[/caption]
Nothing in my jewelry box compares to the Kappa Crucis Cluster, also known as NGC 4755 or simply the “Jewel Box.” This object is just bright enough to be seen with the unaided eye, but a combination of images taken by three exceptional telescopes, the Very Large Telescope, the 2.2-meter telescope at the La Silla observatory and the Hubble Space Telescope, has allowed the stunning Jewel Box star cluster to be seen in a whole new light. Above is the image from ESO’ Very Large Telescope, which zooms in for a close look at the cluster itself. This new image is one of the best ever taken of this cluster from the ground, taken with an exposure time of just 5 seconds.
The Hubble Space Telescope can capture light of shorter wavelengths than ground-based telescopes can, and this new HST image of the core of the cluster represents the first comprehensive far ultraviolet to near-infrared image of an open galactic cluster. It was created from images taken through seven filters, allowing viewers to see details never seen before. It was taken near the end of the long life of the Wide Field Planetary Camera 2, Hubble’s workhorse camera up until the recent Servicing Mission, when it was removed and brought back to Earth, and replaced with an new and improved version. Several very bright, pale blue supergiant stars, a solitary ruby-red supergiant and a variety of other brilliantly colored stars are visible in the Hubble image, as well as many much fainter ones. The intriguing colors of many of the stars result from their differing intensities at different ultraviolet wavelengths.
A new image taken with the Wide Field Imager (WFI) on the MPG/ESO 2.2-metre telescope at ESO’s La Silla Observatory in Chile shows the cluster and its rich surroundings in all their multicolored glory. The large field of view of the WFI shows a vast number of stars. Many are located behind the dusty clouds of the Milky Way and therefore appear red.
Star clusters are among the most fascinating objects in the sky. Open clusters such as NGC 4755 typically contain anything from a few to thousands of stars that are loosely bound together by gravity. Because the stars all formed together from the same cloud of gas and dust their ages and chemical makeup are similar, which makes them ideal laboratories for studying how stars evolve.
[/caption]
At first glance, this latest image release from Hubble appears to be one really bizarre-looking galaxy. But actually, this is a pair of spiral galaxies that resemble our own Milky Way smashing together at breakneck speeds. The centers have already merged into one nucleus, and the two tidal tails stretching out from the center are sparkling with active star formation, prompted by the exchange of mass and gases from the dramatic collision. This object, NGC 2623, or Arp 243, is about 250 million light-years away in the constellation of Cancer (the Crab), and is in the late stages of the merging process.
The prominent lower tail is richly populated with bright star clusters — 100 of them have been found in these observations. The large star clusters that the team has observed in the merged galaxy are brighter than the brightest clusters we see in our own vicinity. These star clusters may have formed as part of a loop of stretched material associated with the northern tail, or they may have formed from debris falling back onto the nucleus. In addition to this active star-forming region, both galactic arms harbor very young stars in the early stages of their evolutionary journey.
Watch this video for more information on NGC 2623:
Some mergers (including NGC 2623) can result in an active galactic nucleus, where one of the supermassive black holes found at the centers of the two original galaxies is stirred into action. Matter is pulled toward the black hole, forming an accretion disc. The energy released by the frenzied motion heats up the disc, causing it to emit across a wide swath of the electromagnetic spectrum.
NGC 2623 is so bright in the infrared that it belongs to the group of very luminous infrared galaxies (LIRG) and has been extensively studied as the part of the Great Observatories All-sky LIRG Survey (GOALS) project that combines data from Hubble, the Spitzer Space Telescope, Chandra X-ray Observatory and the Galaxy Evolution Explorer (GALEX). The combination of resources is helping astronomers characterize objects like active galactic nuclei and nuclear star formation by revealing what is unseen at visible wavelengths.
The data used for this color composite were actually taken in 2007 by the Advanced Camera for Surveys (ACS) aboard Hubble, but is just being released now, as a team of over 30 astronomers, led by Aaron S. Evans, recently published an overview paper, detailing the first results of the GOALS project. Observations from ESA’s X-ray Multi-Mirror Mission (XMM-Newton) telescope contributed to the astronomers’ understanding of NGC 2623.
In a world where you have just one chance to save a dying explorer, the only hope is a space shuttle mission …(said in my deepest, most dramatic voice….) Enjoy this movie-like trailer for the upcoming NOVA special on PBS stations in the US, “Hubble’s Amazing Rescue.” It looks like a great show, providing the chance to re-live the exciting 12-day Hubble Servicing Mission 4 and its five pressure-filled spacewalks. Hubble’s Amazing Rescue premieres Tuesday, October 16th at 8PM ET/PT on PBS. Find out more about the show and check local listings for your area here.
