Hubble Survey of Gravitational Lenses Yields Measure of Dark Matter in Distant Galaxies

Hubble Space Telescope image shows Einstein ring of one of the SLACS gravitational lenses, with the lensed background galaxy enhanced in blue. A. Bolton (UH/IfA) for SLACS and NASA/ESA.

[/caption]
An international team of astronomers have compiled the largest-ever single collection of “gravitational lens” galaxies, and their survey yielded information on the masses of galaxies, including an inference of the amount of dark matter. Gravitational lensing occurs when two galaxies happen to aligned with one another along our line of sight in the sky. The gravitational field of the nearer galaxy distorts the image of the more distant galaxy into multiple arc-shaped images. Sometimes this effect even creates a complete ring, known as an “Einstein Ring.” The findings of this survey helps settle a long standing debate over the relationship between and mass and luminosity in galaxies.

Using the Advanced Camera for Surveys on the Hubble Space Telescope to image galaxies that had been identified as gravitational lens galaxies by the Sloan Digital Sky Survey, the team was able to measure the distances to both galaxies in each “lensing” set, as well as measure the masses of each galaxy.

Gravitational lensing creates a “mirage” of a ring, and the Einstein ring images can be up to 30 times brighter than the image of the distant galaxy would be in the absence of the lensing effect. By combining Hubble and Sloan data into the Sloan Lens ACS (or SLACS) Survey, the team was able to make a mathematical model describing the lensing effect and use that model to illustrate what we would see if we could remove the lensing effect.

Animation of the lensing effect.

“The SLACS collection of lenses is especially powerful for science,” said Adam Bolton from the University of Hawaii, lead author of two papers describing these latest results. “For each lens, we measured the apparent sizes of the Einstein rings on the sky using the Hubble images, and we measured the distances to the two galaxies of the aligned pair using Sloan data. By combining these measurements, we were able to deduce the mass of the nearer galaxy.”

By considering these galaxy masses along with measurements of their sizes, brightnesses, and stellar velocities, the SLACS astronomers were able to infer the presence of “dark matter” in addition to the visible stars within the galaxies. Dark matter is the mysterious, unseeable material that is the majority of matter in the universe. And with such a large number of lens galaxies across a range of masses, they found that the fraction of dark matter relative to stars increases systematically when going from galaxies of average mass to galaxies of high mass.

Mosaic of the SLACS galaxies.  Credit:  SLACS and NASA/ESA.
Mosaic of the SLACS galaxies. Credit: SLACS and NASA/ESA.

Albert Einstein predicted the existence of gravitational lenses in the 1930’s, but the first example was not discovered until the late 1970s. Since then, many more lenses have been discovered, but their scientific potential has been limited by the disparate assortment of known examples. The SLACS Survey has significantly changed this situation by discovering a single large and uniformly selected sample of strong lens galaxies. The SLACS collection promises to form the basis of many further scientific studies.

Original News Source: University of Hawaii

“Baby Red Spot” May Have Met Demise on Jupiter

The Great Red Spot on Jupiter has been observed for over 150 years, and it doesn’t appear this anti-cyclonic storm is showing any signs of letting up. How does it maintain its power? Well, like a planetary Pac-Man, it “eats up” other storms, zapping them of their power. The sequence of images here from the Hubble Space Telescope shows three different storms on Jupiter: The Great Red Spot, Red Spot Jr. (otherwise known as Oval BA, to the south of GRS), and Baby Red Spot, to the left of GRS in the first two images. Baby got a little too close to big brother GRS, and may have been snuffed out. But GRS keeps on keeping on. These three natural-color Jupiter images were made from data acquired on May 15, June 28, and July 8, 2008, by the Hubble’s Wide Field Planetary Camera 2.

Red Spot Jr. first appeared on Jupiter in early 2006 when a previously white storm turned red. This is the second time, since turning red, it has skirted past its big brother apparently unscathed. More on Jr. or Oval BA over at the BA himself, Phil Plait’s Bad Astronomy.

