Every so often, engineers send a spacecraft in Earth’s general direction to pick up a speed boost before heading elsewhere. But sometimes, something strange happens — the spacecraft’s speed varies in an unexpected way. Even stranger, this variation happens only during some Earth flybys.
“We detected the flyby anomaly during Rosetta’s first Earth visit in March 2005,” stated Trevor Morley, a flight dynamics specialist at the European Space Agency’s European Space Operations Centre in Darmstadt, Germany.
“Frustratingly, no anomaly was seen during Rosetta’s subsequent Earth flybys in 2007 and 2011. This is a real cosmic mystery that no one has yet figured out.”
The phenomenon has been noticed in several spacecraft (both from ESA and NASA) since 1990. NASA’s NEAR asteroid spacecraft in January 1998 had the largest change, of 13 millimeters (0.5 inches) a second. The smallest variations, with NASA’s Saturn-bound Cassini in 1999 and Mercury-pointing MESSENGER in 2005, were below the threshold of measurement.
ESA won’t even speculate on what’s going on. “The experts are stumped,” the agency says in a press release.
Those experts, however, do have some ideas on how to track that down. ESOC plans to watch Juno’s flyby using a 35 meter deep-space dish in Malargüe, Argentina, as well as a 15-meter dish in Perth, Australia
“The stations will record highly precise radio-signal information that will indicate whether Juno speeds up or slows down more or less than predicted by current theories,” ESA states.
What do you think is going on? Let us know in the comments!
Trajectory Map of Juno’s Earth Flyby on Oct. 9, 2013
The Earth gravity assist is required to accelerate Juno’s arrival at Jupiter on July 4, 2016 and will capture an unprecedented movie of the Earth/Moon system. Credit: NASA/JPL
Details on how to watch via Slooh – see below [/caption]
NASA’s solar powered Jupiter-bound Juno orbiter is careening towards Earth for an absolutely critical gravity assisted fly by speed boost while capturing an unprecedented movie view of the Earth/Moon system – on its ultimate quest to unveiling Jupiter’s genesis!
“Juno will flyby Earth on October 9 to get a gravity boost and increase its speed in orbit around the Sun so that it can reach Jupiter on July 4, 2016,” Juno chief scientist Dr. Scott Bolton told Universe Today in an exclusive new Juno mission update – as the clock is ticking to zero hour. “The closest approach is over South Africa.”
All this ‘high frontier’ action comes amidst the utterly chaotic US government partial shutdown, that threatened the launch of the MAVEN Mars orbiter, has halted activity on many other NASA projects and stopped public announcements of the safe arrival of NASA’s LADEE lunar orbiter on Oct. 6, Juno’s flyby and virtually everything else related to NASA!
Bolton confirmed that the shutdown fortunately hasn’t altered or killed Juno’s flyby objectives. And ops teams at prime contractor Lockheed Martin have rehearsed and all set.
And some more good news is that Slooh will track the Juno Earth Flyby “LIVE” – for those hoping to follow along. Complete details below!
“The shutdown hasn’t affected our operations or plans, Bolton told me. Bolton is Juno’s principal investigator from the Southwest Research Institute (SwRI), San Antonio, Texas.
“Juno is 100% healthy.”
“But NASA is unable to participate in our public affairs and press activities,” Bolton elaborated.
97% of NASA’s employees are furloughed – including public affairs – due to the legal requirements of the shutdown!
Juno will also capture an unprecedented new movie of the Earth/Moon system.
A full up science investigation of our Home Planet by Juno is planned, that will also serve as a key test of the spacecraft and its bevy of state of the art instruments.
“During the earth flyby we have most of our instruments on and will obtain a unique movie of the Earth Moon system on our approach.
“We will also calibrate instuments and measure earth’s magnetosphere, obtain closeup images of the Earth and the Moon in UV [ultraviolet] and IR [infrared],” Bolton explained to Universe Today.
The flyby will accelerate the spacecraft’s velocity by 16,330 mph.
Where is the best view of Juno’s flyby, I asked?
“The closest approach is over South Africa and is about 500 kilometers [350 miles],” Bolton replied.
The time of closest approach is 3:21 p.m. EDT (12:21 PDT / 19:21 UTC) on Oct. 9, 2013
Watch this mission produced video about Juno and the Earth flyby:
Video caption: On Oct. 9, 2013, NASA’s Jupiter-bound Juno spacecraft is making a quick pass to get a gravity boost from the mother planet. Dr. Scott Bolton of Southwest Research Institute® is the Juno mission principal investigator, leading an international science team seeking to answer some fundamental questions about the gas giant and, in turn, about the processes that led to formation of our solar system.
NASA’s Juno spacecraft blasted off atop an Atlas V rocket two years ago from Cape Canaveral Air Force Station, FL, on Aug. 5, 2011 to begin a 2.8 billion kilometer science trek to discover the genesis of Jupiter hidden deep inside the planet’s interior.
Juno is on a 5 year and 1.7 Billion mile (2.8 Billion km) trek to the largest planet in our solar system. When it arrives at Jupiter on July 4, 2016, Juno will become the first polar orbiting spacecraft at the gas giant.
During a one year science mission – entailing 33 orbits lasting 11 days each – the probe will plunge to within about 3000 miles of the turbulent cloud tops and collect unprecedented new data that will unveil the hidden inner secrets of Jupiter’s genesis and evolution.