Strange forces of nature are stripping away gas from galaxies in the Virgo cluster. An extremely hot X-ray emitting gas known as the intra-cluster medium permeates the regions between galaxies inside clusters and, as fast moving galaxies whip through this medium, strong winds tear through galaxies distorting their shape and even halting star formation with a process known as “ram pressure stripping.” Hubble spied two galaxies “losing it” to these forces.
Ram pressure is the drag force that results when something moves through a fluid — much like the wind you feel in your face when bicycling, even on a still day — and occurs in this context as galaxies orbiting about the centre of the cluster move through the intra-cluster medium, which then sweeps out gas from within the galaxies.
The two galaxies — NGC 4522 and NGC 4402 – were imaged by the old Advanced Camera for Surveys on Hubble before it suffered from a power failure in 2007. Astronauts on Servicing Mission 4 in May 2009 were able to restore ACS during their 13-day mission.
The spiral galaxy NGC 4522 is located some 60 million light-years away from Earth and it is a spectacular example of a spiral galaxy currently being stripped of its gas content. Astronomers estimate the galaxy is moving at more than 10 million kilometers per hour, and its rapid motion within the cluster results in strong winds across the galaxy as the gas within is left behind. A number of newly formed star clusters that developed in the stripped gas can be seen in the Hubble image.
The image provides a vivid view of the ghostly gas being forced out of it. Bright blue pockets of new star formation can be seen to the right and left of centre. The image is sufficiently deep to show distant background galaxies.
The image of NGC 4402 also highlights some telltale signs of ram pressure stripping such as the curved, or convex, appearance of the disc of gas and dust, a result of the forces exerted by the heated gas. Light being emitted by the disc backlights the swirling dust that is being swept out by the gas. Studying ram pressure stripping helps astronomers better understand the mechanisms that drive the evolution of galaxies, and how the rate of star formation is suppressed in very dense regions of the Universe like clusters.
[/caption]
“This marks a new beginning for Hubble,” said Ed Weiler, associate administrator for NASA’s Science Mission Directorate at today’s press briefing at NASA Headquarters to showcase the images from Hubble following Servicing Mission 4. “The telescope was given an extreme makeover and is now significantly more powerful than ever — well equipped to last well into the next decade.”
But how much more powerful is Hubble? Are there any discernible differences between the old images from Hubble and the new ones released today? You better believe it. Above is the star field of Omega Centauri before (2002) and after (2009).
See more comparisons below.
Here’s an earlier image of the Butterfly Nebula (NGC 6302, or the Bug Nebula) with the one released today. (Thanks to Stu Atkinson for the comparison image.)
Scientists at today’s briefing said the new instruments are more sensitive to light and therefore will significantly improve Hubble’s observing efficiency. The space telescope is now able to complete observations in a fraction of the time that was needed with earlier generations of Hubble instruments.
And here’s Stephan’s Quintet from 2000 (left) and 2009 (right).
Hubble is back! The wait is over and here are the new Hubble telescope images from the newly refurbished space telescope. Above is an image taken by the Wide Field Camera 3 (WFC3), a new camera aboard NASA’s Hubble Space Telescope, installed by NASA astronauts in May 2009, during the servicing mission to upgrade and repair the 19-year-old Hubble telescope. This is a planetary nebula, catalogued as NGC 6302, but more popularly called the Bug Nebula or the Butterfly Nebula.
NGC 6302 lies within our Milky Way galaxy, roughly 3,800 light-years away in the constellation Scorpius. The glowing gas is the star’s outer layers, expelled over about 2,200 years. The “butterfly” stretches for more than two light-years, which is about half the distance from the Sun to the nearest star, Alpha Centauri.
And there’s more!
This one is absolutely awesome! This zoom into the globular star cluster Omega Centauri converges onto the Hubble Wide Field Camera 3’s panoramic view of 100,000 stars lying in the center of the cluster. The stars vary in age and change color as they get older. Most of them are middle-aged, yellowish stars like our Sun. But as they near the end of their lives, they balloon into red giants, and later still, into hot, blue stars.
This portrait of Stephan’s Quintet, also known as Hickson Compact Group 92, was taken by the new Wide Field Camera 3 (WFC3) aboard NASA’s Hubble Space Telescope. Stephan’s Quintet, as the name implies, is a group of five galaxies. The name, however, is a bit of a misnomer. Studies have shown that group member NGC 7320, at upper left, is actually a foreground galaxy about seven times closer to Earth than the rest of the group.
Three of the galaxies have distorted shapes, elongated spiral arms, and long, gaseous tidal tails containing myriad star clusters, proof of their close encounters. These interactions have sparked a frenzy of star birth in the central pair of galaxies. This drama is being played out against a rich backdrop of faraway galaxies.
The image, taken in visible and infrared light, showcases WFC3’s broad wavelength range.
Observations by the newly repaired Space Telescope Imaging Spectrograph (STIS) on Hubble reveals the signature balloon-shaped clouds of gas blown from a pair of massive stars called Eta Carinae. This new observation shows some of the chemical elements that were ejected in the eruption seen in the middle of the 19th century.