But poor little Baby Red Spot, which is in the same latitudinal band as the GRS. This new red spot first appeared earlier this year. The baby spot gets ever closer to the GRS in this picture sequence until it is caught up in GRS’s anticyclonic spin. In the final image the baby spot is deformed and pale in color and has been spun to the right (east) of the GRS. The prediction is that the baby spot will now get pulled back into the GRS “Cuisinart” and disappear for good. This is one possible mechanism that has powered and sustained the GRS for at least 150 years.

Each image covers 58 degrees of Jovian latitude and 70 degrees of longitude (centered on 5 degrees South latitude and 110, 121, and 121.

Original News Source: HubbleSite

Baby Boomer Galaxy Found

This galaxy, Zw II 96 (about 500 million light-years away) resembles the Baby Boom galaxy which lies about 12.3 billion light-years away and appears in images as only a smudge.

A group of telescopes got together recently to check out a little hanky-panky going on in a galaxy in a very remote part of the universe. The Hubble and Spitzer Space Telescopes, Japan’s Subaru Telescope, the James Clerk Maxwell and the Keck Telescopes, all on Mauna Kea in Hawaii, and the Very Large Array in New Mexico pooled their various optical, infrared, submillimeter and radio capabilities to see why a distant galaxy appears to be conceiving stars at a tremendously fast rate. This galaxy, which has now been dubbed the “Baby Boom” galaxy, is giving birth to about 4,000 stars per year. In comparison, our own Milky Way galaxy turns out an average of just 10 stars per year. These telescopes weren’t just playing the part of a Peeping Tom; astronomers want to find out more about this incredibly fertile galaxy.

“This galaxy is undergoing a major baby boom, producing most of its stars all at once,” said Peter Capak of NASA’s Spitzer Science Center at the California Institute of Technology, Pasadena. “If our human population was produced in a similar boom, then almost all of the people alive today would be the same age.”

The discovery goes against the most common theory of galaxy formation, the Hierarchical Model. According to the theory galaxies slowly bulk up their stars over time, and not in one big burst as “Baby Boom” appears to be doing.

The Baby Boom galaxy, which belongs to a class of galaxies called starbursts, is the new record holder for the brightest starburst galaxy in the very distant universe, with brightness being a measure of its extreme star-formation rate. It was discovered and characterized using a suite of telescopes operating at different wavelengths. NASA’s Hubble Space Telescope and Japan’s Subaru Telescope, atop Mauna Kea in Hawaii, first spotted the galaxy in visible-light images, where it appeared as an inconspicuous smudge due to is great distance.

It wasn’t until Spitzer and the James Clerk Maxwell Telescope, also on Mauna Kea in Hawaii, observed the galaxy at infrared and submillimeter wavelengths, respectively, that the galaxy stood out as the brightest of the bunch. This is because it has a huge number of youthful stars. When stars are born, they shine with a lot of ultraviolet light and produce a lot of dust. The dust absorbs the ultraviolet light but, like a car sitting in the sun, it warms up and re-emits light at infrared and submillimeter wavelengths, making the galaxy unusually bright to Spitzer and the James Clerk Maxwell Telescope.

To learn more about this galaxy’s unique youthful glow, Capak and his team followed up with a number of telescopes. They used optical measurements from Keck to determine the exact distance to the galaxy — a whopping12.3 billion light-years. That’s looking back to a time when the universe was 1.3 billion years old (the universe is approximately 13.7 billion years old today).

The astronomers made measurements at radio wavelengths with the National Science Foundation’s Very Large Array in New Mexico. Together with Spitzer and James Clerk Maxwell data, these observations allowed the astronomers to calculate a star-forming rate of about 1,000 to 4,000 stars per year. At that rate, the galaxy needs only 50 million years, not very long on cosmic timescales, to grow into a galaxy equivalent to the most massive ones we see today.

“Before now, we had only seen galaxies form stars like this in the teenaged universe, but this galaxy is forming when the universe was only a child,” said Capak. “The question now is whether the majority of the very most massive galaxies form very early in the universe like the Baby Boom galaxy, or whether this is an exceptional case. Answering this question will help us determine to what degree the Hierarchical Model of galaxy formation still holds true.”

“The incredible star-formation activity we have observed suggests that we may be witnessing, for the first time, the formation of one of the most massive elliptical galaxies in the universe,” said co-author Nick Scoville of Caltech.

