Do aliens exist? Almost certainly. The universe is vast and ancient, and our corner of it is not particularly special. If life emerged here, it probably did elsewhere. Keep in mind this is a super broad assumption. A single instance of fossilized archaebacteria-like organisms five superclusters away would be all it takes to say, “Yes, there are aliens!” …if we could find them somehow.
Continue reading “Alien Artifacts Could Be Hidden Across the Solar System. Here’s how we Could Search for Them.”Impacts From Interstellar Objects Should Leave Very Distinct Craters
In a recent study submitted to Earth and Planetary Astrophysics, a team of researchers from Yale University investigated how to identify impact craters that may have been created by Interstellar Objects (ISOs). This study is intriguing as the examination of ISOs has gained notable interest throughout the scientific community since the discoveries and subsequent research of ‘Oumuamua and Comet 2I/Borisov in 2017 and 2019, respectively. In their paper, the Yale researchers discussed how the volume of impact melt within fixed-diameter craters could be a possible pathway for recognizing ISO craters, as higher velocity impacts produce greater volumes of impact melt.
Continue reading “Impacts From Interstellar Objects Should Leave Very Distinct Craters”If Launched by 2028, a Spacecraft Could Catch up With Oumuamua in 26 Years
In October 2017, the interstellar object ‘Oumuamua passed through our Solar System, leaving a lot of questions in its wake. Not only was it the first object of its kind ever to be observed, but the limited data astronomers obtained as it shot out of our Solar System left them all scratching their heads. Even today, almost five years after this interstellar visitor made its flyby, scientists are still uncertain about its true nature and origins. In the end, the only way to get some real answers from ‘Oumuamua is to catch up with it.
Interestingly enough, there are many proposals on the table for missions that could do just that. Consider Project Lyra, a proposal by the Institute for Interstellar Studies (i4is) that would rely on advanced propulsions technology to rendezvous with interstellar objects (ISOs) and study them. According to their latest study, if their mission concept launched in 2028 and performed a complex Jupiter Oberth Manoeuvre (JOM), it would be able to catch up to ‘Oumuamua in 26 years.
Continue reading “If Launched by 2028, a Spacecraft Could Catch up With Oumuamua in 26 Years”Not Saying it was Aliens, but ‘Oumuamua Probably Wasn’t a Nitrogen Iceberg…
On October 19th, 2017, astronomers made the first-ever detection of an interstellar object (ISO) passing through our Solar System. Designated 1I/2017 U1′ Oumuamua, this object confounded astronomers who could not determine if it was an interstellar comet or an asteroid. After four years and many theories (including the controversial “ET solar sail” hypothesis), the astronomical community appeared to land on an explanation that satisfied all the observations.
The “nitrogen iceberg” theory stated that ‘Oumuamua was likely debris from a Pluto-like planet in another solar system. In their latest study, titled “The Mass Budget Necessary to Explain ‘Oumuamua as a Nitrogen Iceberg,” Amir Siraj and Prof. Avi Loeb (who proposed the ET solar sail hypothesis) offered an official counter-argument to this theory. According to their new paper, there is an extreme shortage of exo-Plutos in the galaxy to explain the detection of a nitrogen iceberg.
Continue reading “Not Saying it was Aliens, but ‘Oumuamua Probably Wasn’t a Nitrogen Iceberg…”Rogue Planets Could be Habitable
The search for potentially habitable planets is focused on exoplanets—planets orbiting other stars—for good reason. The only planet we know of with life is Earth and sunlight fuels life here. But some estimates say there are many more rogue planets roaming through space, not bound to or warmed by any star.
Could some of them support life?
Continue reading “Rogue Planets Could be Habitable”What Happens to Interstellar Objects Captured by the Solar System?
Now that we know that interstellar objects (ISOs) visit our Solar System, scientists are keen to understand them better. How could they be captured? If they’re captured, what happens to them? How many of them might be in our Solar System?
One team of researchers is trying to find answers.
Continue reading “What Happens to Interstellar Objects Captured by the Solar System?”Cosmic Rays Erode Away All But the Largest Interstellar Objects
So far we know of only two interstellar objects (ISO) to visit our Solar System. They are ‘Oumuamua and 2I/Borisov. There’s a third possible ISO named CNEOS 2014-01-08, and research suggests there should be many more.
But a new research letter shows that cosmic ray erosion limits the lifespan of icy ISOs, and though there may be many more of them, they simply don’t last as long as thought. If it’s true, then ‘Oumuamua was probably substantially larger when it started its journey, wherever that was.
Continue reading “Cosmic Rays Erode Away All But the Largest Interstellar Objects”Protoplanetary Disks Throw Out More Material Than Gets Turned Into Planets
When a young solar system gets going it’s little more than a young star and a rotating disk of debris. Accepted thinking says that the swirling debris is swept up in planet formation. But a new study says that much of the matter in the disk could face a different fate.
It may not have the honour of becoming part of a nice stable planet, orbiting placidly and reliably around its host star. Instead, it’s simply discarded. It’s ejected out of the young, still-forming solar system to spend its existence as interstellar objects or as rogue planets.
Continue reading “Protoplanetary Disks Throw Out More Material Than Gets Turned Into Planets”Extrasolar Object Interceptor Would be Able to Chase Down the Next Oumuamua or Borisov and Actually Return a Sample
What if we had the ability to chase down interstellar objects passing through our Solar System, like Oumuamua or Comet Borisov? Such a spacecraft would need to be ready to go at a moment’s notice, with the capacity to increase speed and change direction quickly.
That’s the idea behind a new mission concept called the Extrasolar Object Interceptor and Sample Return spacecraft. It has received exploratory funding from NASA through its Innovative Advanced Concepts (NIAC) program.
“Bringing back samples from these objects could fundamentally change our view of the universe and our place in it,” says Christopher Morrison, an engineer from the Ultra Safe Nuclear Corporation-Tech (USNC-Tech) who submitted the proposal to NIAC.
Continue reading “Extrasolar Object Interceptor Would be Able to Chase Down the Next Oumuamua or Borisov and Actually Return a Sample”“Ain’t like Dusting Crops!” How We’ll Actually Navigate Interstellar Space
May the 4th be With You!
Blasting out of Mos Eisley Space Port, the Millennium Falcon carries our adventurers off Tatooine bringing Luke Skywalker across the threshold into space. With Imperial Star Destroyers closing, Luke bemoans Han Solo’s delay in jumping to Hyperspace. It takes time to make these calculations through the Falcon’s “Navicomputer.” Han explains that otherwise they could “fly right through a star” or “bounce too close to a supernova.” (probably the same effect of each – also are supernovas bouncy?)
Celestial calculations are needed to figure out where you’re going. In Star Wars these are done by ship computers, or later by trusty astromech droids like R2-D2. But, for the first time, simulations have been conducted of an uncrewed ship’s ability to autonavigate through interstellar space. While not at Hyperspace speeds, the simulations do account for velocities at up to half the speed of light. Created by Coryn A.L. Bailer-Jones of the Max Plank Institute for Astronomy, these simulations may be our first step to creating our own “Navicomputers” (or R2-D2s if they have a personality).
Continue reading ““Ain’t like Dusting Crops!” How We’ll Actually Navigate Interstellar Space”