STIS analyzed the chemical information along a narrow section of one of the giant lobes of gas. In the resulting spectrum, iron and nitrogen define the outer boundary of the massive wind, a stream of charged particles, from Eta Car A, the primary star. The amount of mass being carried away by the wind is the equivalent one sun every thousand years. While this “mass loss” may not sound very large, in fact it is an enormous rate among stars of all types. A very faint structure, seen in argon, is evidence of an interaction between winds from Eta Car A and those of Eta Car B, the hotter, less massive, secondary star.
Eta Car A is one of the most massive and most visible stars in the sky. Because of the star’s extremely high mass, it is unstable and uses its fuel very quickly, compared to other stars. Such massive stars also have a short lifetime, and we expect that Eta Carinae will explode within a million years.
This image of barred spiral galaxy NGC 6217 is the first image of a celestial object taken with the newly repaired Advanced Camera for Surveys (ACS) aboard the Hubble Space Telescope. The camera was restored to operation during the STS-125 servicing mission in May to upgrade Hubble. The barred spiral galaxy NGC 6217 was photographed on June 13 and July 8, 2009, as part of the initial testing and calibration of Hubble’s ACS. The galaxy lies 6 million light-years away in the north circumpolar constellation Ursa Major. The blue haze at the edges are baby stars being born.
About Hubble’s repair, NASA’s Ed Weiler said, “The astronauts basically did a total repair job on Hubble, and fixed two instruments that haven’t been working for a long time. It’s not an 19 year old telescope, it’s a new telescope again.”
NASA admisinatrator Charlie Bolden, who participated in an earlier Hubble repair mission, said at the press conference unveiling the new images that “after almost twenty years of service we are so proud and honored to part of the Hubble story. The telescope is now equipped to last well into the next decade. Hubble is one of the most accomplished scientific instruments ever, and it has captured the imagination of people everywhere.”
[/caption]
It’s a countdown of cosmic proportions! In just six days, NASA will release the first images from the newly refurbished Hubble Space Telescope. These Early Release Observations (EROs) will be showcased at news briefings from NASA Headquarters at 15:00 GMT and 16:00 GMT (11 a.m. and noon EDT) Wednesday, Sept. 9 on NASA TV. The past few weeks, the Hubble team has concentrated on making high-priority science observations and finishing up instrument calibrations. Any clues as to what the first new images will include? Hubble scientists say the new images will be the first true display of the power of Hubble’s new technology, dazzling amateur and professional astronomers with a wealth of new information and areas for research. Here’s what the Hubble team has been working the past few weeks:
•The Wide Field Camera 3 (WFC3) has been completing its checkout, but it is now taking science images on a regular basis.
•The Space Telescope Imaging Spectrograph (STIS) is finished with its calibration activities and completing its work in support of Hubble’s EROs.
•The Cosmic Origins Spectrograph (COS) is in the final phases of its calibrations for both its near-ultraviolet and far-ultraviolet channels. The channels, which study different wavelengths of ultraviolet light, must be calibrated separately. For example, engineers and scientists are continuing to test the focus for the far-ultraviolet channel, while the near-ultraviolet channel’s focus appears to be good.
•The cooling system for the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) has cooled the instrument down to operational levels, which is great news. NICMOS was not serviced during the STS-125 mission, but it was shut down in September 2008 following an anomaly during a spacecraft computer update. Engineers tried turning it on in July 2009, but the cooling system failed. But on on August 1, the cooling system restarted without the previous problems. “NICMOS began cooling efficiently,” said Frank Summers in the Hubble Blog, “and actually faster than expected. Note that when we say “cool,” we really mean “cold.” Really cold. Beyond Arctic, mind-numbing, freezingly cold. NICMOS is cooled to -321 degrees Fahrenheit. That’s the temperature needed for infrared observations.”
It takes NICMOS more than a week to achieve that temperature. Then the instrument must show stability at those temperatures for science to be possible. Engineers have now turned on the detectors to begin the several-week calibration process for NICMOS. So far so good, and surely we’ll hear more about NICMOS during the news briefing next week.
Here’s a new way to appreciate the Hubble Ultra Deep Field image, by flying through the 10,000 galaxies in this deepest of all Hubble images. Watch the whole video if you need the background on the Hubble Deep Field and subsequent Ultra Deep Field. Start at about 3:00 if you just want to see the distances between the galaxies in this image. Nice.
The Hubble Space Telescope was undergoing a thorough checkout of all its systems following the recent servicing mission, but scientists decided to drop everything and interrupt the observatory’s checkout and calibration to take an image of what every other telescope has by trying to view: the impact site on Jupiter. But Hubble does it better than anyone. This image, taken just yesterday (July 23) shows the black spot on the giant planet — created a small comet or asteroid — is expanding.
