ALMA Shows Off Baby Pictures… Baby Planets, That Is!

This is the sharpest image ever taken by ALMA — sharper than is routinely achieved in visible light with the NASA/ESA Hubble Space Telescope. It shows the protoplanetary disc surrounding the young star HL Tauri. These new ALMA observations reveal substructures within the disc that have never been seen before and even show the possible positions of planets forming in the dark patches within the system. Credit: ALMA (ESO/NAOJ/NRAO)

In a test of its new high resolution capabilities, the Atacama Large Millimeter/submillimeter Array (ALMA) is happily sharing some family snapshots with us. Astronomers manning the cameras have captured one of the best images so far of a newly-forming planet system gathering itself around a recently ignited star. Located about 450 light years from us in the constellation of Taurus, young HL Tau gathers material around it to hatch its planets and fascinate researchers.

Thanks to ALMA images, scientists have been able to witness stages of planetary formation which have been suspected, but never visually confirmed. This very young star is surrounded by several concentric rings of material which have neatly defined spacings. Is it possible these clearly marked gaps in the solar rubble disc could be where planets have started to gel?

“These features are almost certainly the result of young planet-like bodies that are being formed in the disk. This is surprising since HL Tau is no more than a million years old and such young stars are not expected to have large planetary bodies capable of producing the structures we see in this image,” said ALMA Deputy Director Stuartt Corder.

“When we first saw this image we were astounded at the spectacular level of detail. HL Tauri is no more than a million years old, yet already its disc appears to be full of forming planets. This one image alone will revolutionize theories of planet formation,” explained Catherine Vlahakis, ALMA Deputy Program Scientist and Lead Program Scientist for the ALMA Long Baseline Campaign.

Let’s take a look at what we understand about solar system formation…

Through repeated research, astronomers suspect that all stars are created when clouds of dust and gas succumb to gravity and collapse on themselves. As the star begins to evolve, the dust binds together – turning into “solar system soup” consisting of an array of different sized sand and rocks. This rubble eventually congeals into a thin disc surrounding the parent star and becomes home to newly formed asteroids, comets, and planets. As the planets collect material into themselves, their gravity re-shapes to structure of the disc which formed them. Like dragging a lawn sweeper over fallen leaves, these planets clear a path in their orbit and form gaps. Eventually their progress pulls the gas and dust into an even tighter and more clearly defined structure. Now ALMA has shown us what was once only a computer model. Everything we thought we knew about planetary formation is true and ALMA has proven it.

This is the sharpest image ever taken by ALMA — sharper than is routinely achieved in visible light with the NASA/ESA Hubble Space Telescope. It shows the protoplanetary disc surrounding the young star HL Tauri. The observations reveal substructures within the disc that have never been seen before and even show the possible positions of planets forming in the dark patches within the system. In this picture the features seen in the HL Tauri system are labelled.  Credit: ALMA (ESO/NAOJ/NRAO)
This is the sharpest image ever taken by ALMA — sharper than is routinely achieved in visible light with the NASA/ESA Hubble Space Telescope. It shows the protoplanetary disc surrounding the young star HL Tauri. The observations reveal substructures within the disc that have never been seen before and even show the possible positions of planets forming in the dark patches within the system. In this picture the features seen in the HL Tauri system are labelled. Credit: ALMA (ESO/NAOJ/NRAO)

“This new and unexpected result provides an incredible view of the process of planet formation. Such clarity is essential to understand how our own solar system came to be and how planets form throughout the universe,” said Tony Beasley, director of the National Radio Astronomy Observatory (NRAO) in Charlottesville, Virginia, which manages ALMA operations for astronomers in North America.

“Most of what we know about planet formation today is based on theory. Images with this level of detail have up to now been relegated to computer simulations or artist’s impressions. This high resolution image of HL Tauri demonstrates what ALMA can achieve when it operates in its largest configuration and starts a new era in our exploration of the formation of stars and planets,” says Tim de Zeeuw, Director General of ESO.

The major reason astronomers have never seen this type of structure before is easy to envision. The very dust which creates the planetary disc around HL Tau also conceals it to visible light. Thanks to ALMA’s ability to “see” at much longer wavelengths, it can image what’s going on at the very heart of the cloud. “This is truly one of the most remarkable images ever seen at these wavelengths. The level of detail is so exquisite that it’s even more impressive than many optical images. The fact that we can see planets being born will help us understand not only how planets form around other stars but also the origin of our own solar system,” said NRAO astronomer Crystal Brogan.

How does ALMA do it? According to the research staff, its new high-resolution capabilities were achieved by spacing the antennas up to 15 kilometers apart. This baseline at millimeter wavelengths enabled a resolution of 35 milliarcseconds, which is equivalent to a penny as seen from more than 110 kilometers away. “Such a resolution can only be achieved with the long baseline capabilities of ALMA and provides astronomers with new information that is impossible to collect with any other facility, including the best optical observatories,” noted ALMA Director Pierre Cox.

