We use the term ‘supermassive black hole’ with a kind of casual familiarity. But stop and think about what they really are: Monstrous, beguiling singularities where the understood laws of physics and cosmology are brought to their knees. A region where gravity is so powerful that it warps everything around it, drawing material in—even light itself—and sometimes spitting out jets of energy at near-light-speed.
It was only recently that we got our first image of one of these monstrosities. Now, the Hubble has captured an image of a supermassive black hole (SMBH), or what might be part of its shadow, anyway.
I wear glasses for astigmatism. But, as a stargazer with a visual impediment, turns out I’m in good company. The GREGOR telescope, a solar telescope located at the Teide Observatory in the Canary Islands also suffered from an astigmatism that was recently corrected…to very stellar results.
Opened in 2012, GREGOR is part of a new generation of solar (Sun observing) telescopes. Before 2002, solar scopes were quite small in diameter; under one metre. The Sun is close, and VERY bright, so your telescope doesn’t need to be as wide as those used for deep-space imaging. GREGOR itself is 1.5m (compare that to some of the largest telescopes imaging distant faint objects like the Keck Observatory at 10m. But without the special filters/optics used by a solar scope, a regular telescope staring at the Sun would be destroyed by the Sun’s light). A telescope’s power is often related to its ability to magnify. But just like enlarging a low-resolution photo, the more you magnify, the fuzzier the image becomes (that’s why those scenes in crime shows where they yell ‘enhance!’ and a photo grows to reveal a criminal are not realistic). Ultimately, a telescope’s diameter provides the higher resolution photo. GREGOR is designed to take those high-resolution images of our local Star. How high resolution? Imagine being able to distinguish a 50km wide feature on the Sun from 140 million km away – basically the same as being able to read the text on a coin from a kilometre away.
It’s possible that you’ve seen the Andromeda galaxy (M31) without even realizing it. The massive spiral galaxy appears as a grey, spindle-shaped blob in the night sky, visible with the naked eye in the right conditions. It’s the nearest major galaxy to ours, and astronomers have studied it a lot.
Now astronomers have used the Hubble Space Telescope to map out Andromeda’s enormous halo of hot gas.
If you’re a Star Trek fan, you may think the above image portrays the “Nexus” from the movie Star Trek: Generations. In the film, the Nexus was a ribbon-like extra-dimensional realm that exists outside of normal space-time.
But this is actually a real image from the venerable Hubble Space Telescope, of the Cygnus Loop. This stunning picture from space shows just a small portion of a blast wave left over from a supernova that took place, from our vantage point, in the northern constellation Cygnus the Swan.
This summer we were (finally) treated to a spectacular, naked-eye comet, C/2020 F3 NEOWISE. And while seeing it with our own eyes was a joy, it was incredible to see the varied photos of NEOWISE taken by people around the world, showing the comet’s long gossamer tails, filled with detail and color. (See our gallery of images here.)
Now, the Hubble Space Telescope has released a high-resolution image of NEOWISE. However, it might not be the view you may have expected.
Once I accidentally took a photo of one of the most important stars in the Universe…
That star highlighted in the photo is called M31_V1 and resides in the Andromeda Galaxy. The Andromeda – AKA M31- is the closest galaxy to our own Milky Way. But before it was known as a galaxy, it was called the Andromeda Nebula. Before this particular star in Andromeda was studied by Edwin Hubble, namesake of the Hubble Space Telescope, we didn’t actually know if other galaxies even existed. Think about that! As recently as a hundred years ago, we thought the Milky Way might be the ENTIRE Universe. Even then…that’s pretty big. The Milky Way is on the order of 150,000 light years across. A light year is about 10 TRILLION kilometers so even at the speed of light it would take nearly the same length of time to cross the Milky Way as humans have existed on planet Earth. M31_V1 changed all that.
If you want an iconic picture of the planet Saturn, it doesn’t get any better than this. The latest picture from the Hubble Space Telescope shows a spectacular view of the ringed giant, taken on July 4, 2020. This shows a “summertime” view of Saturn’s northern hemisphere.
The Hubble Space Telescope has the knack for finding every size and shape of galaxy imaginable – from small, medium to large, all the way up to that funky size of absolute units.
The Hubble Space Telescope has delivered another outstanding image. This one is of NGC 6441, a massive globular cluster in the constellation Scorpius. It’s one of the most massive ones in the Milky Way, and the stars in it have a combined mass of 1.6 million solar masses.
Astronomers don’t know exactly when the first stars formed in the Universe because they haven’t been observed yet. And now, new observations from the Hubble Space Telescope suggest the first stars and galaxies may have formed even earlier than previously estimated.
Why? We *still* haven’t seen them, even with the best telescope we’ve got, pushed to its limits.