Study Negative on Hubble Repair

There has been tremendous controversy ever since NASA announced that they wouldn’t sending astronauts to repair and upgrade the aging Hubble Space Telescope. An independent report delivered to the agency says that even sending a robotic mission to repair the observatory is probably a bad idea – it would be too costly and risky. A robotic mission might take $2 billion or more to develop, might not reach Hubble in time, and probably only has a 50% chance of succeeding – it would be more cost effective to launch a new observatory with the instruments built for Hubble.

Youngest Galaxy Found

Scientists using NASA’s Hubble Space Telescope have measured the age of what may be the youngest galaxy ever seen in the universe. By cosmological standards it is a mere toddler seemingly out of place among the grown-up galaxies around it. Called I Zwicky 18, it may be as young as 500 million years old (so recent an epoch that complex life had already begun to appear on Earth). Our Milky Way galaxy by contrast is over 20 times older, or about 12 billion years old, the typical age of galaxies across the universe. This “late-life” galaxy offers a rare glimpse into what the first diminutive galaxies in the early universe look like.

The galaxy is a member of a catalog of 30,000 nearby galaxies that Swiss astronomer Fred Zwicky assembled in the 1930’s by photographing the entire northern sky. Though astronomers have long suspected that this galaxy was a youngster, due to its primordial chemical makeup, Hubble’s exquisite sensitivity allowed astronomers to do a reliable census of the total stellar population in the galaxy. This allowed them to reliably identify the oldest stars inhabiting the galaxy, thereby setting an upper limit on the galaxy’s age.

The baby galaxy managed to remain in an embryonic state as a cold gas cloud of primeval hydrogen and helium for most of the duration of the universe’s evolution. As innumerable galaxies blossomed all over space this late-bloomer did not begin active star formation until some 13 billion years after the Big Bang, and went through a sudden first starburst only some 500 million years ago.

Located only 45 million light-years away ? much closer than other young galaxies in the nearly 14 billion light-year span of the universe ? I Zwicky 18 might represent the only opportunity for astronomers to study in detail the building blocks from which galaxies are formed. It remains a puzzle why the gas in the dwarf galaxy, in contrast to that in other galaxies, took so long ? nearly the age of the universe ? to collapse under the influence of gravity to form its first stars.

“I Zwicky 18 is a bona fide young galaxy,” said Trinh Thuan, professor of astronomy at the University of Virginia, who co-authored the study with Yuri Izotov from the Kiev Observatory. “This is extraordinary because one would expect young galaxies to be forming only around the first billion years or so after the Big Bang, not some 13 billion years later. And young galaxies were expected to be very distant, at the edge of the observable universe, but not in the local universe,” Izotov said.

The finding, reported in the December 1 issue of the Astrophysical Journal, provides a new insight into how galaxies first formed. The galaxy I Zwicky 18 offers a glimpse of what the early Milky Way may have looked like 13 billion years ago. Another set of Hubble observations by a different team give a slightly older age of 1 billion years to the galaxy, still keeping it a comparative newborn. Goran Ostlin of Stockholm Observatory, and Mustapha Mouhcine of the University of Nottingham, used Hubble’s Near Infrared Camera and Multi-Object Spectrometer to find a population of cool red stars, which are slightly older than the stars seen by the Advanced Camera for Surveys Camera. The results are to be published in Astronomy & Astrophysics.

To prove that I Zwicky 18 is a new galaxy, Thuan and Izotov needed to show that it was devoid of stars from the first several billion years after the Big Bang, the period when a large fraction of stars in the universe were formed. Though astronomers had suspected that the galaxy was exceptionally young, they had to wait for Hubble to provide the needed sensitivity to detect whether or not older stars, faint red giants, existed within the dwarf galaxy. Hubble’s Advanced Camera for Surveys needed a very long exposure, requiring 25 telescope orbits to look for the faintest stars in the galaxy. The presence of old stars in the galaxy would have indicated that the galaxy itself was old, like all other known galaxies in the universe.

Large galaxies such as the Milky Way are thought to grow hierarchically, with smaller galaxies merging into bigger galaxies, like tributaries merging into large rivers. I Zwicky 18 is prototypical of this early population of small dwarf galaxies. “These building block dwarf galaxies are too faint and too small to be studied without the most sensitive instruments even in the local universe, let alone in the far reaches of the cosmos,” Thuan said.

