The JWST Reveals the Nature of Dust Around an Active Galactic Nuclei

The James Webb Space Telescope captured this three colour image of the galaxy ESO 428-G14. New research shows how the dust near the galaxy's supermassive black hole is heated up. Image Credit: NASA, ESA, CSA, and STScI

Supermassive Black Holes (SMBHs) are located in the centers of large galaxies like ours. When they’re actively feeding, they produce more light and are called active galactic nuclei (AGN). But their details are difficult to observe clearly because large clouds of gas block our view.

The JWST was built just for circumstances like these.

Continue reading “The JWST Reveals the Nature of Dust Around an Active Galactic Nuclei”

Webb Directly Images a Jupiter-Like Planet

The gas-giant exoplanet Epsilon Indi Ab imaged using the MIRI instrument on NASA’s Webb telescope. A star symbol marks the location of the host star, whose light has been blocked by MIRI’s coronagraph, resulting in the dark circle with a dashed white line. The planet is to the left of the star. Credit: NASA, ESA, CSA, STScI, E. Matthews (Max Planck Institute for Astronomy)

The JWST has directly imaged its first exoplanet, a temperate super Jupiter only about 12 light-years away from Earth. It could be the oldest and coldest planet ever detected.

Continue reading “Webb Directly Images a Jupiter-Like Planet”

New Images From Webb Reveal Jupiter's Complex Atmosphere

New observations of the Great Red Spot on Jupiter have revealed that the planet’s atmosphere above and around the infamous storm is surprisingly interesting and active. Credit: ESA

The James Webb Space Telescope (JWST) has accomplished some spectacular feats since it began operations in 2021. Thanks to its sensitivity in the near- and mid-infrared wavelengths, it can take detailed images of cooler objects and reveal things that would otherwise go unnoticed. This includes the iconic image Webb took of Jupiter in August 2022, which showed the planet’s atmospheric features (including its polar aurorae and Great Red Spot) in a new light. Using Webb, a team of European astronomers recently observed the region above the Great Red Spot and discovered previously unseen features.

Continue reading “New Images From Webb Reveal Jupiter's Complex Atmosphere”

Webb Sees Globular Clusters Forming in the Early Universe

The Cosmic Gems arc as observed by the JWST. The clusters have the attributes of gravitationally-bound proto-Globular Clusters. Credit: ESA/Webb, NASA & CSA, L. Bradley (STScI), A. Adamo (Stockholm University) and the Cosmic Spring collaboration.

Picture the Universe’s ancient beginnings. In the vast darkness, light was emitted from a particular galaxy only 460 million years after the Big Bang. On the way, the light was shifted into the infrared and magnified by a massive gravitational lens before finally reaching the James Webb Space Telescope.

The galaxy is called the Cosmic Gems arc, and it held some surprises for astronomers.

Continue reading “Webb Sees Globular Clusters Forming in the Early Universe”

Fly Through the Pillars of Creation in this New Visualisation Made from Webb and Hubble Data

Webb and Hubble images of the Pillars of Creation

I remember April 1995 very well. It was the month that the stunning and iconic image that has been called ‘Pillars of Creation’ was released. It was taken by the Hubble Space Telescope but now the James Webb Telescope is getting in on the act. Webb snapped images of the Eagle Nebula (home to the ‘pillars’) early on but now astronomers have combined the data form Hubble and Webb to create an amazing 3D animation flight through the nebula. 

Continue reading “Fly Through the Pillars of Creation in this New Visualisation Made from Webb and Hubble Data”

The JWST Peers into the Heart of Star Formation

In this image of the Serpens Nebula from the Near-InfraRed Camera (NIRCam) on the NASA/ESA/CSA James Webb Space Telescope, astronomers found a grouping of aligned protostellar outflows within one small region (the top left corner). In the Webb image, these jets are identified by bright red clumpy streaks, which are shockwaves caused when the jet hits the surrounding gas and dust. Image Credit: NASA, ESA, CSA, STScI, K. Pontoppidan (NASA’s Jet Propulsion Laboratory), J. Green (Space Telescope Science Institute)

The James Webb Space Telescope has unlocked another achievement. This time, the dynamic telescope has peered into the heart of a nearby star-forming region and imaged something astronomers have longed to see: aligned bipolar jets.