This is a composite image of the young star HL Tauri and its surroundings using data from ALMA (enlarged in box at upper right) and the NASA/ESA Hubble Space Telescope (rest of the picture). This is the first ALMA image where the image sharpness exceeds that normally attained with Hubble.  Credit: ALMA (ESO/NAOJ/NRAO)
This is a composite image of the young star HL Tauri and its surroundings using data from ALMA (enlarged in box at upper right) and the NASA/ESA Hubble Space Telescope (rest of the picture). This is the first ALMA image where the image sharpness exceeds that normally attained with Hubble. Credit: ALMA (ESO/NAOJ/NRAO)

The long baselines spell success for the ALMA observations and are a tribute to all the technology and engineering that went into its construction. Future observations at ALMA’s longest possible baseline of 16 kilometers will mean even more detailed images – and an opportunity to further expand our knowledge of the Cosmos and its workings. “This observation illustrates the dramatic and important results that come from NSF supporting world-class instrumentation such as ALMA,” said Fleming Crim, the National Science Foundation assistant director for Mathematical and Physical Sciences. “ALMA is delivering on its enormous potential for revealing the distant universe and is playing a unique and transformational role in astronomy.”

Pass them baby pictures our way, Mama ALMA… We’re delighted to take a look!

Original Story Source: “Revolutionary ALMA Image Reveals Planetary Genesis” – ESO Press Release

Hubble Finds 3 (Relatively) Dry Exoplanets, Raising Questions About Water Outside The Solar System

Artist's conception of gas giant planet HD 209458b in the constellation Pegasus, which has less water vapor in its atmosphere than expected. Credit: NASA, ESA, G. Bacon (STScI) and N. Madhusudhan (UC)

Surprise! Three planets believed to be good candidates for having water vapor in their atmosphere actually have much lower quantities than expected.

The planets (HD 189733b, HD 209458b, and WASP-12b) are “hot Jupiters” that are orbiting very close to their parent star, at a distance where it was expected the extreme temperatures would turn water into a vapor that could be seen from afar.

But observations of the planets with the Hubble Space Telescope, who have temperatures between 816 and 2,204 degrees Celsius (1,500 and 4,000 degrees Fahrenheit), show only a tenth to a thousandth of the water astronomers expected.

“Our water measurement in one of the planets, HD 209458b, is the highest-precision measurement of any chemical compound in a planet outside our solar system, and we can now say with much greater certainty than ever before that we’ve found water in an exoplanet,” stated Nikku Madhusudhan, an astrophysicist at the University of Cambridge, England who led the research. “However, the low water abundance we have found so far is quite astonishing.”

This finding, if confirmed by other observations, could force exoplanet formation theory to be revised and could even have implications for how much water is available in so-called “super-Earths”, rocky planets that are somewhat larger than our own, the astronomers said.

Kepler-62f, an exoplanet that is about 40% larger than Earth. It's located about 1,200 light-years from our solar system in the constellation Lyra. Credit: NASA/Ames/JPL-Caltech
Kepler-62f, an exoplanet that is about 40% larger than Earth. It’s located about 1,200 light-years from our solar system in the constellation Lyra. Credit: NASA/Ames/JPL-Caltech

That theory states that planets form over time as small dust particles stick to each other and grow into larger bodies. As it becomes a planet and takes on an atmosphere from surrounding gas bits, it’s believed that those elements should be “enhanced” in proportion to its star, especially in the case of oxygen. That oxygen in turn should be filled with water.

“We should be prepared for much lower water abundances than predicted when looking at super-Earths (rocky planets that are several times the mass of Earth),” Madhusudhan stated.

The research will be published today (July 24) in the Astrophysical Journal.

Source: NASA

Feel The Heat! New Mars Map Shows Differences Between Bedrock And Sand

An impact crater on Mars called Graterri, which is only 4.3 miles (6.9 km) in diameter, shines in a global heat map of the Red Planet produced in 2014. Credit: NASA/JPL-Caltech/Arizona State University

For years, NASA’s Mars Odyssey has been working on some night moves. It’s been taking pictures of the Red Planet during nighttime — more than 20,000 in all — to see how the planet’s heat signature looks while the sun is down.

The result is the highest-resolution map ever of the thermal properties of Mars, which you can see here. Why is this important? Researchers say it helps tell the story about things such as if an area is shrouded with dust, where bare bedrock is, and whether sediments in a crater are packed tight or floating freely.

“Darker areas in the map are cooler at night, have a lower thermal inertia and likely contain fine particles, such as dust, silt or fine sand,” stated Robin Fergason at the USGS Astrogeology Science Center in Arizona, who led the map’s creation. Brighter areas are warmer, likely yielding regions of bedrock, crust or coarse sand.

The map from Odyssey’s Thermal Emission Imaging System (THEMIS) is also used for a more practical purpose: deciding where to set down NASA’s next Mars mission.

After assisting in landing site selection for the Curiosity mission, the THEMIS data will be used to figure out where the Mars 2020 rover will be placed, Arizona State University stated.