Further evidence for the youth of I Zwicky 18 is the fact that its interstellar gas is “nearly pristine,” Thuan said, and composed mostly of hydrogen and helium, the primary two light elements created in the Big Bang, during the first three minutes of the universe’s existence. The dwarf galaxy includes only a sprinkling of the other heavier elements such as carbon, nitrogen, or oxygen that are created later as stars develop. The near absence of such heavy elements suggests that much of the primordial gas in the dwarf galaxy has not managed to form stars that subsequently manufacture heavy elements.

Original Source: Hubble News Release

Hubble’s Accidental Asteroid Discovery

While analyzing NASA Hubble Space Telescope images of the Sagittarius dwarf irregular galaxy (SagDIG), an international team of astronomers led by Simone Marchi, Yazan Momany, and Luigi Bedin were surprised to see the trail of a faint asteroid that had drifted across the field of view during the exposures. The trail is seen as a series of 13 reddish arcs on the right in this August 2003 Advanced Camera for Surveys image.

As the Hubble telescope orbits around the Earth, and the Earth moves around the Sun, a nearby asteroid in our solar system will appear to move with respect to the vastly more distant background stars, due to an effect called parallax. It is somewhat similar to the effect you see from a moving car, in which trees by the side of the road appear to be moving much more rapidly than background objects at much larger distances. If the Hubble exposure were a continuous one, the asteroid trail would appear like a continuous wavy line. However, the exposure with Hubble’s camera was actually broken up into more than a dozen separate exposures. After each exposure, the camera’s shutter was closed while the image was transferred from the electronic detector into the camera’s computer memory; this accounts for the many interruptions in the asteroid’s trail.

Since the trajectory of the Hubble spacecraft around the Earth is known very accurately, it is possible to triangulate the distance to the asteroid in a manner similar to that used by terrestrial surveyors. It turns out to be a previously unknown asteroid, located 169 million miles from Earth at the time of observation. The distance places the new object, most likely, in the main asteroid belt, lying between the orbits of Mars and Jupiter. Based on the observed brightness of the asteroid, the astronomers estimate that it has a diameter of about 1.5 miles.

The brightest stars in the picture (easily distinguished by the spikes radiating from their images, produced by optical effects within the telescope), are foreground stars lying within our own Milky Way galaxy. Their distances from Earth are typically a few thousand light-years. The faint, bluish SagDIG stars lie at about 3.5 million light-years (1.1 Megaparsecs) from us. Lastly, background galaxies (reddish/brown extended objects with spiral arms and halos) are located even further beyond SagDIG at several tens of millions parsecs away. There is thus a vast range of distances among the objects visible in this photo, ranging from about 169 million miles for the asteroid, up to many quadrillions of miles for the faint, small galaxies.

The team reported their science findings about the asteroid in the October 2004 issue of New Astronomy.

Original Source: Hubble News Release

Survivor Found From Tycho’s Supernova

An international team of astronomers is announcing today that they have identified the probable surviving companion star to a titanic supernova explosion witnessed in the year 1572 by the great Danish astronomer Tycho Brahe and other astronomers of that era.

This discovery provides the first direct evidence supporting the long-held belief that Type Ia supernovae come from binary star systems containing a normal star and a burned-out white dwarf star. The normal star spills material onto the dwarf, which eventually triggers an explosion.

The results of this research, led by Pilar Ruiz-Lapuente of the University of Barcelona, Spain, are being published in the Oct. 28 British science journal Nature. “There was no previous evidence pointing to any specific kind of companion star out of the many that had been proposed. Here we have identified a clear path: the feeding star is similar to our Sun, slightly more aged,” Ruiz-Lapuente says. “The high speed of the star called our attention to it,” she added.

Type Ia supernovae are used to measure the history of the expansion rate of the universe and so are fundamental to helping astronomers understand the behavior of dark energy, an unknown force that is accelerating the expansion of the universe. Finding evidence to confirm the theory as to how Type Ia supernovae explode is critical to assuring astronomers that the objects can be better understood as reliable calibrators of the expansion of space.

