady, during the sometimes quite long exposures of some of its instruments, is a marvel of modern engineering. Central to this intricate system is a set of sensors, called the Fine Guidance Sensors (FGS), which were designed to do science too, specifically astrometry.
The sensors aim the telescope by locking onto guide stars and measure the position of the telescope relative to the object being viewed. Adjustments based on these constant, minute measurements keep Hubble pointed precisely in the right direction.
One of most interesting results from the FGS is the finding that the main star in the R136 cluster in the 30 Doradus nebula (better known as the Tarantula Nebula in the Large Magellanic Cloud) – R136a – is actually a triple (“Hubble Space Telescope Fine Guidance Sensor interferometric observations of the core of 30 Doradus“). Once upon a time the entire cluster was thought to be a single star, the most massive one ever seen; today R136a1 weighs in at ‘merely’ some 30 to 80 sols.
Comet Holmes is certainly one of the most memorable comets of recent times, not so much for its spectacular tail, but for its odd behavior; Hubble observed it several times Finally, Hubble’s View of Comet Holmes is the Universe Today story on this.
One of the most difficult challenges astronomers face, in doing science, is understanding and accounting for biases. For example, how could you tell, just by examining the approximately 6,000 stars you can see with your unaided vision, that none of them are examples of the most common kind of star! The nearest, brightest red dwarfs are far too faint to see without a telescope (do you know what their names are?), and it’s no easy matter to even find these stars. And what about stars that are fainter still, stars that aren’t quite stars, brown dwarfs? The first, certain, brown dwarf was not discovered until 1995, but since then our understanding of them has improved dramatically, and Hubble’s ACS has helped greatly in that understanding (see the Universe Today article on CHXR 73: Giant Planet or Failed Star?).
With a galaxy (or cluster) positioned just so in front of a more distant galaxy (or quasar), gravitational lensing will produce an Einstein ring (or a partial ring). Several such rings had been observed prior to 2008, but the one ACS snapped – of SDSSJ0946+1006 – turned out to be a double; three galaxies lined up one behind the other (the right hand image is a highly processed version of the left hand one, with the light of the massive, foreground elliptical galaxy removed). Hubble Sees a Double Einstein Ring.
[/caption] Note: To celebrate the 20th anniversary of the Hubble Space Telescope, for ten days, Universe Today will feature highlights from two year slices of the life of the Hubble, focusing on its achievements as an astronomical observatory. Today’s article looks at the period April 2004 to April 2006.
First, in 1995, there was the Hubble Deep Field (HDF). Then, in 1998, the Hubble Deep Field South (HDF-S). With the new Advanced Camera for Surveys (ACS) aboard, and the Near Infrared Camera and Multi-object Spectrometer (NICMOS) continuing to work well, the Hubble took a new, even deeper, image. And what was it called? Why, the Hubble Ultra-Deep Field (HUDF) of course! The total exposure was approximately a million seconds, and the observations were made in late 2003 and early 2004 (Earliest Star Forming Galaxies Found is Universe Today’s first story on it). Hundreds of scientific papers have been published using data from these observations (and others; a lot of time on major ground-based telescopes has also been devoted to these fields).
In its more than a decade of operation, the Hubble’s main astronomical instruments worked well. Sure, they needed various repairs and were upgraded in one way or another during the four servicing missions to date (remember that 3 was split into two, 3A and 3B), but none failed completely. Well, in August 2004 STIS (the Space Telescope Imaging Spectrograph) did.This intensified the gloom created earlier in the year when NASA Director announced that there would be no more Space Shuttle missions to the Hubble, and his announcements about possible robotic missions left space and astronomy fans cold.
In April 2006, Hubble turned 16; would you have chosen M82 as a ‘sweet sixteen’ snap to put in your album? Universe Today did!