“Because we believe this magnitude of impact is rare, we are very fortunate to see it with Hubble,” said Amy Simon-Miller of NASA’s Goddard Space Flight Center in Greenbelt, Md. “Details seen in the Hubble view shows a lumpiness to the debris plume caused by turbulence in Jupiter’s atmosphere.”
The new Hubble images also confirm that the May servicing visit by space shuttle astronauts was a big success.
The Jupiter impact has been a sensation ever since Australian amateur astronomer Anthony Wesley imaged a black spot on the planet on July 19. , The only other time such a feature has been seen on Jupiter was 15 years ago after the collision of fragments from comet Shoemaker-Levy 9.
For the past several days, Earth-based telescopes have been trained on Jupiter. To capture the unfolding drama 360 million miles away, Matt Mountain, director of the Space Telescope Science Institute in Baltimore, gave observation time to a team of astronomers led by Heidi Hammel of the Space Science Institute in Boulder, Colo.
“Hubble’s truly exquisite imaging capability has revealed an astonishing wealth of detail in the impact site,” Hammel said. “By combining these images with our ground-based data at other wavelengths, our Hubble data will allow a comprehensive understanding of exactly what is happening to the impact debris.”
Simon-Miller estimated the diameter of the impacting object was the size of several football fields. The force of the explosion on Jupiter was thousands of times more powerful than the suspected comet or asteroid that exploded over the Siberian Tunguska River Valley in June 1908.
The image was taken with the Wide Field Camera 3. The new camera, installed by the astronauts aboard space shuttle Atlantis in May, is not yet fully calibrated. While it is possible to obtain celestial images, the camera’s full power has yet to be seen.
“This is just one example of what Hubble’s new, state-of-the-art camera can do, thanks to the STS-125 astronauts and the entire Hubble team,” said Ed Weiler, associate administrator of NASA’s Science Mission Directorate in Washington. “However, the best is yet to come.”
[/caption]
As we wait (impatiently) for the Hubble Space Telescope to return to action following its repair and updating by the STS-125 astronauts, it is easy to think about how Hubble has impacted society. Hubble has become a household name, bringing astronomy to the masses with its dramatic images of the cosmos. It has also changed our understanding of the universe. But there’s more ways that HST has impacted the world. Various technologies developed for the famous orbiting telescope have helped create or improve several different medical and and scientific tools. Here are five technology spinoffs from Hubble:
Micro-Endoscope for Medical Diagnosis:
The same technology that enhances HST’s images are now helping physicians perform micro-invasive arthroscopic surgery with more accurate diagnoses. Hubble technology helped improve the micro-endoscope, a surgical tool that enables surgeons to view what is happening inside the body on a screen, eliminating the need for a more invasive diagnostic procedure. This saves time, money and lessens the discomfort patients experience.
CCDs Enable Clearer, More Efficient Biopsies
Charge coupled devices (CCDs) used on the HST to convert light into electronic files—such as a distant star’s light directly into digital images—have been adapted to improve imaging and optics here on Earth. When scientists realized that existing CCD technology could not meet scientific requirements for the Hubble’s needs, NASA worked with an industry partner to develop a new, more advanced CCD. The industry partner then applied many of the NASA-driven enhancements to the manufacture of CCDs for digital mammography biopsy techniques, using CCDs to image breast tissue more clearly and efficiently. This allows doctors to analyze the tissue by stereotactic biopsy, which requires a needle rather than surgery.
The semiconductor industry has benefitted from the ultra-precise mirror technology that gives the HST its full optical vision and telescopic power. This technological contribution helped improve optics manufacturing in microlithography—a method for printing tiny circuitry, such as in computer chips. The system uses molecular films that absorb and scatter incoming light, enabling superior precision and, consequently, higher productivity and better performance. This translates into better-made and potentially less costly computer circuitry and semiconductors.
Software Enhances Other Observatories
With the help of a software suite created by a NASA industry partner in 1995, students and astronomers were able to operate a telescope at the Mount Wilson Observatory Institute via the Internet. The software is still widely in use for various astronomy applications; using the CCD technology, the software locates, identifies, and acquires images of deep sky objects, allowing a user to control computer-driven telescopes and CCD cameras.
Optics Tool Sharpens Record-Breaking Ice Skates
Current Olympic record-holding speed skater Chris Witty raced her way to a gold medal in the 1,000-meter at the 2002 Salt Lake City Winter Olympics. Witty and other American short- and long-track speed skaters used a blade-sharpening tool designed with the help of NASA Goddard Space Flight Center and technology from HST. NASA had met with the U.S. Olympic Committee and helped to develop a new tool for sharpening speed skates, inspired by principles used to create optics for the HST. Speed skates sharpened with this new instrument demonstrated a marked improvement over conventionally sharpened skates.