The identification of the surviving member of the stellar duo reads like a crime scene investigation tale. Even though today’s astronomers arrived at the scene of the disaster 432 years later, using astronomical forensics they have nabbed one of the perpetrators rushing away from the location of the explosion (which is now enveloped in a vast bubble of hot gas called Tycho’s Supernova Remnant). For the past seven years the runaway star and its surroundings were studied with a variety of telescopes. The Hubble Space Telescope played a key role by precisely measuring the star’s motion against the sky background. The star is breaking the speed limit for that particular region of the Milky Way Galaxy by moving three times faster than the surrounding stars. Like a stone thrown by a sling, the star went hurtling off into space, retaining the velocity of its orbital motion when the system was disrupted by the white dwarf’s explosion.

This alone is only circumstantial evidence that the star is the perpetrator because there are alternative explanations to its suspicious behavior. It could be falling in at a high velocity from the galactic halo that surrounds the Milky Way’s disk. But spectra obtained with the 4.2-meter William Herschel Telescope in La Palma and the 10-meter W.M. Keck telescopes in Hawaii show that the suspect has the high heavy-element content typical of stars that dwell in the Milky Way’s disk, not the halo.

The star found by the Ruiz-Lapuente team is an aging version of our Sun. The star has begun to expand in diameter as it progresses toward a red-giant phase (the end stage of a Sun-like star’s lifetime). The star turns out to fit the profile of the perpetrator in one of the proposed supernova conjectures. In Type Ia supernova binary systems, the more massive star in the pair will age faster and eventually becomes a white dwarf star. When the slower-evolving companion star subsequently ages to the point where it begins to balloon in size, it spills hydrogen onto the dwarf. The hydrogen accumulates until the white dwarf reaches a critical and precise mass threshold, called the Chandrasekhar limit, where it explodes as a titanic nuclear bomb. The energy output of this explosion is so well known that it can be used as a standard candle for measuring vast astronomical distances. (An astronomical “standard candle” is any type of luminous object whose intrinsic power is so accurately determined that it can be used to make distance measurements based on the rate the light dims over astronomical distances).

“Among the various systems containing white dwarfs that receive material from a solar-mass companion, some are believed to be viable progenitors of Type Ia supernovae, on theoretical grounds. A system called U Scorpii has a white dwarf and a star similar to the one found here. These results would confirm that such binaries will end up in an explosion like the one observed by Tycho Brahe, but that would occur several hundreds of thousands of years from now,” says Ruiz-Lapuente.

An alternative theory of Type Ia supernovae is that two white dwarfs orbit each other, gradually losing energy through the emission of gravitational radiation (gravity waves). As they lose energy, they spiral in toward each other and eventually merge, resulting in a white dwarf whose mass reaches the Chandrasekhar limit, and explodes. “Tycho’s supernova does not appear to have been produced by this mechanism, since a probable surviving companion has been found,” says Alex Filippenko of the University of California at Berkeley, a co-author on this research. He says that, nevertheless, it is still possible there are two different evolutionary paths to Type Ia supernovae.

On November 11, 1572, Tycho Brahe noticed a star in the constellation Cassiopeia that was as bright as the planet Jupiter (which was in the night sky in Pisces). No such star had ever been observed at this location before. It soon equaled Venus in brightness (which was at -4.5 magnitude in the predawn sky). For about two weeks the star could be seen in daylight. At the end of November it began to fade and change color, from bright white to yellow and orange to faint reddish light, finally fading away from visibility in March 1574, having been visible to the naked eye for about 16 months. Tycho’s meticulous record of the brightening and dimming of the supernova now allows astronomers to identify its “light signature” as that of a Type Ia supernova.

Tycho Brahe’s supernova was very important in that it helped 16th-century astronomers abandon the idea of the immutability of the heavens. At the present time, Type Ia supernovae remain key players in the newest cosmological discoveries. To learn more about them and their explosion mechanism, and to make them even more useful as cosmological probes, a current Hubble Space Telescope project led by Filippenko is studying a sample of supernovae in other galaxies at the very time they explode.

Original Source: Hubble News Release

Earliest Star Forming Galaxies Found

Detailed analyses of mankind’s deepest optical view of the universe, the Hubble Ultra Deep Field (HUDF), by several expert teams have at last identified what may turn out to be some of the earliest star-forming galaxies. Astronomers are now debating whether the hottest stars in these early galaxies may have provided enough radiation to “lift a curtain” of cold, primordial hydrogen that cooled after the big bang. This is a problem that has perplexed astronomers over the past decade, and NASA’s Hubble Space Telescope has at last glimpsed what could be the “end of the opening act” of galaxy formation. These faint sources illustrate how astronomers can begin to explore when the first galaxies formed and what their properties might be.