One of the biggest challenges in astronomy today is working out how galaxies formed and evolved. In turn this involves understanding the role of star formation (and its rates), how supermassive black holes accrete matter and create jets, and how dark matter structures form. One powerful way to get at least some answers to the many questions is to point the world’s most powerful telescopes at the same, small, patch of sky for a very long time. Choosing the patch of sky to stare at isn’t easy; for example, ideally you want a ‘hole’ in the Milky Way’s hydrogen, to let you see as clearly as possible in the soft x-ray part of the electromagnetic spectrum. The GOODS team, comprising dozens of astronomers from many institutions, chose two fields, one in the north (centered on the Hubble Deep Field) and one in the south (centered on the Chandra Deep Field-South). The image above gives an idea of what one project involved; the red dots are objects whose spectra were taken (by a spectrograph called VIMOS, on one of the European Southern Observatory’s Very Large Telescopes), overlaid on an image from a ground-based telescope; the contours are the Chandra 2Ms (yes, that’s 2 million seconds) region, and the Hubble ACS GOODS-S field. Over 400 GOODS papers have been published so far, with all sorts of interesting results established. For more information, visit the STScI GOODS website and the ESO one; to get you started, “The Great Observatories Origins Deep Survey: Initial Results from Optical and Near-Infrared Imaging“.
I mentioned earlier – Hubble’s 20th: At Least as Good as Any Human Photographer – that astronomers have their own file format, called FITS, for astronomical data, whether images, spectra, or whatever. Well, FITS is not exactly user friendly (unless you’re an astronomer), so to make the data more accessible, a joint team from the European Space Agency, the European Southern Observatory, and NASA produced the ESA/ESO/NASA Photoshop FITS Liberator, a free plug-in. Why not give it a try?
Even though various space probes visit various planets (and their moons), and undertake intensive research of them, good science is still done from afar. Hubble’s studies of Saturn’s aurorae are a good example (Universe Today’s coverage here).
Hubble had taken many images of the Crab Nebula before (see Hubble at 8: So Many Discoveries, So Quickly for example), but the above was a first, in many ways. It was taken by WFPC2, and is actually 24 separate images; it is the highest resolution image of the Crab, to date (Giant Hubble Mosaic of the Crab Nebula is the Universe Today title).
The Orion nebula is the closest ‘star factory’, so receives intense scrutiny by astronomers. Hubble pointed all its imaging instruments at it, in 2005, for over 100 orbits. This image is an ACS mosaic (do you know what the other imaging instruments were, then? Best Orion Nebula Image Ever Taken has the answer).
The theory of general relativity predicts gravitational lensing, and this prediction was confirmed in 1919 (do you know how?). When a point source, such as a quasar, is lensed by a foreground object such as a galaxy cluster, the resulting image will have quite specific properties; for example, only an odd number of images, but one image is usually very weak and embedded deep within the light of the lensing object itself. Four images produced by SDSS J1004+4112 (the foreground cluster) had been detected before, but Hubble found the fifth (the blue circles are the quasar, the red a lensed galaxy, the yellow a supernova). Hubble’s Best Gravitational Lens is the Universe Today article on this discovery.
Note: To celebrate the 20th anniversary of the Hubble Space Telescope, for ten days, Universe Today will feature highlights from two year slices of the life of the Hubble, focusing on its achievements as an astronomical observatory. Today’s article looks at the period April 2002 to April 2004.
As I mentioned yesterday, Hubble servicing mission 3B in March 2002 saw the successful replacement of the Faint Object Camera with the Advanced Camera for Surveys (ACS). Surveys, surveys, and yet more surveys; astronomers are forever spending huge amounts of time doing surveys. And from its name you’d not be wrong to guess that a great deal of ACS’ time has been devoted to surveys. Perhaps the best known – to astronomers anyway – is GOODS, which stands for the Great Observatories Origins Deep Survey. It was kicked off in late 2001, and is still on-going; in addition to hundreds of hours of observations by the most powerful ground-based facilities and Hubble’s ACS, an awful lot of time on Spitzer, Chandra, XMM-Newton, and Herschel has been devoted to it (I’ll cover GOODS in more detail later; for now, here’s a link to the project’s website).
Shortly after the ACS went into operation, the world was treated to a sample of stunning images from it. My favorite is ‘the Mice’ (NGC 2676); what’s yours?
Oh, and that galaxy collision?
We imagine that the Space Telescope Science Institute (STScI) is devoted exclusively to the Hubble, both its scientific work and its public outreach and education. Sometimes however the work goes a bit beyond that, and combines both science and outreach.
