Webb Watches the Most Distant Galactic Merger Ever Seen

JWST shows details of massive galaxy merger 13 billion years ago. Credit: ASTRO 3D
JWST shows details of massive galaxy merger 13 billion years ago. Credit: ASTRO 3D

Astronomers know that galaxies form through mergers. They’ve been happening since the earliest epochs of cosmic time. Using the Webb telescope (JWST) astronomers found a massive merger of young galaxies going on about a half million years after the Big Bang. It’s called Gz9p3, one of the earliest and most distant mergers ever witnessed.

Continue reading “Webb Watches the Most Distant Galactic Merger Ever Seen”

Finding Atmospheres on Red Dwarf Planets Will Take Hundreds of Hours of Webb Time

This illustration shows what exoplanet K2-18 b could look like based on science data. NASA’s James Webb Space Telescope examined the exoplanet and revealed the presence of carbon-bearing molecules. The abundance of methane and carbon dioxide, and shortage of ammonia, support the hypothesis that there may be a water ocean underneath a hydrogen-rich atmosphere in K2-18 b. But more extensive observations with the JWST are needed to understand its atmosphere with greater confidence. Image Credit: By Illustration: NASA, ESA, CSA, Joseph Olmsted (STScI)Science: Nikku Madhusudhan (IoA)

The JWST is enormously powerful. One of the reasons it was launched is to examine exoplanet atmospheres to determine their chemistry, something only a powerful telescope can do. But even the JWST needs time to wield that power effectively, especially when it comes to one of exoplanet science’s most important targets: rocky worlds orbiting red dwarfs.

Continue reading “Finding Atmospheres on Red Dwarf Planets Will Take Hundreds of Hours of Webb Time”

Webb Reveals Secrets of Neptune’s Evolution

JWST's view of Neptune in infrared. The telescope also studied the surfaces of two icy asteroids in the Kuiper Belt that lie beyond Neptune. Courtesy: NASA, ESA, CSA, STScI
JWST's view of Neptune in infrared. The telescope also studied the surfaces of two icy asteroids in the Kuiper Belt that lie beyond Neptune. Courtesy: NASA, ESA, CSA, STScI

A twinset of icy asteroids called Mors-Somnus is giving planetary scientists some clues about the origin and evolution of objects in the Kuiper Belt. JWST studied them during its first cycle of observations and revealed details about their surfaces, which gives hints at their origins. That information may also end up explaining how Neptune got to be the way it is today.

Continue reading “Webb Reveals Secrets of Neptune’s Evolution”

Webb Continues to Confirm That Universe is Behaving Strangely

Image of NGC 5468, a galaxy located about 130 million light-years from Earth, combines data from the Hubble and James Webb space telescopes. Credit: NASA/ESA/CSA/STScI/A. Riess (JHU/STScI)

Over a century ago, astronomers Edwin Hubble and Georges Lemaitre independently discovered that the Universe was expanding. Since then, scientists have attempted to measure the rate of expansion (known as the Hubble-Lemaitre Constant) to determine the origin, age, and ultimate fate of the Universe. This has proved very daunting, as ground-based telescopes yielded huge uncertainties, leading to age estimates of anywhere between 10 and 20 billion years! This disparity between these measurements, produced by different techniques, gave rise to what is known as the Hubble Tension.

It was hoped that the aptly named Hubble Space Telescope (launched in 1990) would resolve this tension by providing the deepest views of the Universe to date. After 34 years of continuous service, Hubble has managed to shrink the level of uncertainty but not eliminate it. This led some in the scientific community to suggest (as an Occam’s Razor solution) that Hubble‘s measurements were incorrect. But according to the latest data from the James Webb Space Telescope (JWST), Hubble’s successor, it appears that the venerable space telescope’s measurements were right all along.

Continue reading “Webb Continues to Confirm That Universe is Behaving Strangely”

Now You Can See Exactly Where Hubble and JWST are Pointed

Graphics of the Hubble and James Webb Space Telescopes. Credit: NASA/STScI.

Hubble and JWST are busily scanning the sky, sending home enormous amounts of data. They shift from target to target, completing the required observations.

But have you ever wondered what those two space telescopes are doing right at this moment? Now, you can do just that at the new Space Telescope Live website. It will show you what each observatory is scanning, where the objects are in the sky, and what researchers hope to learn. You can even go back or forward in time and see what each telescope has been looking at in the past or what observations are coming up.