Original News Source: JPL

Hubble Does Independence Day With Stars and Stripe

Back in 1006 A.D, observers from Africa to Europe to the Far East witnessed and recorded the arrival of light from what is now called SN 1006, a tremendous supernova explosion caused by the final death throes of a white dwarf star nearly 7,000 light-years away. One Egyptian astronomer recorded the object was 2 – 3 times as large as the disc of Venus and about one quarter the brightness of the moon. The supernova was probably the brightest star ever seen by humans, visible even during the day for weeks, and it remained visible to the naked eye for at least two and a half years before fading away. Remnants of this supernova are still visible to telescopes, and the Hubble Space Telescope captured this close-up a filament of the shock wave of the explosion, still reverberating through space, seen here against the grid of background stars. The full image of SN 1006 is pretty impressive, too…

SN 1006 has a diameter of nearly 60 light-years, and it is still expanding at roughly 6 million miles per hour. Even at this tremendous speed, however, it takes observations typically separated by years to see significant outward motion of the shock wave against the grid of background stars. In the Hubble image shown here, the supernova would have occurred far off the lower right corner of the image, and the motion would be toward the upper left.

It wasn’t until the mid-1960s that radio astronomers first detected a nearly circular ring of material at the recorded position of the supernova. The ring was almost 30 arcminutes across, the same angular diameter as the full moon. The size of the remnant implied that the blast wave from the supernova had expanded at nearly 20 million miles per hour over the nearly 1,000 years since the explosion occurred.

In 1976, the first detection of exceedingly faint optical emission of the supernova remnant was reported, but only for a filament located on the northwest edge of the radio ring. A tiny portion of this filament is revealed in detail by the Hubble observation. The twisting ribbon of light seen by Hubble corresponds to locations where the expanding blast wave from the supernova is now sweeping into very tenuous surrounding gas.

The hydrogen gas heated by this fast shock wave emits radiation in visible light. Hence, the optical emission provides astronomers with a detailed “snapshot” of the actual position and geometry of the shock front at any given time. Bright edges within the ribbon correspond to places where the shock wave is seen exactly edge on to our line of sight.

Original News Source: HubbleSite

Hubble Zooms In On Coma Galaxy Cluster

The Coma Cluster is one of the densest known clusters of galaxies, containing thousands of elliptical and spherical star systems. The entire cluster is huge, more than 20 million light-years in diameter. It’s also very far away, over 300 million light years distant. But no telescope brings the Coma Cluster closer than the Hubble Space Telescope, and a new Hubble image has captured the magnificent starry population in one area of the Coma Cluster with the Advanced Camera for Surveys.

The above Hubble image focuses on an area that is roughly one-third of the way out from the center of the whole cluster. One bright spiral galaxy is visible in the upper left of the image (see below for a close-up of this galaxy). It is distinctly brighter and bluer than the galaxies surrounding it. A series of dusty spiral arms appears reddish brown against the whiter disc of the galaxy, and suggests that this galaxy has been disturbed at some point in the past. The other galaxies in the image are either elliptical galaxies, S0 (s-zero) galaxies or background galaxies that are far beyond the Coma Cluster sphere.

Ellipticals are featureless “fuzz-balls,” pale golden brown in color and contain populations of old stars. Both dwarf and giant ellipticals are found in abundance in the Coma Cluster.

Farther out from the centre of the cluster there are several spiral galaxies. These galaxies contain clouds of cold gas that are giving birth to new stars. Spiral arms and dust lanes “accessorise” these bright bluish-white galaxies, which have a distinctive disc structure.

S0 (S-zero) galaxies form a morphological class of objects between the better known elliptical and spiral galaxies. They consist of older stars and show little evidence of recent star formation, but they do show some structure — perhaps a bar or a ring that may eventually give rise to more disc-like features.


This image zooms in on one area of the new Hubble image, the stunning Lenticular galaxy (in the lower left of the first image) with numerous background galaxies visible as well.

The cluster’s position in space – near the Milky Way’s north pole— places it in an area not obscured by dust and gas, making it easily visible from Earth.