You can check out more recent THEMIS images (updated daily) on this website.

Source: Arizona State University

How to Find Your Way Around the Milky Way This Summer

The band of the Milky Way stretches from Cygnus (left) to the Sagittarius in this wide-angle, guided photo. Credit: Bob King

Look east on a dark June night and you’ll get a face full of stars. Billions of them. With the moon now out of the sky for a couple weeks, the summer Milky Way is putting on a grand show. Some of its members are brilliant like Vega, Deneb and Altair in the Summer Triangle, but most are so far away their weak light blends into a hazy, luminous band that stretches the sky from northeast to southwest. Ever wonder just where in the galaxy you’re looking on a summer night? Down which spiral arm your gaze takes you? 

Artist's conception of the Milky Way galaxy based on the latest survey data from ESO’s VISTA telescope at the Paranal Observatory. A prominent bar of older, yellower stars lies at galaxy center surrounded by a series of spiral arms. The galaxy spans some 100,000 light years. Credit: NASA/JPL-Caltech, ESO, J. Hurt
Artist’s conception of the Milky Way galaxy based on the latest survey data from ESO’s VISTA telescope at the Paranal Observatory. A prominent bar of older, yellower stars lies at galaxy center surrounded by a series of spiral arms. The galaxy spans some 100,000 light years. Credit: NASA/JPL-Caltech, ESO, J. Hurt
Two different perspectives on our galaxy to help us better understand its shape. A face-on artist's view at left reveals the core and arms. At right, we see a  photo of the Milky Way in infrared light by the Cosmic Background Explorer probe showing us an edge-on perspective, the view we're 'stuck with' but dint of orbiting inside the galaxy's flat plane. Credit: NASA/JPL et. all (left) and NASA
Two different perspectives on our galaxy help us better understand its shape. A face-on artist’s view at left reveals the core, spiral arms and the sun’s position. At right, we see an edge-on perspective photographed by the Cosmic Background Explorer probe. Because the sun and planets orbit in the galaxy’s plane, we’re ‘stuck’ with an edge-on view until we build a fast-enough rocket to take us above our galactic home. Credit: NASA/JPL et. all (left) and NASA

Because all stars are too far away for us to perceive depth, they appear pasted on the sky in two dimensions. We know this is only an illusion. Stars shine from every corner of the galaxy,  congregating in its bar-shaped core, outer halo and along its shapely spiral arms. The trick is using your mind’s eye to see them that way.

Employing optical, infrared and radio telescopes, astronomers have mapped the broad outlines of the home galaxy, placing the sun in a minor spiral arm called the Orion or Local Arm some 26,000 light years from the galactic center. Spiral arms are named for the constellation(s) in which they appear. The grand Perseus Arm unfurls beyond our local whorl and beyond it, the Outer Arm. Peering in the direction of the galaxy’s core we first encounter the Sagittarius Arm, home to sumptuous star clusters and nebulae that make Sagittarius a favorite hunting ground for amateur astronomers.

Further in lies the massive Scutum-Centaurus Arm and finally the inner Norma Arm. Astronomers still disagree on the number of major arms and even their names, but the basic outline of the galaxy will serve as our foundation. With it, we can look out on a dark summer night at the Milky Way band and get a sense where we are in this magnificent celestial pinwheel.

The Milky Way band arches across the east and south as seen about 11:30 p.m. in mid-late June. The center of the galaxy is located in the direction of the constellation Sagittarius.  Stellarium
The Milky Way band arches across the east and south as seen about 11:30 p.m. in mid-late June. The center of the galaxy is in the direction of the constellation Sagittarius. The dark ‘rift’  that appears to cleave the Milky Way in two is formed of clouds of interstellar dust that blocks the light of stars beyond it. Stellarium

We’ll start with the band of the Milky Way  itself. Its ribbon-like form reflects the galaxy’s flattened, lens-like profile shown in the edge-on illustration above. The sun and planets are located within the galaxy’s plane (near the equator) where the stars are concentrated in a flattened disk some 100,000 light years across. When we look into the galaxy’s plane, billions of stars pile up across thousands of light years to create a narrow band of light we call the Milky Way. The same term is applied to the galaxy as a whole.

Since the average thickness of the galaxy is only about 1,000 light years, if you look above or below the band, your gaze penetrates a relatively short distance – and fewer stars – until entering intergalactic (starless) space. That why the rest of the sky outside of the Milky Way band has so few stars compared to the hordes we see within the band.

