New Research Suggests Io Doesn’t Have a Shallow Ocean of Magma

NASA’s Galileo spacecraft captured this image of a volcanic eruption on Io in 1997. Image Credit:NASA, NASA-JPL, DLR

Jupiter’s moon Io is the most volcanically active body in the Solar System, with roughly 400 active volcanoes regularly ejecting magma into space. This activity arises from Io’s eccentric orbit around Jupiter, which produces incredibly powerful tidal interactions in the interior. In addition to powering Io’s volcanism, this tidal energy is believed to support a global subsurface magma ocean. However, the extent and depth of this ocean remains the subject of debate, with some supporting the idea of a shallow magma ocean while others believe Io has a more rigid, mostly solid interior.

In a recent NASA-supported study, an international team of researchers combined data from multiple missions to measure Io’s tidal deformation. According to their findings, Io does not possess a magma ocean and likely has a mostly solid mantle. Their findings further suggest that tidal forces do not necessarily lead to global magma oceans on moons or planetary bodies. This could have implications for the study of exoplanets that experience tidal heating, including Super-Earths and exomoons similar to Io that orbit massive gas giants.

Continue reading “New Research Suggests Io Doesn’t Have a Shallow Ocean of Magma”

Io’s Volcanoes are Windows into its Hot Interior

Juno captured this image of Io during Perijove 57. Data from Juno's JIRAM instrument is helping researchers understand how tidal heating shapes the moon's volcanic activity. Image Credit: NASA / SWRI / MSSS / Jason Perry © cc nc sa

NASA’s Juno spacecraft was sent to Jupiter to study the gas giant. But its mission was extended, giving it an opportunity to study the unique moon Io. Io is the most volcanically active body in the Solar System, with over 400 active volcanoes.

Researchers have taken advantage of Juno’s flybys of Io to study how tidal heating affects the moon.

Continue reading “Io’s Volcanoes are Windows into its Hot Interior”

Juno Sees a Brand New Volcano on Io

These are JunoCam images of Jupiter's moon Io from its 3 February 2024 encounter. The first two images show Io illuminated by Jupiter-shine, and the rest are lit up by sunlight. The new volcano was captured in the second image in the sequence. Credit: NASA/JPL-Caltech/SwRI/MSSS.

Jupiter’s moon, Io, is the most volcanic body in the Solar System. NASA’s Juno spacecraft has been getting closer and closer to Io in the last couple of years, giving us our first close-up images of the moon in 25 years.

Recent JunoCam images show a new volcano that appeared sometime after the Galileo spacecraft visited the region.

Continue reading “Juno Sees a Brand New Volcano on Io”

Is There a Low-Radiation Path To Europa?

This artist's rendering shows NASA's Europa Clipper spacecraft, which is scheduled to launch in October, 2024. It'll have to contend with Jupiter's powerful radiation. Will a newly-found low-radiation path to Europa help? Image Credit: NASA/JPL

Any mission to Jupiter and its moons must contend with the gas giant’s overwhelming radiation. Only a judicious orbital pattern and onboard protective measures can keep a spacecraft safe. Even then, the powerful radiation dictates a mission’s lifespan.

However, researchers may have found a way to approach at least one of Jupiter’s moons without confronting that radiation.

Continue reading “Is There a Low-Radiation Path To Europa?”

Volcanic Plumes Rise Above Lava Lakes on Io in this Juno Image

Juno's JunoCam instrument captured this image of two plumes rising from Io's surface. The image was taken from a distance of 3,800 km away. Image Credit: NASA/JPL-Caltech/SwRI/MSSS Image processing by Andrea Luck (CC BY)

As the most volcanic object in the Solar System, Jupiter’s moon Io attracts a lot of attention. NASA’s Juno spacecraft arrived at the Jovian system in July 2016, and in recent months, it’s been paying closer attention to Io.

Though Io’s internal workings have been mostly inscrutable, images and data from Juno are starting to provide a fuller picture of the strange moon’s volcanic inner life.

Continue reading “Volcanic Plumes Rise Above Lava Lakes on Io in this Juno Image”

Juno Reveals a Giant Lava Lake on Io

An artists rendition of Loki Patera, a lava lake on Jupiter’s moon Io. Credit: NASA.

