Here's How You Could Get Impossibly Large Galaxies in the Early Universe

The galaxy cluster SMACS0723, with the five galaxies selected for closer study. Credit: NASA, ESA, CSA, STScI / Giménez-Arteaga et al. (2023), Peter Laursen (Cosmic Dawn Center).

One of the most interesting (and confounding) discoveries made by the James Webb Space Telescope (JWST) is the existence of “impossibly large galaxies.” As noted in a previous article, these galaxies existed during the “Cosmic Dawn,” the period that coincided with the end of the “Cosmic Dark Age” (roughly 1 billion years after the Big Bang). This period is believed to hold the answers to many cosmological mysteries, not the least of which is what the earliest galaxies in the Universe looked like. But after Webb obtained images of these primordial galaxies, astronomers noticed something perplexing.

The galaxies were much larger than what the most widely accepted cosmological model predicts! Since then, astronomers and astrophysicists have been racking their brains to explain how these galaxies could have formed. Recently, a team of astrophysicists from The Hebrew University of Jerusalem Jerusalem published a theoretical model that addresses the mystery of these massive galaxies. According to their findings, the prevalence of special conditions in these galaxies (at the time) allowed highly-efficient rates of star formation without interference from other stars.

Continue reading “Here's How You Could Get Impossibly Large Galaxies in the Early Universe”

JWST Spies a Gigantic Water Plume at Enceladus

Images from the NASA/ESA/CSA James Webb Space Telescope’s NIRCam (Near-Infrared Camera) show a water vapour plume jetting from the south pole of Saturn’s moon Enceladus, extending out 40 times the size of the moon itself. The inset, an image from the Cassini orbiter, emphasises how small Enceladus appears in the JWST image compared to the water plume. Credit: NASA, ESA, CSA, STScI, G. Villanueva (NASA’s Goddard Space Flight Center), A. Pagan (STScI).

The James Webb Space Telescope has observed a huge water vapor plume emanating from Saturn’s moon Enceladus. Astronomers say the plume reaches nearly 10,000 kilometers (6,200 miles) into space, which is about the equivalent distance as going from Ireland to Japan. This is the largest plume ever detected at Enceladus.

Continue reading “JWST Spies a Gigantic Water Plume at Enceladus”

Chandra and JWST Join Forces in a Stunning Series of Images

Credit: X-ray: Chandra: NASA/CXC/SAO, XMM: ESA/XMM-Newton; IR: JWST: NASA/ESA/CSA/STScI, Spitzer: NASA/JPL/CalTech; Optical: Hubble: NASA/ESA/STScI, ESO; Image Processing: L. Frattare, J. Major, N. Wolk, and K. Arcand

New images that combine data from NASA’s Chandra X-ray Observatory and the James Webb Space Telescope (JWST) JWST have just been released! The images feature four iconic astronomical objects, showcasing the capabilities of these observatories by combining light in the visible, infrared, and X-ray wavelengths. These include the NGC 346 star cluster located in the Small Magellanic Cloud (SMC), the NGC 1672 spiral galaxy, the Eagle Nebula (Messier 16, or M16), and the spiral galaxy Messier 74 (aka. the Phantom Galaxy).

These objects were made famous by the venerable Hubble Space Telescope, which took pictures of them between 1995 and 2005. Since it commenced operations, the JWST has conducted follow-up observations that provided a sharper view of these objects that captured additional features. Hubble and the JWST even teamed up to provide a multi-wavelength view of the Phantom Galaxy last year. By adding Chandra’s famed X-ray imaging capabilities to Webb’s sensitivity and infrared light, these latest images provide a new glimpse of these objects, revealing both faint and more energetic and powerful features.

Continue reading “Chandra and JWST Join Forces in a Stunning Series of Images”

Webb Examined an Asteroid Belt and Found More Than it Bargained For

This image of the dusty debris disc surrounding the young star Fomalhaut is from Webb’s Mid-Infrared Instrument (MIRI). It reveals three nested belts extending out to 23 billion kilometres from the star. Image Credit: NASA, ESA, CSA, A. Pagan (STScI), A. Gáspár (University of Arizona)

One of the things astronomers would love to see is planets forming around other stars. That would help us understand our own Solar System better. But it all happens behind a veil of obscuring dust. The James Webb Space Telescope has the power to see through the veil.

A team of astronomers pointed the JWST at the well-known star Fomalhaut and its dusty debris disk. They found more complexity than they imagined, including hints of planets forming among all that dust and debris.

Continue reading “Webb Examined an Asteroid Belt and Found More Than it Bargained For”

JWST Tries to Untangle the Signals of Water. Is it Coming From the Planet or the Star?

This artist concept represents the rocky exoplanet GJ 486 b. Credits: NASA, ESA, CSA, Joseph Olmsted (STScI)

The number of known extrasolar planets has exploded in the past few decades, with 5,338 confirmed planets in 4,001 systems (and another 9,443 awaiting confirmation). When it comes to “Earth-like” planets (aka. rocky), the most likely place to find them is in orbit around M-type red dwarf stars. These account for between 75 and 80% of all stars in the known Universe, are several times smaller than the Sun and are quite cool and dim by comparison. They are also prone to flare activity and have very tight Habitable Zones (HZs), meaning that planets must orbit very closely to get enough heat and radiation.