Original News Source: Hubble Site

Double Your Science: Starburst Galaxies Found with Active Quasars

Astronomers now know that essentially every galaxy has a supermassive black hole at its center. When the black hole is actively feeding on material, the surrounding region can blaze brightly – this is a quasar, aka an active galaxy. The Hubble Space Telescope has been used to image a set of exotic active galaxies, known as post-starburst quasars.

What’s the relationship between galaxies and their supermassive black holes? Astronomers have been trying to work that out since these monster black holes were first discovered. One theory is that the growth of both go hand in hand through successive galactic mergers. Each merger adds new stars to the galaxy, as well as additional mass to feed the black hole.

With the galactic mergers, there are intense periods of new star formation. Gravitational interactions collapse clouds of gas and dust that go on to form stellar nurseries. The new star formation is hidden in the beginning, but the active quasar at the middle of the galaxy blows with a powerful wind that eventually blows out the obscuring dust.

Starburst galaxies aren’t bright for long, because all the hottest, most-luminous stars only last a few million years before detonating as supernovae. Astronomers were hoping to see galaxies right in the middle, where starburst activity is fading, at the same time that the quasar is blasting out radiation.

One transition galaxy like this had been discovered in the late 1990s. It possessed both the characteristics of a quasar and an older starburst galaxy. At the time it was discovered, the starburst period had happened 400 million years ago – that’s why it’s a post-starburst galaxy.

An international team of researchers used the Hubble Space Telescope to find another 29 examples of these post-starburst quasars. They searched through a candidate list of 15,000 quasars, and found the signatures of 600 post-starburst objects. With ground-based telescopes, these would just be smudges, but the full galactic shapes can be seen in the Hubble images.

Our galaxy will be colliding with Andromeda in about 3 billion years. When this happens, the Milky Way will burst with star formation. One day, we’ll be living in a post-starburst galaxy.

Original Source: Hubble News Release

Podcast: The Hubble Space Telescope

Our understanding of the cosmos has been revolutionized by the Hubble Space Telescope. The breathtaking familiar photos, like the Pillars of Creation, pale in comparison to the astounding amount of science data returned to Earth. Hubble’s getting old, though, serviced several times already, and due for another mission later this year. Let’s relive the historic observatory’s amazing life so far, and see what the future holds.

Click here to download the episode

The Hubble Space Telescope – Show notes and transcript

Or subscribe to: astronomycast.com/podcast.xml with your podcatching software.

Scientist Says Texting is More Expensive Than Downloading From Hubble

Does your cell phone bill ever reach astronomical proportions? Maybe you’re doing too much texting. One space scientist has worked out that sending texts via mobile phones works out to be far more expensive than downloading data from the Hubble Space Telescope. Dr. Nigel Bannister from the University of Leicester looked at the cost of obtaining a megabyte of data from Hubble and compared it with the cost of sending a text. His calculations? “The bottom line is texting is at least 4 times more expensive than transmitting data from Hubble, and is likely to be substantially more than that.”

Bannister says, “The maximum size for a text message is 160 characters, which takes 140 bytes because there are only 7 bits per character in the text messaging system, and we assume the average price for a text message is 5 pence (about .10 USD). There are 1,048,576 bytes in a megabyte, so that’s 1 million/140 = 7490 text messages to transmit one megabyte. At 5p each, that’s £374.49 ($734.25 USD) per MB – or about 4.4 times more expensive than the ‘most pessimistic’ estimate for Hubble Space Telescope transmission costs.”

Dr Bannister said NASA provided the numbers of £8.85 ($17.33 USD) per megabyte for the transmission of data from HST to the Earth.

“This doesn’t include the cost of the ground stations and the time of the personnel along the way, but it is an unambiguous number for that part of the process. So that’s £8.85 to get each MB from Hubble, to the first point of contact on the ground, but no further. Hence we need to go a little bit further to estimate exactly how much it costs to transmit data from Hubble to the end user – i.e. to the data archive which scientists can access. This is difficult, so I had to make some conservative assumptions.”

Dr. Bannister estimated the cost of the data from Hubble could vary between £8.85 and £85 per MB- much cheaper than the £374.49 per MB cost of transmitting one MB of text.

Surprised by the results, Bannister said, “Hubble is by no means a cheap mission – but the mobile phone text costs were pretty astronomical!”