Here’s the galactic big picture showing the outline of the galaxy with constellations added. In this edge-on view, we see that the summertime Milky Way from Cassiopeia to Sagittarius includes the central bulge (in the direction of Sagittarius) and a hefty portion of  one side of the flattened disk:

The outline of the Milky Way viewed edge-on is shown in gray. The yellow box includes the summer portion of the Milky Way from Cassiopeia to Scorpius with a red dot marking the galaxy's center. This is the section we see crossing the eastern sky in June and includes the galactic center. Click to enlarge. Credit: Richard Powell with additions by the author
The outline of the Milky Way viewed edge-on is shown in gray. The yellow box includes the summer portion of the Milky Way from Cassiopeia to Scorpius with a red dot marking the galaxy’s center. This is the section we see crossing the eastern sky in June. Click to enlarge. Credit: Richard Powell with additions by the author

If you enlarge the map, you’ll see lines of galactic latitude and longitude much like those used on Earth but applied to the entire galaxy.  Latitude ranges from +90 degrees at the North Galactic Pole to -90 at the South Galactic Pole. Likewise for longitude. 0 degrees latitude, o degrees longitude marks the galactic center. The summer Milky Way band extends from about longitude 340 degrees in Scorpius to 110 in Cassiopeia.

Now that we know what section of the Milky Way we peer into this time of year, let’s take an imaginary rocket journey and see it all from above:

Viewed from above, we can now see that our gaze takes across the Perseus Arm (toward the constellation Cygnus), parts of the Sagittarius and Scutum-Centaurus arms (toward the constellations  Scutum, Sagittarius and Ophiuchus) and across the central bar. Interstellar dust obscures much of the center of the galaxy. Credit: NASA et. all with additions by the author.
Viewed from above, we can now see that our gaze (red arrows) reaches down the Perseus Arm (toward the constellation Cygnus) and across the Sagittarius and Scutum-Centaurus arms (toward the constellations Scutum, Sagittarius and Ophiuchus) and directly into the central bar. Interstellar dust obscures much of the center of the galaxy. Blue arrows show the direction we face during the winter months. Credit: NASA et. all with additions by the author.

Wow! The hazy arch of June’s Milky Way takes in a lot of galactic real estate. A casual look on a dark night takes us from Cassiopeia in the outer Perseus Arm across Cygnus in our Local Arm clear over to Sagittarius, the next arm in. Interstellar dust deposited by supernovae and other evolved stars obscures much of the center of the galaxy. If we could vacuum it all up, the galaxy’s center  – where so many stars are concentrated – would be bright enough to cast shadows.

A view showing the summer Milky Way from mid-northern latitudes with three constellations and the spiral arms to which they belong. Stellarium
A view showing the summer Milky Way from mid-northern latitudes with three prominent constellations and the spiral arms we peer into when we face them.  Stellarium

Here and there, there are windows or clearings in the dust cover that allow us to see star clouds in the Scutum-Centaurus and Norma Arms. In the map, I’ve also shown the section of Milky Way we face in winter. If you’ve ever compared the winter Milky Way band to the summer’s you’ve noticed it’s much fainter. I think you can see the reason why. In winter, we face away from the galaxy’s core and out into the fringes where the stars are sparser.

Look up the next dark night and contemplate the grand architecture of our home galaxy. If you close your eyes,  you might almost feel it spinning.

Poof! Mountain Blows Its Top To Make Way For Huge Telescope

The top of Cerro Armazones in Chile is blown off June 19, 2014 for the European Extremely Large Telescope. Credit: Vine / ObservingSpace

All’s clear for a huge telescope to start construction on a mountaintop in Chile! That puff you see is the top of Cerro Armazones getting a haircut, losing many tons of rock in just a few seconds. The aim is to clear the way for the European Extremely Large Telescope, a 39-meter (128-foot) monster of a telescope to occupy the mountain’s top. Once completed later this decade, the optical/near-infrared telescope has an ambitious research schedule ahead of it. It will search for planets that look like Earth, try to learn more about how nearby galaxies were formed, and even look for the mysterious dark energy and dark matter that pervade our universe. Construction is being overseen by the European Southern Observatory, which provided an enthusiastic livetweet of the process. You can learn more about E-ELT on ESO’s webpage here.  Thanks to @observingspace for posting a Vine of the explosion. Below is an ESO video showing preparations for the blast.

Loading player…

‘Weird’ Dust Ring Baffles In Cloud That Will Give Birth To Giant Stars

A picture of NGC 7538 from data taken by the Herschel Space Observatory. Credit: ESA/NASA/JPL-Caltech/Whitman College

Long after telescopes cease operating, their bounty of scientific data continues to amaze. Here’s an example of that: this Herschel Space Telescope image of this dust and gas cloud about 8,000 light-years away.

The examination of NGC 7358 revealed a “weird” dusty ring in the cloud — nobody quite knows how it got there — as well as a baker’s dozen of huge dust clumps that could one day form gigantic stars.

“The 13 clumps spotted in NGC 7358, some of which lie along the edge of the mystery ring, all are more than 40 times more massive than the sun,” NASA stated.

“The clumps gravitationally collapse in on themselves, growing denser and hotter in their cores until nuclear fusion ignites and a star is born. For now, early in the star-formation process, the clumps remain quite cold, just a few tens of degrees above absolute zero. At these temperatures, the clumps emit the bulk of their radiation in the low-energy, submillimeter and infrared light that Herschel was specifically designed to detect.”