A good example of this is the video at the top of this article; Dr. Frank Summers, an STScI astrophysicist, took research simulation data from Case Western Reserve University’s Chris Mihos and Harvard University’s Lars Hernqvist and visualized it using the same software that Hollywood uses to produce blockbuster visual effects. Special care was taken so that what appears onscreen accurately reflects what was calculated in the simulation.
How good is ACS? Judge for yourself; the image of Uranus’ moons above is from ACS, compare it to the WFPC2 one, in Hubble’s 20 Years: Now We Are Six article (Universe Today’s story on this is Hubble Finds Two Small Moons Around Uranus).
Hubble’s superb resolution, close to the theoretical best for its new instruments (and old ones, using COSTAR), gives us spectacularly detailed images (and oodles of data) for such transient events as the flare-up on the star V838 Mon, lighting up the surrounding gas and dust and giving us much better understanding of the interstellar medium.
As you’ve no doubt already concluded, the Hubble helped our understanding of planetary nebulae greatly; but, as is always the case in an active field of science, new observations sometimes bring new questions. Such is the case of Henize 3-1475, the ‘garden sprinkler’ nebula (Puzzling Jets Seen Blasting Out from a Nebula is Universe Today’s story on this).
Some gravitational lenses produce images which can be analyzed using observations from ground-based telescopes. Generally, however, the Hubble produced by far the best data … and stunning images (Abell would have been astonished; he died in 1983, only a few years after the first astronomical lens was discovered, the ‘twin QSO’; it looks nothing like this).
[/caption] Note: To celebrate the 20th anniversary of the Hubble Space Telescope, for ten days, Universe Today will feature highlights from two year slices of the life of the Hubble, focusing on its achievements as an astronomical observatory. Today’s article looks at the period April 2000 to April 2002.
The International Center for Photography gave its 2000 Infinity Award to the Hubble Heritage Project, in the Applied Photography section. And what did that team choose to showcase their award? The above image of NGC 3314! Clearly the Hubble has had a deep impact far beyond the astronomical community and space fans.
Columbia’s last flight, before the one that ended in disaster, was STS-109, or the Hubble servicing mission 3B, in March, 2002. In terms of imaging capability, it was the most dramatic; the Advanced Camera for Surveys (ACS) was installed (replacing the Faint Object Camera), and NICMOS’ cooling system was replaced (giving the Hubble ‘night vision’ again – it could see in the infrared once more). I’ll be covering the cornucopia of science results from ACS in later articles.
My pick for the Hubble image most of you, my readers, would put at the top your ‘what I remember from these two years’ is Stephan’s Quintet.
What we see on a webpage or in a magazine, when we look at a Hubble image, resembles a photograph. What an astronomer sees is data, glorious data, in all its numerical detail (astronomers even invented a special file format for their data, called FITS, short for flexible image transport system; more about it here). And among the most critical aspect of astronomical data is its calibration, e.g. the function which relates pixel values to things like flux (which may be measured in janskys, or ergs per second per square meter per hertz). But how do you calibrate an instrument that’s aboard the Hubble? You turn to the Instrument Physical Modelling Group, part of the Space Telescope European Coordinating Facility! This highly specialist team actually models the Hubble’s instruments, in software, from first (physics) principles, and from those models produces robust software for taking the raw data from a Hubble instrument and producing calibrated, science-grade data. They then make their results public, for anyone and everyone to use; for example the Faint Object Spectrograph Post-Operational Archive (you can read the details of their work in ST-ECF Newsletter 29).
Another behind-the-scenes activity is the production of the Hubble Guide Star Catalog, essential for the Hubble’s smooth operation (and a major boon to amateurs); 2001 saw a major new release (II).
Every now and then a (faint) star will pass close to the line of sight of a more (bright) distant star, and we will see the (distant) star brighten in a characteristic way (due to gravitational lensing). One kind of such lensing is the object of many astronomers’ desire, a MACHO (massive compact halo object); even more desirable is to see both the lensed and lensing stars, as separate points of light, some time after the event. Hubble observed just such a rarity.
Comets are fragile things; their very tails tell tales of constant erosion at the hands of sunlight. And when they die, do they do so with a bang, or merely a whimper? Hubble captured an example of the latter (Comet LINEAR is no more).
But the Hubble isn’t only for astronomers, even amateur astronomers; it’s there for us all, to take pictures that awe and inspire us. And by popular demand, the famous Horsehead nebula, as never seen by anyone using a telescope down here on Earth.