Continue reading “Now You Can See Exactly Where Hubble and JWST are Pointed”

Dwarf Galaxies Banished the Darkness and Lit Up the Early Universe

The JWST used gravitational lensing to search for the sources of light that triggered the Epoch of Reionization and brought darkness to an end. The white hazy blobs are galaxies in Pandora's Cluster, which acts as the gravitational lens. The red objects are the distant and ancient objects magnified by the lens, some of them warped into arcs. Many of them are early dwarf galaxies, some of them responsible for the Epoch of Reionization. Image Credit: NASA/ESA/CSA JWST

During the Universe’s Dark Ages, dense primordial gas absorbed and scattered light, prohibiting it from travelling. Only when the first stars and galaxies began to shine in energetic UV light did the Epoch of Reionization begin. The powerful UV light shone through the Universe and punched holes in the gas, allowing light to travel freely.

New observations with the James Webb Space Telescope reveal how it happened. The telescope shows that faint dwarf galaxies brought an end to the darkness.

Continue reading “Dwarf Galaxies Banished the Darkness and Lit Up the Early Universe”

Webb Directly Images Two Planets Orbiting White Dwarfs

Artist's rendition of a white dwarf from the surface of an orbiting exoplanet. Astronomers have found two giant planet candidates orbiting two white dwarfs. More proof that giant planets can surve their stars' red giant phases. Image Credit: Madden/Cornell University

In several billion years, our Sun will become a white dwarf. What will happen to Jupiter and Saturn when the Sun transitions to become a stellar remnant? Life could go on, though the giant planets will likely drift further away from the Sun.

Continue reading “Webb Directly Images Two Planets Orbiting White Dwarfs”

Feast Your Eyes on 19 Face-On Spiral Galaxies Seen by Webb

These Webb images are part of a large, long-standing project, the Physics at High Angular resolution in Nearby GalaxieS (PHANGS) program, which is supported by more than 150 astronomers worldwide. Before Webb took these images, PHANGS was already brimming with data from NASA’s Hubble Space Telescope, the Very Large Telescope’s Multi-Unit Spectroscopic Explorer, and the Atacama Large Millimeter/submillimeter Array, including observations in ultraviolet, visible, and radio light. Webb’s near- and mid-infrared contributions have provided several new puzzle pieces. Image Credit: NASA/ESA/CSA

If you’re fascinated by Nature, these images of spiral galaxies won’t help you escape your fascination.

These images show incredible detail in 19 spirals, imaged face-on by the JWST. The galactic arms with their multitudes of stars are lit up in infrared light, as are the dense galactic cores, where supermassive black holes reside.

Continue reading “Feast Your Eyes on 19 Face-On Spiral Galaxies Seen by Webb”

New Webb Image of a Massive Star Forming Complex

This image from the NASA/ESA/CSA James Webb Space Telescope features an H II region in the Large Magellanic Cloud (LMC). Credit: NASA/ESA/CSA/M. Meixner

The James Webb Space Telescope, a collaborative effort between NASA, the ESA, and the Canadian Space Agency (CSA), has revealed some stunning new images of the Universe. These images have not only been the clearest and most details views of the cosmos; they’ve also led to new insight into cosmological phenomena. The latest image, acquired by Webb‘s Mid-InfraRed Instrument (MIRI), is of the star-forming nebula N79, located about 160,000 light-years away in the Large Magellanic Cloud (LMC). The image features a bright young star and the nebula’s glowing clouds of dust and gas from which new stars form.

Continue reading “New Webb Image of a Massive Star Forming Complex”

The JWST Solves the Mystery of Ancient Light

This image shows the galaxy EGSY8p7, a bright galaxy in the early Universe where light emission is seen from, among other things, excited hydrogen atoms — Lyman-alpha emission. The galaxy was identified in a field of young galaxies studied by Webb in the CEERS survey. In the bottom two panels, Webb’s high sensitivity picks out this distant galaxy along with its two companion galaxies, where previous observations saw only one larger galaxy in its place. This discovery of a cluster of interacting galaxies sheds light on the mystery of why the hydrogen emission from EGSY8p7, shrouded in neutral gas formed after the Big Bang, should be visible at all. Image Credit: ESA/Webb, NASA & CSA, S. Finkelstein (UT Austin), M. Bagley (UT Austin), R. Larson (UT Austin), A. Pagan (STScI), C. Witten, M. Zamani (ESA/Webb)

The very early Universe was a dark place. It was packed with light-blocking hydrogen and not much else. Only when the first stars switched on and began illuminating their surroundings with UV radiation did light begin its reign. That occurred during the Epoch of Reionization.

But before the Universe became well-lit, a specific and mysterious type of light pierced the darkness: Lyman-alpha emissions.

Continue reading “The JWST Solves the Mystery of Ancient Light”