Artist's impression of the Herschel Space Telescope. Credit: ESA/AOES Medialab/NASA/ESA/STScI
Artist’s impression of the Herschel Space Telescope. Credit: ESA/AOES Medialab/NASA/ESA/STScI

More observations are planned to learn about the nature of the dusty ring. So far, astronomers can say it is 35 light-years at its longest axis, 25 light-years at its shortest-axis, and has a mass of about 500 times of the sun. The astronomers took a look at it with the James Clerk Maxwell Telescope in Hawaii to gain some more information.

“Astronomers often see ring and bubble-like structures in cosmic dust clouds,” NASA added.” The strong winds cast out by the most massive stars, called O-type stars, can generate these expanding puffs, as can their explosive deaths as supernovas. But no energetic source or remnant of a deceased O-type star, such as a neutron star, is apparent within the center of this ring. It is possible that a big star blew the bubble and, because stars are all in motion, subsequently left the scene, escaping detection.”

While the research was published in the Astrophysical Journal about a year ago, the image appears to be a new entry on NASA’s and Herschel’s websites. You can also read the paper (led by Cassandra Fallscheer, a visiting assistant professor of astronomy at Whitman College in Walla Walla, Washington) in preprint version on Arxiv.

The Herschel telescope was shut down almost exactly a year ago after the liquid helium that cooled its instruments ran out.

Source: Jet Propulsion Laboratory

Too WISE to be Fooled by Dust: Over 300 New Star Clusters Discovered

A new study by Brazilian astronomers details the discoveries of some 300 new star clusters using the WISE space telescope (credit NASA/JPL-Caltech/UCLA).

Brazilian astronomers have discovered some 300+ star clusters that were largely overlooked owing to sizable obscuration by dust.  The astronomers, from the Universidade Federal do Rio Grande do Sul, used data obtained by NASA’s WISE (Wide-Field Infrared Survey Explorer) space telescope to detect the clusters.

“WISE is a powerful tool to probe … young clusters throughout the Galaxy”, remarked the group.  The clusters discovered were previously overlooked because the constituent stars are deeply embedded in their parent molecular cloud, and are encompassed by dust.   Stars and star clusters can emerge from such environments.

The group added that, “The present catalog of new clusters will certainly become a major source for future studies of star cluster formation.”   Indeed, WISE is well-suited to identify new stars and their host clusters because infrared radiation is less sensitive to dust obscuration.  The infrared part of the electromagnetic spectrum is sampled by WISE.

An optical (DSS) and infrared (WISE) image of the same field.  A cluster of young stars is not apparent in the optical (left) image owing to obscuration by dust.  However, a young star cluster is apparent in the right image because the dust reradiates the absorbed radiation in the infrared regime.  The new study highlights the discovery of numerous  star clusters discovered using infrared (WISE) data (image credit: DSS/NASA and assembly by D. Majaess).
An optical (DSS) and infrared (WISE) image of the same field. A cluster of young stars is not apparent in the optical (left) image owing to obscuration by dust.  However, a young star cluster is readily apparent in the right image because dust obscuration is significantly less at infrared wavelengths. A new study by a team of astronomers highlights the discovery of numerous star clusters using WISE data (image credit: DSS/NASA/IPAC and assembly by D. Majaess).

Historically, new star clusters were often identified while inspecting photographic plates imaged at (or near) visible wavelengths (i.e., the same wavelengths sampled by the eye).  Young embedded clusters were consequently under-sampled since the amount of obscuration by dust is wavelength dependent.  As indicated in the figure above, the infrared observations penetrate the dust by comparison to optical observations.

The latest generation of infrared survey telescopes (e.g., Spitzer and WISE) are thus excellent instruments for detecting clusters embedded in their parent cloud, or hidden from detection because of dust lying along the sight-line.  The team notes that, “The Galaxy appears to contain 100000 open clusters, but only some 2000 have established astrophysical parameters.”  It is hoped that continued investigations using WISE and Spitzer will help astronomers minimize that gap.

The discoveries are described in a new study by D. Camargo, E. Bica, and C. Bonatto that is entitled “New Glactic embedded cluster and candidates from a WISE survey“.   The study has been accepted for publication, and will appear in a forthcoming issue of the journal New Astronomy.  For more information on Galactic star clusters see the Dias et al. catalog, the WEBDA catalog, or the Star Clusters Young & Old Newsletter.  Thanks to K. MacLeod for the title suggestion.

The WISE (Wide-field Infrared Survey Explorer) space telescope was used to discover numerous new star clusters (image credit: NASA)(.
The WISE (Wide-field Infrared Survey Explorer) space telescope was used to discover numerous star clusters (image credit: NASA).

 

Direct Image of an Exoplanet 155 Light Years Away

Credit

Chalk up another benchmark in the fascinating and growing menagerie of extra-solar planets.

This week, an international team of researchers from the Université de Montréal announced the discovery of an exoplanet around the star GU Piscium in the constellation of Pisces the Fishes 155 light years distant. Known as GU Psc b, this world is estimated to be 11 times the mass of Jupiter — placing it just under the lower mass limit for brown dwarf status — and orbits its host star 2,000x farther than the distance from Earth to the Sun once every 80,000 (!) years. In our own solar system, that would put GU Psc b out over twice the distance of the aphelion of 90377 Sedna.