It was during these two years that Universe Today began its coverage of the Hubble (and other astronomy and space topics); for example Hubble Reveals Backward Galaxy (however, I can’t find any Universe Today stories from this period with Hubble images; can you help me out please, dear reader?)
[/caption] Note: To celebrate the 20th anniversary of the Hubble Space Telescope, for ten days, Universe Today will feature highlights from two year slices of the life of the Hubble, focusing on its achievements as an astronomical observatory. Today’s article looks at the period April 1998 to April 2000.
In October 1998, Hubble complemented the original Hubble Deep Field with Hubble Deep Field South (HDF-S). Three instruments – NICMOS, STIS, and WFPC2 – stared at a tiny spot in the sky for ten days (more images here).
Hubble got dizzy in November 1999; the fourth (of six) gyroscopes failed, and the observatory was put into safe mode. The third servicing mission, planned for mid-2000, was split in two, with 3A being done in December 1999. Along with replacing all the gyros, Hubble got a computer upgrade … to a 486 model (did you ever own a PC with a 486 CPU?)
I reckon the image which most of us remember best from these two years is this one of M57, yet another planetary nebula.
“Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant” is one of the most heavily cited papers in astronomy, perhaps even science, period. It also happens to be one of easiest to read, and is likely to serve as a model for a long time. It is based on a great deal of ‘Hubble time’ (dedicated observations), but should anyone want use all the data from all that time, they are free to do so. Wendy Freedman is the lead author on that paper, and led this Hubble Key Project (HKP) from start to finish.
At its heart, this HKP is a repeat of Edwin Hubble’s work, some seven decades earlier – observing lots of Cepheid variables in some 19 nearby galaxies, with the Hubble, and using the period-luminosity relationship to estimate the distances to them (Of course, there’s a very great deal more to it than that!). No prizes for guessing who the Hubble is named after, and why.
The end of the Key Projects freed up more time for the Hubble to observe other things; some of which may surprise you. For example, many people think the Hubble cannot look at the Moon, much less take pictures of it.
To make some of Hubble’s best eye-candy more accessible, the Hubble Heritage Project was set up, in 1998. And what more appropriate eye candy is there, in a story about the Hubble, than Hubble’s variable nebula?
And one of the things the Hubble Heritage team did was run a competition for the best image; the polar ring galaxy NGC 4650A won (was that your choice?); if you think this looks odd, it is … I rotated it 90 degrees (there’s no up or down in space).
To close, two much less often seen HDF-S results, from NICMOS (above) and STIS (below).
Note: To celebrate the 20th anniversary of the Hubble Space Telescope, for ten days, Universe Today will feature highlights from two year slices of the life of the Hubble, focusing on its achievements as an astronomical observatory. Today’s article looks at the period April 1996 to April 1998.
The ability of the Hubble Space Telescope to be serviced by astronauts, using a space shuttle as a platform, is one of its design features. This proved its worth very early, with the first servicing mission installing COSTAR. The second such mission – a ten day effort with Discovery as the workhorse – took place in February 1997; two new instruments were installed (and two removed), the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) and the Space Telescope Imaging Spectrograph (STIS), and many other, smaller, upgrades and repairs made.
Yesterday’s article featured the Pillars of Creation; today’s captures the beauty of a star’s death.
[/caption]
How does the Hubble work? Who runs it? The Space Telescope Science Institute (STScI) is responsible for the scientific operation of Hubble as an international observatory; it has a combined staff of approximately 500, of whom approximately 100 are PhDs. Among the prime tasks of the STScI are the selection of the Hubble observing proposals, their execution, the scientific monitoring of the telescope and its instruments and the archiving and distribution of the Hubble observations.
The Space Telescope-European Coordinating Facility (ST-ECF) offers support for the preparation of Hubble observing proposals and the scientific analysis of observations. It also operates the Hubble Science Archive, which makes data available to the astronomical community via the Internet.
With the exception of observations like the Hubble Deep Field – which are available for immediate release – the data from Hubble observations are the exclusive property of the observers for one year, after which all scientific data are made available to anyone and everyone, via the internet. And guess what? Thousands of papers have been published, using such freely available data!