In addition, red dwarfs are highly-active when they are young, exposing planets in their HZs to lots of ultraviolet and X-ray radiation. As such, whether planets orbiting these stars can maintain or reestablish their atmospheres over time is an open question. Using the James Webb Space Telescope (JWST), researchers from the Space Telescope Science Institute (STScI) observed an exoplanet known as GJ 486 b. As they stated in a recent study, the team detected traces of water vapor, though it is unclear if the signal was coming from the planet or its parent star.

Continue reading “JWST Tries to Untangle the Signals of Water. Is it Coming From the Planet or the Star?”

JWST’s MIRI Instrument is Having Problems Again

JWST's Mid-Infrared Instrument (MIRI is shown here, wrapped in its aluminized thermal shield while being integrated into the JWST Integrated Science Instrument Module (ISIM). Credit: NASA/Goddard Space Flight Center/Chris Gunn

Last week, NASA shared a blog post saying they detected a sensor glitch associated with the James Webb Space Telescope’s Mid-Infrared Instrument (MIRI). For some reason, the sensor for MIRI’s Medium Resolution Spectroscopy (MRS) is receiving less light than expected at the longest wavelengths.

NASA is investigating the cause, and said that the instrument is not at risk and no effect has been seen for images taken by MIRI. According to agency officials, all other modes of JWST and MIRI remain unaffected, and they are searching for the underlying issue.

Continue reading “JWST’s MIRI Instrument is Having Problems Again”

JWST Sees a Galaxy Cluster Coming Together in the Early Universe

The seven galaxies highlighted in this image from the James Webb Space Telescope are helping astronomers precisely measure the distances of these galaxies, helping them determine these galaxies are part of a developing cluster. Credit: ESA/NASA/STScI/CSA, Takahiro Morishita (IPAC) Image processing Alyssa Pagan (STScI)

One of the James Webb Space Telescope’s science goals is to help cosmologists understand how the first galaxies and galaxy clusters formed in the early Universe. New images from the telescope show just that. Astronomers say the seven galaxies shown in this new JWST images are the earliest yet to be spectroscopically confirmed as part of a developing galaxy cluster. These galaxies are about 13 billion light-years away, meaning JWST is seeing them at about 95% of the age of the observable Universe.

Continue reading “JWST Sees a Galaxy Cluster Coming Together in the Early Universe”

The Rings of Uranus Shine Bright in Stunning New JWST Image

This zoomed-in image of Uranus, captured by Webb’s Near-Infrared Camera (NIRCam) Feb. 6, 2023, reveals stunning views of the planet’s rings. Credit: NASA, ESA, CSA, STScI IMAGE PROCESSING: Joseph DePasquale (STScI).

The James Webb Space Telescope has taken a stunning new image of the ice giant world Uranus. But what stands out most is the dramatic new view of the planet’s rings, which show up as never before with JWST’s infrared eyes.

Instead of being faint and wispy, the rings show up brilliantly. Additionally, bright, luminous features in the planet’s atmosphere show how an extensive storm system at the north pole of this planet getting larger and brighter.

But you’ll also want to see the full-frame image view, which also shows the six largest of Uranus’ 27 known moons. And, as we’ve become accustomed to seeing in JWST images, several distant background galaxies. Yes, every JWST image is a Deep Field!

Continue reading “The Rings of Uranus Shine Bright in Stunning New JWST Image”

This JWST Image Shows Gravitational Lensing at its Finest

. Credit: ESA/Webb, NASA & CSA, J. Rigby

One of the more intriguing aspects of the cosmos, which the James Webb Space Telescope (JWST) has allowed astronomers to explore, is the phenomenon known as gravitational lenses. As Einstein’s Theory of General Relativity describes, the curvature of spacetime is altered by the presence of massive objects and their gravity. This effect leads to objects in space (like galaxies or galaxy clusters) altering the path light travels from more distant objects (and amplifying it as well). By taking advantage of this with a technique known as Gravitational Lensing, astronomers can study distant objects in greater detail.

Consider the image above, the ESA’s picture of the month acquired by the James Webb Space Telescope (JWST). The image shows a vast gravitational lens caused by SDSS J1226+2149, a galaxy cluster located roughly 6.3 billion light-years from Earth in the constellation Coma Berenices. The lens these galaxies created greatly amplified light from the more distant Cosmic Seahorse galaxy. Combined with Webb‘s incredible sensitivity, this technique allowed astronomers to study the Cosmic Seahorse in the hopes of learning more about star formation in early galaxies.

Continue reading “This JWST Image Shows Gravitational Lensing at its Finest”

Finally, JWST's Data on the First TRAPPIST-1 Planet. Survey Says? It Sucks

This illustration shows what the hot rocky exoplanet TRAPPIST-1 b could look like. A new method can help determine what rocky exoplanets might have large reservoirs of subsurface water. Credits: NASA, ESA, CSA, J. Olmsted (STScI)

With the James Webb Space Telescope’s ability to detect and study the atmospheres of distant planets orbiting other stars, exoplanet enthusiasts have been anticipating JWST’s first data on some of the worlds in the famous TRAPPIST-1 system. This is the system where seven Earth-sized worlds are orbiting a red dwarf star, with several in the habitable zone.

Today, a new study was released on the innermost planet in the system, TRAPPIST-1 b. The authors of the study were quite frank: this world very likely has no atmosphere at all. Additionally, the conditions there for possible life as we know it only get worse from there.

Continue reading “Finally, JWST's Data on the First TRAPPIST-1 Planet. Survey Says? It Sucks”