The primary star, GU Psc A, is an M3 red dwarf weighing in at 35% the mass of our Sun and is just 100 million years old, give or take 30 million years. In fact, researchers targeted GU Psc after it was determined to be a member of the AB Doradus moving group of relatively young stars, which are prime candidates for exoplanet detection. Another recent notable discovery, the free-floating “rogue planet” CFBDSIR 2149-0403 is also thought to be a member of the AB Doradus moving group.

The fact that GU Psc B was captured by direct imaging at 155 light years distant is amazing. The international team that made the discovery was led by PhD student at the Department of Physics Université de Montréal  Marie-Ève Naud. The team was able to discern this curious planet by utilizing observations from the W.M. Keck observatory, the joint Canada-France-Hawaii Telescope, the Gemini Observatory and the Observatoire Mont-Mégantic in Québec.

Credit
An artist’s conception of the forlorn world of GU Psc b. Credit– Lucas Granito.

Universe Today recently caught up with researcher Marie-Ève Naud and her co-advisor Étienne Artigau about this exciting discovery.

What makes this discovery distinctive? Is this the most distant exoplanet ever imaged?

“Well, first, there are not a lot of exoplanets that were detected ‘directly’ so far. Most were found indirectly through the effect they have on their parent star. The few planets for which we have an actual image are interesting because we can analyze their light directly, and thus learn much more about them. It was also one of the “coolest” planets that have been directly imaged, showing methane absorption. And yes, it is certainly the most distant exoplanet to a main-sequence star that has been found so far.

This distance makes GU Psc b very interesting from a theoretical point of view, because it’s hard to imagine how it could have formed in the protoplanetary disk of its star. The current working definition of an exoplanet is based solely on mass (<13 Jupiter masses), so GU Psc b probably formed in a way that is more similar to how stars formed. It is definitely the kind of object that makes us think about what exactly is an exoplanet.”   

At a distance of 2000 A.U.s from its primary, how are astronomers certain that PU Psc b is related to its host and not a foreground or background object?

“As the host star, GU Psc is relatively nearby; it displays a significant apparent proper motion (note: around 100 milliarcseconds a year) relative to distant background stars and galaxies.

On images taken one year apart with WIRCam on the Canada-France-Hawaii Telescope, we observed that the companion displays the same big proper motion, i.e. they move together in the plane of the sky, while the rest of the stars in the field don’t. We also determined the distance of the both the planet and the host star, and they both agree. Also, they both display signs that they are very young.”

Were any groundbreaking techniques used for the discovery, and what does this mean for the future of exoplanet science?

“Quite the opposite… most planet hunting techniques using direct imaging involve state-of-the-art adaptive optics systems, but we used ‘standard’ imaging without any exotic techniques. Planet searches usually attempt to find planets in orbits similar to those of our own solar system giants, and finding these objects, indeed, requires groundbreaking techniques. In a sense, there is an anthropocentric bias in the searches for exoplanets, as people tend to look for systems that are similar to our own solar system. Very distant planets like GU Psc b have been under the radar, even though they are easier to find than their closer-in counterparts. To find this planet, we used very sensitive ‘standard’ imaging, but we chose carefully the wavelengths where planets display colors that are unlike most other astrophysical objects such as stars and galaxies.”    

The general field of PU Piscium A & B in the night sky... note that this currently puts it in the dawn sky, near Venus and Uranus! Credit: Starry Night.
The general field of GU Piscium A & B in the night sky… note that this currently puts it in the dawn sky, near Venus and Uranus! Credit: Starry Night.

GU Piscium shines at magnitude +13.6 northeast of the March equinoctial point in the constellation of Pisces. Although its exoplanet companion is too faint to be seen with a backyard telescope, its angular separation is a generous 42,” about the apparent span of Saturn, complete with rings. And it’s shaping up to be a red dwarf sort of week at Universe Today, with our recent list of red dwarf stars for backyard telescopes. And the current tally for extra-solar planets sits at 1,791… hey; didn’t we just pass 1,000 last year?

Congrats to Marie-Ève Naud and her team on this exciting new discovery… and here’s to many more to come!

Read the original paper, Discovery of a Wide Planetary-Mass Companion to the Young M3 Star GU Psc.

360 Degrees of Milky Way at Your Fingertips

A screen grab of the new zoomable Milky Way mosaic that uses Microsoft's WorldWide Telescope viewer. Click to use. Credit: NASA

Touring the Milky Way’s a blast with this brand new 360-degree interactive panorama. More than 2 million infrared photos taken by NASA’s Spitzer Space Telescope were jigsawed into a 20-gigapixel click-and-zoom mosaic that takes the viewer from tangled nebulae to stellar jets to blast bubbles around supergiant stars.  