But even though Hubble has looked 95 percent of the way back to the beginning of time, astronomers agree that’s not far enough. “For the first time, we at last have real data to address this final frontier ? but we need more observations. We must push even deeper into the universe, unveiling what happened during the initial 5 percent of the remaining distance back to the big bang,” said Richard Ellis of the California Institute of Technology in Pasadena, Calif.

In the past couple decades astronomers have amassed evidence that we live in a reionized or “refried universe.” This so-called reionization epoch was a critical watershed for the evolving universe. During that early time cold hydrogen atoms drifting in space were pumped up with so much energy from the ultraviolet starlight that they were stripped of their electrons. The universe once again became transparent to light, like the Sun burning off a morning fog. This early period is called “reionization” because the primeval universe, which was hotter than our Sun, was initially ionized as a soup of hydrogen nuclei and free-moving electrons. As the universe cooled through the expansion of space, these electrons were captured by hydrogen nuclei to make neutral hydrogen. But the electrons were lost again when the first fiercely bright stars fired up.

The epoch of reionization is thought to have ended 0.5 to one billion years after the big bang. Constraints come from observations of quasars located with the Sloan Digital Sky Survey, and recent measures of polarization in the radiation emerging from the earliest phases of cosmic history recorded by the Wilkinson Microwave Anisotropy Probe (WMAP).

The major difficulty has been that galaxies at such a remote distance are very faint and are very hard to find. Only the most luminous galaxies can be relatively easily seen. Prior to the HUDF, astronomers did not have the sensitivity to accurately constrain the numbers of very distant sources at that epoch, and so there’s been a long-standing debate whether normal galaxies were really capable of doing the reionizing job.

The sensitivity of Hubble’s Advanced Camera for Surveys (ACS), combined with the penetrating power of the Near Infrared Camera and Multi-Object Spectrometer (NICMOS), finally revealed these long sough faint galaxies. The HUDF shows that close to a billion years after the big bang the early universe was filled with dwarf galaxies, but no fully formed galaxies like our Milky Way. After careful analysis, they have been sorted out as between 54 and 108 dim, red smudges sprinkled across the HUDF image. From a hierarchical point of view, this means the universe started out as a bunch of “mom & pop” stores, which merged into businesses, and then into giant corporations ? the majestic galaxies we see today.

HUDF research are being led by: Rodger Thompson (University of Arizona, Tucson, Ariz.) and collaborator Rychard Bouwens (University of California/Lick Observatory, Santa Cruz, Calif.) [see science papers 1, 2 and 3]; Haojing Yan (Spitzer Science Center, California Institute of Technology, Pasadena, Calif.) and Rogier Windhorst (Arizona State University, Tempe, Ariz.) [see science paper]; Massimo Stiavelli (Space Telescope Science Institute, Baltimore, MD.) [see science paper]; Andrew Bunker (University of Exeter and the University of Cambridge, UK) [see science papers 1 and 2]; and Sangeeta Malhotra and James Rhoads (Space Telescope Science Institute) [see science paper]. The teams used different techniques:

The Bunker team identified a list of 50 probable distant galaxies in the Ultra Deep Field and distributed details of their work within a day of the images becoming publicly available. They isolated their distant sample using techniques developed with earlier, less sensitive, Hubble images tested through spectroscopic observations undertaken with the 10-meter W.M. Keck observatory in Hawaii. Bunker’s team claims that the combined ultraviolet light from the galaxies located in the Ultra Deep Field is insufficient to reionize the universe. Perhaps the physics of star formation was different at these early times, or a further, yet more distant population is responsible.

The Stiavelli team shows that the same objects would be sufficient to reionize the universe, if they possessed much fewer heavier elements ? anything heavier than helium ? than those of present-day galaxies, and if the early galaxies contained more massive stars. Both these assumptions are reasonable at early epochs, since astronomers know that stars make the metals that exist in the universe. Early on, before most of the stars we see today had been formed, the amount of elements must have been much lower.

The Yan and Windhorst team started from the objects that are seen, and then carefully estimated the fraction of fainter galaxies that are not seen, even in the Hubble Ultra Deep Field. They found that the number of dwarf galaxies rapidly increases at fainter levels in the HUDF. This is like a cosmic “stock- market chart” but with very few large corporations and numerous “mom-and-pop corner stores.” Yan and Windhorst conclude that this steep increase of the faint dwarf galaxy population collectively generates enough ultraviolet light to finish reionizing the universe by redshift 6, even if the amount of heavier elements was similar to that of present-day galaxies.