One example of the tremendous value of the Hubble archive is all the asteroids it inadvertently images; because of the Hubble’s sensitivity, motion, and resolution, the orbits of many of these can be determined from just the serendipitous images (discoveries made by ground-based telescopes usually require follow-up images days apart). And yes, many papers have been written, based on these images, “Asteroid Trails in Hubble Space Telescope” for example.
Sometimes something happens in the sky and you want to point powerful telescopes at it, quickly, before it disappears. By far the most interesting yet fleeting ‘something’ is gamma-ray bursts (GRBs). Although known for decades, none had been seen in any other electromagnetic waveband … until February 28, 1997. Right after its servicing mission, Hubble caught the afterglow of GRB 970228, located in very distant galaxy. A milestone in astronomy.
Volcanoes, active ones, were discovered on Io, by accident, in 1979, as volcanic plumes rising above the limb. Who could have imagined that such plumes would be imaged not twenty years later, from low-Earth orbit, with Jupiter as the backdrop?
In 1920 Betelgeuse’s diameter was estimated, using a 6 meter interferometer mounted on the front of the 100-inch Mount Wilson telescope. In 1996, the Hubble made a direct observation of Betelgeuse, resolving it; only the second star to have ever been seen as anything but a point of light (what was the first?).
The Antennae galaxies, NGC 4038/NGC 4039, are not only highly photogenic (how many amateurs count their snaps of these among their most prized?), but great natural laboratories for studying galaxy collisions, star formation, etc. Hubble’s 1997 images provided the basis for hundreds of papers.
Note: To celebrate the 20th anniversary of the Hubble Space Telescope, for ten days, Universe Today will feature highlights from two year slices of the life of the Hubble, focusing on its achievements as an astronomical observatory. Today’s article looks at the period April 1994 to April 1996.
After the famous Apollo 8 “Earthrise” image, comet Shoemaker-Levy 9’s impact with Jupiter, in July 1994, strikes us as the most stark reminder of the fragility of our home. And the Hubble gave us the clearest pictures of just how destructive that collision was; those dark blotches are bigger than the Earth.
Equally memorable, from Hubble’s early childhood years – ages five and six – is the “Pillars of Creation” image.
[/caption]
Much of the Hubble’s time in the first few years was devoted to the Hubble Space Telescope Key Projects, two of which I mentioned yesterday, “on the Extragalactic Distance Scale”, and the “Quasar Absorption Line” Key Project. There is a third, the Medium-Deep Survey (MDS), lead by Richard Griffiths, who is now at Carnegie Mellon University. Here’s a nice bit of trivia: astronomers spend an inordinate, a humongous amount of time doing surveys; they even build entire observatories devoted exclusively to them (think Sloan Digital Sky Survey, of Galaxy Zoo fame)! And here’s a question for you: why? Why are surveys soooo important to astronomers?
Anyway, MDS is interesting for another reason too; it’s a “parallel mode” project … while the Hubble is pointed at its main target, a nearby field is also observed, using WF/PC or the Faint Object Camera (or, later, WFPC2); two results for the price of one! However, perhaps more than any other observations, the MDS ones before the Hubble had its vision fixed (see yesterday’s article) suffered from the mis-figuring of the primary mirror. And it’s a tribute to the ingenuity and perseverance of Griffiths and his colleages that they were, eventually, to wring so much good science from the data (you guessed it, hundreds and hundreds of papers).
Jupiter wasn’t the only solar system object of interest to Hubble; Uranus, its rings and inner moons captured on film (well, CCD); the first surface features on Pluto were snapped; Saturn’s Aurorae imaged; the Galilean moons of Jupiter mapped; etc, etc, etc.
My own favorite Hubble recollection from these two years is (another!) paper by John Bahcall, “M dwarfs, microlensing, and the mass budget of the Galaxy“, which basically proved that the Milky Way’s halo is composed principally of non-baryonic dark matter. I remember reading it and thinking, “nah, that can’t be right, you guys can’t conclude that from that data!”, but the more I gnawed at it, the more it struck me just how simple, yet profound, this work was (pay attention you fans of Universe Puzzle, there’s a clue to a future puzzle here).
Finally, towards the end of the time I’m covering in this article, Hubble took the famous Hubble Deep Field. The version posted here you may not have seen before, because it uses a different color transform, by Robert Lupton (more images using this technique here).