Magnetic loops carry gas and dust above disks of planet-forming material circling stars, as shown in this artist's conception. These loops give off extra heat, which NASA's Spitzer Space Telescope detects as infrared light. The colors in this illustration show what an alien observer with eyes sensitive to both visible light and infrared wavelengths might see. Credit: NASA/JPL-Caltech/R. Hurt (IPAC)
Magnetic loops carry gas and dust above disks of planet-forming material circling stars, as shown in this artist’s conception. These loops give off extra heat, which NASA’s Spitzer Space Telescope detects as infrared light. The colors in this illustration show what an alien observer with eyes sensitive to both visible light and infrared wavelengths might see. Credit: NASA/JPL-Caltech/R. Hurt (IPAC)

The new composite, using infrared images taken over the past decade, was compiled by a team led by UW-Madison astronomer Barbara Whitney and unveiled at a TEDactive conference in Vancouver, Canada Thursday. Unlike visual light, infrared penetrates the ubiquitous dust concentrated in the galactic plane to reveal structures otherwise obscured.


Catching a GLIMPSE of the Milky Way in this short video presentation

“For the first time, we can actually measure the large-scale structure of the galaxy using stars rather than gas,” explained Edward Churchwell, UW-Madison professor of astronomy and team co-leader. “We’ve established beyond the shadow of a doubt that our galaxy has a large bar structure that extends halfway out to the sun’s orbit. We know more about where the Milky Way’s spiral arms are.”

Named GLIMPSE360 (Galactic Legacy Mid-Plane Survey Extraordinaire project), the deep infrared survey captures only about 3% of the sky, but because it focuses on the plane of the Milky Way, where stars are most highly concentrated, it shows more than half of all the galaxy’s 300 billion suns.

The Milky Way is a spiral galaxy with several prominent arms containing stellar nurseries swathed in  pink clouds of hydrogen gas. The sun is shown near the bottom in the Orion Spur. Credit: NASA
The Milky Way is a spiral galaxy with several prominent arms containing stellar nurseries swathed in pink clouds of hydrogen gas. The sun is shown near the bottom in the Orion Spur. Credit: NASA

Using your imagination to hover high above the galactic plane, you’d see the Milky Way is a flat spiral galaxy sporting a stubby bar of stars crossing its central bulge. The solar system occupies a tiny niche in a minor spiral arm called the Orion Spur two-thirds of the way from the center to the edge.  At 100,000 light years across, the Milky Way is vast beyond comprehension and yet it’s only one of an estimated 100 billion galaxies in the observable universe.

Bubbles of gas and sites of star formation are seen in this close up from a region in the constellation Sagittarius. Credit:
Bubbles of gas and sites of star formation are seen in this close up in a region in the constellation Sagittarius. Credit:

While you and I sit back and marvel at all the stellar and nebular eye candy, the Spitzer images are helping astronomers determine where the edge of the galaxy lies and location of the spiral arms. GLIMPSE images have already revealed the Milky Way to be larger than previously thought and shot through with bubbles of expanding gas and dust blown by giant stars.

Spitzer can see faint stars in the “backcountry” of our galaxy — the outer, darker regions that went largely unexplored before.

Barbara Whitney, co-leader of the GLIMPSE360 team
Barbara Whitney, co-leader of the GLIMPSE360 team

“There are a whole lot more lower-mass stars seen now with Spitzer on a large scale, allowing for a grand study,” said Whitney. “Spitzer is sensitive enough to pick these up and light up the entire ‘countryside’ with star formation.”

The new 360-degree view will also help NASA’s upcoming James Webb Space Telescope target the most interesting sites of star-formation, where it will make even more detailed infrared observations.

When you play around with the interactive mosaic,  you’ll notice a few artifacts here and there among the images. Minor stuff. What took some getting used to was  how strikingly different familiar nebulae appeared when viewed in infrared instead of visual light. The panorama is also available on the Aladin viewing platform which offers shortcuts to regions of interest.

Neil deGrasse Tyson, astrophysicist and host of the new Cosmos TV series, gave the third line of our “cosmic address” as the Milky Way after ‘Earth’ and ‘Solar System’. After a few minutes with GLIMPSE360 you’ll  better appreciate the depth and breadth of our galactic home.

SOFIA Snapshots: Jupiter And Starbirth Among Achievements For Observatory Facing Sidelines

SOFIA, accompanied by an F/A-18 during the open-door testing in December of 2009. Image Credit: NASA/Jim Ross

Just weeks after becoming fully operational, the Stratospheric Observatory for Infrared Astronomy (SOFIA) is facing storage in 2015. The airborne observatory costs NASA about $85 million annually, making it one of the more expensive missions the agency has. Yesterday, administrator Charlie Bolden told reporters that it was a matter of making choices, and that the money from SOFIA could go to missions such as Cassini.

This isn’t the first time that SOFIA faced budget challenges. Back in 2006, for example, NASA placed the program on hold due to several program and budget challenges that are outlined in this Universe Today article, but after a review the observatory program moved forward.