Continue reading “The JWST Peers into the Heart of Star Formation”

Matched Twin Stars are Firing Their Jets Into Space Together

This artist’s concept shows two young stars nearing the end of their formation. Encircling the stars are disks of leftover gas and dust from which planets may form. Jets of gas shoot away from the stars’ north and south poles. Credit: NASA

Since it began operating in 2022, the James Webb Space Telescope (JWST) has revealed some surprising things about the Universe. The latest came when a team of researchers used Webb‘s Mid-Infrared Instrument (MIRI) to observe Rho Ophiuchi, the closest star-forming nebula to Earth, about 400 light-years away. While at least five telescopes have studied the region since the 1970s, Webb’s unprecedented resolution and specialized instruments revealed what was happening at the heart of this nebula.

For starters, while observing what was thought to be a single star (WL 20S), the team realized they were observing a pair of young stars that formed 2 to 4 million years ago. The MIRI data also revealed that the twin stars have matching jets of hot gas (aka stellar jets) emanating from their north and south poles into space. The discovery was presented at the 244th meeting of the American Astronomical Society (224 AAS) on June 12th. Thanks to additional observations made by the Atacama Large Millimeter/submillimeter Array (ALMA), the team was surprised to notice large clouds of dust and gas encircling both stars.

Continue reading “Matched Twin Stars are Firing Their Jets Into Space Together”

Almost a Third of Early Galaxies Were Already Spirals

The graceful winding arms of the grand-design spiral galaxy M51 stretch across this image from the NASA/ESA/CSA James Webb Space Telescope. New JWST observations of the early Universe are upending our understanding of galaxy evolution. Credit: ESA/Webb, NASA & CSA, A. Adamo (Stockholm University) and the FEAST JWST team

In the years before the JWST’s launch, astronomers’ efforts to understand the early Universe were stymied by a stubborn obstacle: the light from the early Universe was red-shifted to an extreme degree. The JWST was built with extreme redshifts in mind, and one of its goals was to study Galaxy Assembly.

Once the JWST activated its segmented, beryllium eye, the Universe’s most ancient, red-shifted light became visible.

Continue reading “Almost a Third of Early Galaxies Were Already Spirals”

The JWST is Re-Writing Astronomy Textbooks

The first JWST Deep Field Image, showing large distant galaxies. The telescope's observations are revealing the previously unseen and are forcing a re-write of astronomy textbooks. Image Credit: NASA, ESA, CSA, STScI

When the James Webb Space Telescope was launched at the end of 2021, we expected stunning images and illuminating scientific results. So far, the powerful space telescope has lived up to our expectations. The JWST has shown us things about the early Universe we never anticipated.

Some of those results are forcing a rewrite of astronomy textbooks.

Continue reading “The JWST is Re-Writing Astronomy Textbooks”

Galaxies in the Early Universe Preferred their Food Cold

This illustration shows a galaxy forming only a few hundred million years after the big bang, when gas was a mix of transparent and opaque during the Era of Reionization. Data from NASA’s James Webb Space Telescope shows that cold gas is falling onto these galaxies. Credit: NASA/ESA/CSA/Joseph Olmsted (STScI)

One of the main objectives of the James Webb Space Telescope (JWST) is to study the early Universe by using its powerful infrared optics to spot the first galaxies while they were still forming. Using Webb data, a team led by the Cosmic Dawn Center in Denmark pinpointed three galaxies that appear to have been actively forming just 400 to 600 million years after the Big Bang. This places them within the Era of Reionization, when the Universe was permeated by opaque clouds of neutral hydrogen that were slowly heated and ionized by the first stars and galaxies.

This process caused the Universe to become transparent roughly 1 billion years after the Big Bang and (therefore) visible to astronomers today. When the team consulted the data obtained by Webb, they observed that these galaxies were surrounded by an unusual amount of dense gas composed almost entirely of hydrogen and helium, which likely became fuel for further galactic growth. These findings already reveal valuable information about the formation of early galaxies and show how Webb is exceeding its mission objectives.

Continue reading “Galaxies in the Early Universe Preferred their Food Cold”