The HUDF NICMOS Treasury team (Thompson/Illingworth) has taken the UDF data and other ACS survey data to get the best possible estimate of the relative numbers of bright and faint galaxies around redshift 6, only 900 million years after the big bang. The papers, led by Rychard Bouwens, show that faint galaxies dominate at this epoch, compared to more recent times, and are likely to have played a significant role in the late stages of reionization. The team has also used the HUDF NICMOS data to detect a small sample of galaxies at higher redshifts (at z=7-8), 200 million years closer in time to the big bang. The amount of reionizing light at redshifts 7-8 appears to be lower than what is seen only 200 million years later at redshift 6.

The Malhotra and Rhoads team have found a “sheet” of galaxies in the HUDF. They find that the galaxy density near redshift z=5.9 (look-back time of 12.5 billion years) is four times the galaxy density in the rest of the surveyed HUDF “core sample.” This supports theories of galaxy formation which predict that dense regions should be the first sites of galaxy formation. This evidence for an over density was bolstered by a complementary study, undertaken by Malhotra, Rhoads, and JunXian Wang, which uses the Cerro Tololo Inter-American Observatory to obtain a map of galaxies over a much wider area than the HUDF. Even with its lower sensitivity and more limited coverage in distance, this map shows that “extra” galaxies are spread like a sheet, with the HUDF located near one edge of the structure. “The presence of such structures doubtlessly affected the reionization of the universe, because the ultraviolet light that separated intergalactic hydrogen atoms into protons and electrons would have been more intense where galaxies are more common. It is then likely that reionization proceeded at different speeds in different regions of the early universe,” says Rhoads. This Hubble team used spectra to measure the distances of these galaxies very precisely.

The WFC3 built for Hubble is expected to see ten times as many distant infrared galaxies as the NICMOS. When launched, the JWST will have the light-gathering power to peruse an even earlier universe and actually see the very first stars and star clusters, which remain beyond even Hubble’s reach. These still hypothesized ultra-bright stars formed only 200 million years after the big bang (at redshift z=20, and as deduced from the WMAP image of the cosmic microwave background). They are currently believed to have heated the universe so much back then, that smaller, normal stars had to wait for the hydrogen gas to re-cool and condense before they could form.

Original Source: Hubble News Release

Hubble Sees the Stingray Nebula

This is the Stingray Nebula (Henize 1357), the youngest known planetary nebula, as seen by the NASA/ESA Hubble Space Telescope. Twenty five years ago, the nebulous gas entombing the dying star at the centre was not hot enough to glow.

This image shows a rare moment in the final stages of a star’s life: a shell of gas cast off by a dying star which then begins to glow like a neon light bulb. Images of planetary nebulae in their formative years like this can yield new insights into the last moments of ordinary stars like our Sun.

A planetary nebulae forms after an aging, low-mass star swells to become a ‘red giant’ and blows off some of its outer layers of material. As the nebula expands away from the star, the star’s remaining core gets hotter and heats the gas until it glows. A fast wind – material propelled outward from the hot central star ? compresses the gas and pushes the gas bubble outward.

The Stingray Nebula is an ‘infant’ in relative terms, because only within the past 25 years did its central star rapidly heat up enough to make the nebula glow. While stars typically exist for millions of years, the transition to a visible planetary nebula takes only about 100 years ? the blink of an eye compared to a star’s lifetime – which is why no younger planetary nebulae have ever been identified.

Named because its shape resembles a stingray fish, the nebula is one-tenth the size of most planetary nebulae and is 18 000 light-years away in the direction of the southern constellation Ara (the Altar). Because of its small size, no details of the Stingray Nebula were visible before Hubble observations were first carried out in 1993. Those images were the first to show the structure of the nebula. This image was taken in 1997.

Original Source: ESA News Release

Supernova in Nearby Galaxy NGC 2403

The explosion of a massive star blazes with the light of 200 million Suns in this NASA Hubble Space Telescope image. The arrow at top right points to the stellar blast, called a supernova. The supernova is so bright in this image that it easily could be mistaken for a foreground star in our Milky Way Galaxy. And yet, this supernova, called SN 2004dj, resides far beyond our galaxy. Its home is in the outskirts of NGC 2403, a galaxy located 11 million light-years from Earth. Although the supernova is far from Earth, it is the closest stellar explosion discovered in more than a decade.