Much of the expense comes from flying the modified 747 airplane to carry the telescope, which was built by the Germans and has a mirror of about 2.5 meters (100 inches). NASA said it is possible that DLR could take on more of the cost, and said it is in discussions with the German space agency to figure out the telescope’s future.

The telescope saw its first light in 2010. Here are some of the special things it’s spotted in three years and about 400 hours of flying.

Mighty Jupiter’s heat

Infrared image of Jupiter from SOFIA’s First Light flight composed of individual images at wavelengths of 5.4 (blue), 24 (green) and 37 microns (red) made by Cornell University’s FORCAST camera. A recent visual-wavelength picture of approximately the same side of Jupiter is shown for comparison. The white stripe in the infrared image is a region of relatively transparent clouds through which the warm interior of Jupiter can be seen. (Visual image credit: Anthony Wesley)
Infrared image of Jupiter from SOFIA’s First Light flight composed of individual images at wavelengths of 5.4 (blue), 24 (green) and 37 microns (red) made by Cornell University’s FORCAST camera. A recent visual-wavelength picture of approximately the same side of Jupiter is shown for comparison. The white stripe in the infrared image is a region of relatively transparent clouds through which the warm interior of Jupiter can be seen. (Visual image credit: Anthony Wesley)

This is one of the first observations that SOFIA performed. “The crowning accomplishment of the night came when scientists on board SOFIA recorded images of Jupiter,” said USRA SOFIA senior science advisor Eric Becklin in 2010. “The composite image from SOFIA shows heat, trapped since the formation of the planet, pouring out of Jupiter’s interior through holes in its clouds.”

M82 supernova

Image of M82 including the supernova at near-infrared wavelengths J, H, and K (1.2, 1.65, and 2.2 microns), made Feb. 20 by the FLITECAM instrument on SOFIA. (NASA/SOFIA/FLITECAM team/S. Shenoy)
Image of M82 including the supernova at near-infrared wavelengths J, H, and K (1.2, 1.65, and 2.2 microns), made Feb. 20 by the FLITECAM instrument on SOFIA. (NASA/SOFIA/FLITECAM team/S. Shenoy)

Although a lot of observatories are checking out the recent star explosion, SOFIA’s observations found heavy metals being thrown out in the supernova. “When a Type Ia supernova explodes, the densest, hottest region within the core produces nickel 56,” said Howie Marion from the University of Texas at Austin, a co-investigator aboard the flight, a few days ago. “The radioactive decay of nickel-56 through cobalt-56 to iron-56 produces the light we are observing tonight. At this life phase of the supernova, about one month after we first saw the explosion, the H- and K-band spectra are dominated by lines of ionized cobalt. We plan to study the spectral features produced by these lines over a period of time and see how they change relative to each other. That will help us define the mass of the radioactive core of the supernova.”

A star nursery

This mid-infrared image of the W40 star-forming region of the Milky Way galaxy was captured recently by the FORCAST instrument on the 100-inch telescope aboard the SOFIA flying observatory. (NASA / FORCAST image)
This mid-infrared image of the W40 star-forming region of the Milky Way galaxy was captured recently by the FORCAST instrument on the 100-inch telescope aboard the SOFIA flying observatory. (NASA / FORCAST image)

In 2011, SOFIA turned its eyes to star-forming region W40 and was able to peer through the dust to see some interesting things. The telescope was able to look at the bright nebula in the center, which includes six huge stars that are six to 20 times more massive than the sun.

Stars forming in Orion

SOFIA’s mid-infrared image of Messier 42 (right) with comparison images of the same region made at other wavelengths by the Hubble Space Telescope (left) and European Southern Observatory (middle). (Credits: Visible-light image: NASA/ESA/HST/AURA/STScI/O’Dell & Wong; Near-IR image: ESO/McCaughrean et al.; Mid-IR image: NASA/DLR/SOFIA/USRA/DSI/FORCAST Team)
SOFIA’s mid-infrared image of Messier 42 (right) with comparison images of the same region made at other wavelengths by the Hubble Space Telescope (left) and European Southern Observatory (middle). (Credits: Visible-light image: NASA/ESA/HST/AURA/STScI/O’Dell & Wong; Near-IR image: ESO/McCaughrean et al.; Mid-IR image: NASA/DLR/SOFIA/USRA/DSI/FORCAST Team)

These three pictures demonstrate how one famous star-forming region — in the Orion nebula — appears different in three different telescopes. As NASA wrote in 2011, “SOFIA’s observations reveal distinctly different aspects of the M42 star formation complex than the other images. For example, the dense dust cloud at upper left is completely opaque in the visible-light image, partly transparent in the near-infrared image, and is seen shining with its own heat radiation in the SOFIA mid-infrared image. The hot stars of the Trapezium cluster are seen just above the centers of the visible-light and near-infrared images, but they are almost undetectable in the SOFIA image. At upper right, the dust-embedded cluster of high-luminosity stars that is the most prominent feature in the SOFIA mid-infrared image is less apparent in the near-infrared image and is completely hidden in the visible-light image.”