Original News Source: Physorg.com

Hubble Image of the Colliding Antennae Galaxies (with Video)

Antennae Galaxies. Image credit: Hubble

It’s time for another beautiful image from the Hubble Space Telescope. And this time, there’s an added bonus… video. The latest images released by Hubble are based on research of the Antennae Galaxies, known as NGC 4038 and NGC 4039. Astronomers used to think that they were 65 million light-years away, but the new research puts them much closer; probably 45 million light-years away.

This image was captured by Hubble’s Advanced Camera for Surveys and Wide Field Planetary Camera 2, to observe individual stars spawned by the cosmic collision.

Here’s the Hubble video to help you get a sense of the scales involved (with pretty music too).

The astronomers targeted the object’s southern tidal tail, which was thrown away from the active central regions. This tail contains material hurled away from the main galaxies as they came together. Astronomers looked for older red giants to make the estimate for their distance. These red giants are known to always shine with the same brightness, and by knowing this brightness, they were able to calculate the galaxies as being 45 million light-years away.

Since this galactic merger is happening relatively close, it’s one of the best examples astronomers have to study this process. And now that the galaxies are closer than astronomers previously believed, it changes the size of many objects the astronomers are studying. For example, the size of the star clusters being formed by the collision match the size of other galaxy mergers, instead of being 1.5 times larger than they should be.

The Antennae Galaxies are named for the two long tails of stars, gas and dust thrown out of the collision that resemble the antennae of insects. They can be found in the constellation of Corvus, the Crow.

Original Source: Hubble News Release

Hubble Surprise: Heavyweight Baby Galaxies

Astronomers looking at galaxies in the universe’s distant past were surprised to find some compact, very young galaxies that have masses similar to a mature, grown-up galaxy. Using the Hubble Space Telescope, astronomers discovered nine small galaxies, each weighing in at 200 billion times the mass of the Sun. The galaxies, each only 5,000 light-years across, are a fraction of the size of today’s adult galaxies but contain approximately the same number of stars. Each galaxy could fit inside the central hub of our Milky Way Galaxy.

Using the Hubble in conjunction with Keck Observatory in Hawaii, astronomers were able to study the galaxies as they existed 11 billion years ago, when the Universe was less than 3 billion years old.

“Seeing the compact sizes of these galaxies is a puzzle”, said Pieter G. van Dokkum of Yale University in New Haven, Connecticut, USA, who led the study. “No massive galaxy at this distance has ever been observed to be so compact. These galaxies would have to change a lot over 11 billion years, growing five times bigger. They could get larger by colliding with other galaxies, but such collisions may not be the complete answer. It is not yet clear how they would build themselves up to become the large galaxies we see today.”

To determine the sizes of the galaxies, the team used the Near Infrared Camera and Multi-Object Spectrometer on Hubble. For the Keck observations, a powerful laser was used to correct for image blurring caused by the Earth’s atmosphere. Only Hubble, Keck and ESO’s Very Large Telescope are really able to measure the sizes of these galaxies as they are very small and far away.

The ultra-dense galaxies might comprise half of all galaxies of that mass 11 billion years ago, van Dokkum said, forming the building blocks of today’s largest galaxies.

How did these small, crowded galaxies form? One way, suggested van Dokkum, involves the interaction of dark matter and hydrogen gas in the nascent Universe. Dark matter is an invisible form of matter that accounts for most of the Universe’s mass. Shortly after the Big Bang, the Universe contained an uneven landscape of dark matter. Hydrogen gas became trapped in pockets of the invisible material and began spinning rapidly in dark matter’s gravitational whirlpool, forming stars at a furious rate.

Based on the galaxies’ mass, which is derived from their color, the astronomers estimated that the stars are spinning around their galactic disks at roughly 400 to 500 kilometers per second. Stars in today’s galaxies, by contrast, are traveling at about half that speed because they are larger and rotate more slowly than the compact galaxies.

The astronomers say that these galaxies are ideal targets for the Wide Field Camera 3, which is scheduled to be installed aboard Hubble during upcoming Servicing Mission 4 in the fall of 2008.

Original News Source: European Hubble Space Telescope Homepage