NASA’s Juno spacecraft came within 1,500 km (930 miles) of the surface of Jupiter’s moon Io in two recent flybys. That’s close enough to reveal new details on the surface of this moon, the most volcanic object in the Solar System. Not only did Juno capture volcanic activity, but scientists were also able to create a visual animation from the data that shows what Io’s 200-km-long lava lake Loki Patera would look like if you could get even closer. There are islands at the center of a magma lake rimmed with hot lava. The lake’s surface is smooth as glass, like obsidian.

Continue reading “Juno Reveals a Giant Lava Lake on Io”

NASA’s Juno Probe Makes Another Close Flyby of Io

Processed image taken by JunoCam on Feb. 3rd, 2024, during the probe's second close flyby of Jupiter’s moon Io. Credit: NASA/SwRI/MSSS

The Juno spacecraft has revealed some fascinating things about Jupiter since it began exploring the system on July 4th, 2016. Not only is it the first robotic mission to study Jupiter up close while orbiting it since the Galileo spacecraft, which studied the gas giant and its satellites from 1995 to 2003. Juno is also the first robotic explorer to look below Jupiter’s dense clouds to investigate the planet’s magnetic field, composition, and structure. The data this has produced is helping scientists address questions about how Jupiter formed and the origins of the Solar System.

Since 2021, the probe has been in an extended mission phase, where it has been making flybys of some of Jupiter’s largest moons, including Ganymede, Europa, and Io. As it passes these satellites, Juno has captured some incredible images with its main imaging instrument, the JunoCam. On Saturday, February 3rd, 2024, the Juno spacecraft made another flyby of Io and took more captivating photos of the volcanic moon and its pockmarked surface. This was the second part of a twin flyby designed to provide new insight into Io’s volcanic nature and the interior structure of the satellite.

Continue reading “NASA’s Juno Probe Makes Another Close Flyby of Io”

Juno Makes its Closest Flyby of Io

NASA's Juno spacecraft captured this image of Jupiter's volcanic moon Io. Image Credit: NASA / JPL-Caltech / SwRI / MSSS / Kevin Gill

NASA’s Juno spacecraft has been getting closer and closer to Jupiter’s volcanic moon Io with each recent orbit. Juno is in its 57th orbit of Jupiter, and on December 30th, Juno came to within 1500 km (930 miles) of Io’s surface. It’s been more than 20 years since a spacecraft came this close.

Continue reading “Juno Makes its Closest Flyby of Io”

Juno Spots Salts and Organic Molecules on Ganymede’s Surface

Enhanced image of Ganymede taken by the JunoCam during the mission's flyby on June 7th, 2021. Credit: NASA/JPL-Caltech/SwRI/MSSS/Kalleheikki Kannisto

NASA’s Juno mission continues to orbit Jupiter, gathering data on its atmosphere, composition, gravitational field, magnetic field, and radiation environment. This data is helping scientists to learn more about the planet’s formation, internal structure, mass distribution, and what is driving its powerful winds. Periodically, the spacecraft also performs flybys of Jupiter’s largest satellites (the Galilean Moons), acquiring stunning images and vital data on their surfaces. These include optical and thermal images of Io’s many active volcanoes, Europa’s icy terrain, and infrared images of Ganymede.

During its last flyby of Ganymede (June 7th, 2021), Juno collected infrared images and spectra on the moon’s surface using its Jovian InfraRed Auroral Mapper (JIRAM) instrument. According to a recent study by an international team of researchers, this data revealed the presence of salt minerals and organic molecules on the icy moon’s surface. The findings could help scientists better understand the origin of Ganymede, the composition of its interior ocean, and the way material is exchanged between the surface and interior. In short, it could help scientists determine if life exists deep inside Ganymede’s ocean.

Continue reading “Juno Spots Salts and Organic Molecules on Ganymede’s Surface”

Io has 266 Active Volcanic Hotspots Linked by a Global Magma Ocean

NASA’s Galileo spacecraft captured this image of a volcanic eruption on Io in 1997. Image Credit:NASA, NASA-JPL, DLR

Jupiter’s Io stands apart from the Solar System’s other moons, with its numerous volcanoes and its surface dominated by lava flows. Io’s surface volcanism was confirmed in 1979 when the Voyager spacecraft imaged it, but its volcanic nature isn’t duplicated anywhere else in our system. Tidal heating is behind the moon’s eruptive nature, driven by Jupiter’s powerful gravity, and by resonance with other moons. But is there a magma ocean inside Io?

A final answer to that question has been elusive, but new research supports the idea of a magma ocean.

Continue reading “Io has 266 Active Volcanic Hotspots Linked by a Global Magma Ocean”