The JWST is taking a break from studying the distant Universe and has trained its infrared eye on the heart of the Milky Way. The world’s most powerful space telescope has uncovered some surprises and generated some stunning images of the Milky Way’s galactic center (GC.) It’s focused on an enormous star-forming region called Sagittarius C (Sgr C).
Continue reading “Webb’s Infrared Eye Reveals the Heart of the Milky Way”A Galaxy Seen When the Universe was Only 332 Million Years Old
It’s wonderful to watch the fascination on people’s faces when you explain to them that studying distant objects in the Universe means looking back in time! Reach out to the furthest corners of the Cosmos and you can see objects so far away that the light left them long before our Solar System even existed. With the commissioning of the JWST the race was on to push the boundaries even further and hunt down the most distant galaxy in the Universe and maybe even the first galaxies to ever have formed.
Continue reading “A Galaxy Seen When the Universe was Only 332 Million Years Old”Gaze Into the Heart of the Milky Way in This Latest JWST Image
Thanks to its infrared capabilities, the James Webb Space Telescope (JWST) allows astronomers to peer through the gas and dust clogging the Milky Way’s center, revealing never-before-seen features. One of the biggest mysteries is the star forming region called Sagittarius C, located about 300 light-years from the Milky Way’s supermassive black hole. An estimated 500,000 stars are forming in this region that’s being blasted by radiation from the densely packed stars. How can they form in such an intense environment?
Right now, astronomers can’t explain it.
Continue reading “Gaze Into the Heart of the Milky Way in This Latest JWST Image”An Epic Collaboration Between Hubble and JWST
In 2012, as part of the MAssive Cluster Survey (MACS), the Hubble Space Telescope (HST) discovered a pair of colliding galaxy clusters (MACS0416) that will eventually combine to form an even bigger cluster. Located about 4.3 billion light-years from Earth, the MACS0416 cluster contains multiple gravitational lenses that allow astronomers to look back in time and view galaxies as they appeared when the Universe was young. In a new collaboration that symbolizes the passing of the torch, the venerable Hubble and the James Webb Space Telescope (JWST) teamed up to conduct an extremely detailed study of MACS0416.
Continue reading “An Epic Collaboration Between Hubble and JWST”The Crab Reveals Its Secrets To JWST
The Crab Nebula – otherwise known as the first object on Charles Messier’s list of non-cometary objects or M1 for short – has never really failed to visually underwhelm me! I have spent countless hours hunting down this example of a supernova remnant and found myself wondering why I have bothered. Yet here I am, after decades of looking at it, and I still find it one of the most intriguing objects in the sky.
Never has this interest been piqued more than right now after another mirror-smashing beauty of an image from the James Webb Space Telescope, and it’s already found its way to my mobile phone wallpaper!
Continue reading “The Crab Reveals Its Secrets To JWST”JWST Sees Four Exoplanets in a Single System
When the JWST activated its penetrating infrared eyes in July 2022, it faced a massive wish-list of targets compiled by an eager international astronomy community. Distant, early galaxies, nascent planets forming in dusty disks, and the end of the Universe’s dark ages and its first light were on the list. But exoplanets were also on the list, and there were thousands of them beckoning to be studied.
But one distant solar system stood out: HR 8799, a system about 133 light-years away.
Continue reading “JWST Sees Four Exoplanets in a Single System”JWST Takes a Detailed Look at Jupiter’s Moon Ganymede
Nature doesn’t conform to our ideas of neatly-contained categories. Many things in nature blur the lines we try to draw around them. That’s true of Jupiter’s moon Ganymede, the largest moon in the Solar System.
The JWST took a closer look at Ganymede, the moon that’s kind of like a planet, to understand its surface better.
Continue reading “JWST Takes a Detailed Look at Jupiter’s Moon Ganymede”After DART Smashed Into Dimorphos, What Happened to the Larger Asteroid Didymos?
NASA’s DART mission (Double Asteroid Redirection Test) slammed into asteroid Dimorphos in September 2022, changing its orbital period. Ground and space-based telescopes turned to watch the event unfold, not only to study what happened to the asteroid, but also to help inform planetary defense efforts that might one day be needed to mitigate potential collisions with our planet.
Astronomers have continued to observe and study Dimorphos, well past the impact event. However, Dimorphos is the smaller asteroid in this binary system, and is just a small moon orbiting the larger asteroid Didymos.
The James Webb Space Telescope (JWST) is the only telescope capable of visually distinguishing between the two closely orbiting asteroids. Now, astronomers have made follow-on observations on the system with JWST to see what happened to Didymos after the dust cleared.
Continue reading “After DART Smashed Into Dimorphos, What Happened to the Larger Asteroid Didymos?”The Combination of Oxygen and Methane Could Reveal the Presence of Life on Another World
In searching for life in the Universe, a field known as astrobiology, scientists rely on Earth as a template for biological and evolutionary processes. This includes searching for Earth analogs, rocky planets that orbit within their parent star’s habitable zone (HZ) and have atmospheres composed of nitrogen, oxygen, and carbon dioxide. However, Earth’s atmosphere has evolved considerably over time from a toxic plume of nitrogen, carbon dioxide, and traces of volcanic gas. Over time, the emergence of photosynthetic organisms caused a transition, leading to the atmosphere we see today.
The last 500 million years, known as the Phanerozoic Eon, have been particularly significant for the evolution of Earth’s atmosphere and terrestrial species. This period saw a significant rise in oxygen content and the emergence of animals, dinosaurs, and embryophyta (land plants). Unfortunately, the resulting transmission spectra are missing in our search for signs of life in exoplanet atmospheres. To address this gap, a team of Cornell researchers created a simulation of the atmosphere during the Phanerozoic Eon, which could have significant implications in the search for life on extrasolar planets.
Continue reading “The Combination of Oxygen and Methane Could Reveal the Presence of Life on Another World”TRAPPIST-1 Has Flares. What Does This Mean for its Planets?
The TRAPPIST-1 system continues to fascinate astronomers, astrobiologists, and exoplanet hunters alike. In 2017, NASA announced that this red dwarf star (located 39 light-years away) was orbited by no less than seven rocky planets – three of which were within the star’s habitable zone (HZ). Since then, scientists have attempted to learn more about this system of planets to determine whether they could support life. Of particular concern is the way TRAPPIST-1 – like all M-type (red dwarf) stars – is prone to flare-ups, which could have a detrimental effect on planetary atmospheres.
Using the James Webb Space Telescope (JWST), an international team of astrophysicists led by the University of Colorado Boulder (CU Boulder) took a closer look at this volatile star. As they describe in their paper (which recently appeared online), the Webb data was used to perform a detailed spectroscopic investigation of four solar flares bursting around TRAPPIST-1. Their findings could help scientists characterize planetary environments around red dwarf stars and measure how flare activity can affect planetary habitability.
Continue reading “TRAPPIST-1 Has Flares. What Does This Mean for its Planets?”