The star that became SN 2004dj may have been about 15 times as massive as the Sun, and only about 14 million years old. (Massive stars live much shorter lives than the Sun; they have more fuel to “burn” through nuclear fusion, but they use it up at a disproportionately faster rate.) A team of astronomers led by Jesus Maiz of the Space Telescope Science Institute discovered that the supernova was part of a compact cluster of stars known as Sandage 96, whose total mass is about 24,000 times the mass of the Sun. Many such clusters ? the blue regions ? as well as looser associations of massive stars, can be seen in this image. The large number of massive stars in NGC 2403 leads to a high supernova rate. Two other supernovae have been seen in this galaxy during the past half-century.

The heart of NGC 2403 is the glowing region at lower left. Sprinkled across the region are pink areas of star birth. The myriad of faint stars visible in the Hubble image belong to NGC 2403, but the handful of very bright stars in the image belong to our own Milky Way Galaxy and are only a few hundred to a few thousand light-years away. This image was taken on Aug. 17, two weeks after an amateur astronomer discovered the supernova.

Japanese amateur astronomer Koichi Itagaki discovered the supernova on July 31, 2004, with a small telescope. Additional observations soon showed that it is a “Type II supernova,” resulting from the explosion of a massive, hydrogen-rich star at the end of its life. The cataclysm probably occurred when the evolved star’s central core, consisting of iron, suddenly collapsed to form an extremely dense object called a neutron star. The surrounding layers of gas bounced off the neutron star and also gained energy from the flood of ghostly “neutrinos” (tiny, almost non-interacting particles) that may have been released, thereby violently expelling these layers.

This explosion is ejecting heavy chemical elements, generated by nuclear reactions inside the star, into the cosmos. Like other Type II supernovae, this exploding star is providing the raw material for future generations of stars and planets. Elements on Earth such as oxygen, calcium, iron, and gold came long ago from exploding stars such as this one.

Astronomers will continue to study SN 2004dj over the next few years, as it slowly fades from view, in order to gain a better understanding of how certain types of stars explode and what kinds of chemical elements they eject into space.

This color-composite photograph was obtained by combining images through several filters taken with the Wide Field Camera of the Advanced Camera for Surveys. The colors in the image highlight important features in the galaxy. Hot, young stars are blue. Older stars and dense dust lanes near the heart of the galaxy are red. The hydrogen-rich, star-forming regions are pink. The dense concentration of older stars in the galaxy’s central bulge is yellow.

In addition to the visible-light image shown here, ultraviolet images and spectra are being obtained with Hubble’s Advanced Camera for Surveys. Astronomers are also using ground-based telescopes to study the supernova.

Original Source: Hubble News Release

Hubble Sees a Gas Cavity in Space

In this unusual image, NASA’s Hubble Space Telescope captures a rare view of the celestial equivalent of a geode ? a gas cavity carved by the stellar wind and intense ultraviolet radiation from a hot young star.

Real geodes are baseball-sized, hollow rocks that start out as bubbles in volcanic or sedimentary rock. Only when these inconspicuous round rocks are split in half by a geologist, do we get a chance to appreciate the inside of the rock cavity that is lined with crystals. In the case of Hubble’s 35 light-year diameter “celestial geode” the transparency of its bubble-like cavity of interstellar gas and dust reveals the treasures of its interior.

The object, called N44F, is being inflated by a torrent of fast-moving particles (called a “stellar wind”) from an exceptionally hot star once buried inside a cold dense cloud. Compared with our Sun (which is losing mass through the so-called “solar wind”), the central star in N44F is ejecting more than a 100 million times more mass per second. The hurricane of particles moves much faster at about 4 million miles per hour (7 million kilometers per hour), as opposed to about 0.9 million miles per hour (1.5 million kilometers per hour) for our Sun. Because the bright central star does not exist in empty space but is surrounded by an envelope of gas, the stellar wind collides with this gas, pushing it out, like a snowplow. This forms a bubble, whose striking structure is clearly visible in the crisp Hubble image.

The nebula N44F is one of a handful of known interstellar bubbles. Bubbles like these have been seen around evolved massive stars (Wolf-Rayet stars), and also around clusters of stars (where they are called “super-bubbles”). But they have rarely been viewed around isolated stars, as is the case here.

On closer inspection N44F harbors additional surprises. The interior wall of its gaseous cavity is lined with several four- to eight-light-year-high finger-like columns of cool dust and gas. (The structure of these “columns” is similar to the Eagle Nebula’s iconic “pillars of creation” photographed by Hubble a decade ago, and is seen in a few other nebulae as well). The fingers are created by a blistering ultraviolet radiation from the central star. Like windsocks caught in a gale, they point in the direction of the energy flow. These pillars look small in this image only because they are much farther away from us than the Eagle Nebula’s pillars.

N44F is located about 160,000 light-years in our neighboring dwarf galaxy the Large Magellanic Cloud, in the direction of the southern constellation Dorado. N44F is part of the larger N44 complex, which is a large super-bubble, blown out by the combined action of stellar winds and multiple supernova explosions. N44 itself is roughly 1,000 light-years across. Several compact star-forming regions, including N44F, are found along the rim of the central super-bubble.

This image was taken with Hubble’s Wide Field Planetary Camera 2 in March 2002, using filters that isolate light emitted by sulfur (shown in blue, a 1,200-second exposure) and hydrogen gas (shown in red, a 1,000-second exposure).

Original Source: Hubble News Release

Hubble Might Be Saved

NASA Administrator Sean O’Keefe has announced that he will be asking the US Congress to approve up to $1.6 billion to send a robotic mission up to the Hubble Space Telescope to make repairs and keep it operational for many more years. He said that he was “actually astonished” at the progress that NASA engineers have been making with a robotic solution. NASA still has no plans to send a human mission to the telescope, but they could know within six months if the budget for a robotic mission gets approved.

Hubble Instrument Fails

One of four science instruments aboard NASA’s Hubble’s Space Telescope suspended operations earlier this week, and engineers are now looking into possible recovery options.

The instrument, called the Space Telescope Imaging Spectrograph (STIS), was installed during the second Hubble servicing mission in 1997 and was designed to operate for five years. It has either met or exceeded all its scientific requirements.

Hubble’s other instruments, the Near Infrared Camera and Multi-Object Spectrometer (NICMOS), the Advanced Camera for Surveys, and the Wide Field/Planetary Camera 2 are all operating normally.

The STIS instrument, which went into a suspended mode Tuesday, was not slated for replacement or upgrade as part of any future servicing mission.

NASA has convened an Anomaly Review Board to investigate the cause of the STIS problem and an investigation is underway to determine if the instrument is recoverable.

Preliminary findings indicate a problem with the +5V DC-DC power converter on Side 2, which supplies power to the mechanism’s electronics. STIS suffered a similar electrical malfunction in 2001 that rendered Side 1 inoperable.

A final decision on how to proceed is expected in the coming weeks as analysis of the problem progresses.

In the current observing cycle, STIS accounts for about 30 percent of all Hubble scientific observation programs. A “standby” list of peer reviewed and approved observing programs for the other science instruments on Hubble can be used to fill the observing time now available.

The high sensitivity and spatial resolution of STIS enabled astronomers to search for massive black holes and study star formation, planets, nebulae, galaxies, and other objects in fine detail.

STIS was developed jointly with Ball Aerospace under the direction of principal investigator Dr. Bruce E. Woodgate of the Laboratory for Astronomy and Solar Physics at NASA’s Goddard Space Flight Center, Greenbelt, Md.

Among the major scientific achievements made by scientists using STIS were:

? Independent confirmation of the age of the universe by finding the coolest and hence oldest white dwarf stars that exist in our galaxy
? Conducted an efficient census of galaxies to catalog supermassive black holes. The fraction of galaxies that prove to contain a central massive black hole has proven to be surprisingly large

– Made the first-ever measurements of the chemical composition of the atmosphere of an extrasolar planet
– Saw the magnetic “footprints” of the Jovian satellites in Jupiter aurora, and made clear images of Saturn’s aurora
– Studied the dynamics of circumstellar disks, the region around young stars where planets may form
– Found the first evidence of the high-speed collision of gas in the recent supernova remnant SN1987A

Additional information about STIS is available on the Internet at:

http://hubble.nasa.gov/servicing-missions/sm2.html

Original Source: NASA News Release