The goal is to find out more about the planets origins, interior structure and atmosphere, observe the aurora, map the intense magnetic field and investigate the existence of a solid planetary core
Why does Juno need a speed boost from Earth?
“A direct mission to Jupiter would have required about 50 percent more fuel than we loaded,” said Tim Gasparrini, Juno program manager for Lockheed Martin Space Systems, in a statement.
“Had we not chosen to do the flyby, the mission would have required a bigger launch vehicle, a larger spacecraft and would have been more expensive.”
Viewers near Cape Town, South Africa will have the best opportunity to view the spacecraft traveling across the sky.
Juno itself will most likely not be visible to the unaided eye, but binoculars or a small telescope with a wide field should provide an opportunity to view, according to a Slooh statement.
Slooh will track Juno live on October 9th, 2013.
Check here for international starting times: http://goo.gl/7ducFs – and for the Slooh broadcast hosted by Paul Cox.
Viewers can view the event live on Slooh.com using their computer or mobile device, or by downloading the free Slooh iPad app in the iTunes store. Questions can be asked during the broadcast via Twitter by using the hashtag #nasajuno -says Slooh.
Amidst the government shutdown, Juno prime contractor Lockheed Martin is working diligently to ensure the mission success.
Because there are NO 2nd chances!
“The team is 100 percent focused on executing the Earth flyby successfully,” said Gasparrini.
“We’ve spent a lot of time looking at possible off-nominal conditions. In the presence of a fault, the spacecraft will stay healthy and will perform as planned.”
Stay tuned here for continuing Juno, LADEE, MAVEN and more up-to-date NASA news.
And be sure to check back here for my post-flyby update.
What’s not at all clear is whether Juno will detect any signs of ‘intelligent life’ in Washington D.C.!
Learn more about Juno, LADEE, MAVEN, Curiosity, Mars rovers, Cygnus, Antares, SpaceX, Orion, the Gov’t shutdown and more at Ken’s upcoming presentations
Oct 8: “NASA’s Historic LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”& “Curiosity, MAVEN, Juno and Orion updates”; Princeton University, Amateur Astronomers Assoc of Princeton (AAAP), Princeton, NJ, 8 PM
Talk about a great fall lineup. Three of Jupiter’s four brightest moons plan a rare show for telescopic observers on Friday night – Saturday morning Oct. 11-12. For a span of just over an hour, Io, Europa and Callisto will simultaneously cast shadows on the planet’s cloud tops, an event that hasn’t happened since March 28, 2004.
Who doesn’t remember their first time looking at Jupiter and his entourage of dancing moons in a telescope? Because each moves at a different rate depending on its distance from the planet, they’re constantly on the move like kids in a game of musical chairs. Every night offers a different arrangement.
Some nights all four of the brightest are strung out on one side of the planet, other nights only two or three are visible, the others hidden behind Jupiter’s “plus-sized” globe. Occasionally you’ll be lucky enough to catch the shadow of one of moons as it transits or crosses in front of the planet. We call the event a shadow transit, but to someone watching from Jupiter, the moon glides in front of the sun to create a total solar eclipse.
Since the sun is only 1/5 as large from Jupiter as seen from Earth, all four moons are large enough to completely cover the sun and cast inky shadows. To the eye they look like tiny black dots of varying sizes. Europa, the smallest, mimics a pinprick. The shadows of Io and Callisto are more substantial. Ganymede, the solar system’s largest moon at 3,269 miles (5,262 km), looks positively plump compared to the others. Even a small telescope magnifying around 50x will show it.
The three inner satellites – Io, Europa and Ganymede – have shadow transits every orbit. Distant Callisto only transits when Jupiter’s tilt relative to Earth is very small, i.e. the plane of the planet’s moons is nearly edge-on from our perspective. Callisto transits occur in alternating “seasons” lasting about 3 years apiece. Three years of shadow play are followed by three years of shadowless misses. Single transits are fairly common; you can find tables of them online like this one from Project Pluto or plug in time and date into a free program like Meridian for a picture and list of times.
Seeing two shadows inch across Jupiter’s face is very uncommon, and three are as rare as a good hair day for Donald Trump. Averaged out, triple transits occur once or twice a decade. Friday night Oct. 11 each moon enters like actors in a play. Callisto appears first at 11:12 p.m. EDT followed by Europa and then Io. By 12:32 a.m. all three are in place.
Catch them while you can. Groups like these don’t last long. A little more than an hour later Callisto departs, leaving just two shadows. You’ll find the details below. All times are Eastern Daylight or EDT. Subtract one hour for Central time and add four hours for BST (British Summer Time):
* Callisto’s shadow enters the disk – 11:12 p.m. Oct. 11
* Europa – 11:24 p.m.
* Io – 12:32 a.m. ** TRIPLE TRANSIT from 12:32 – 1:37 a.m.
* Callisto departs – 1:37 a.m.
* Europa departs – 2:01 a.m.
* Io departs – 2:44 a.m.
The triple transit will be seen across the eastern half of the U.S., Europe and western Africa. Those living on the East Coast have the best view in the U.S. with Jupiter some 20-25 degrees high in the northeastern sky around 1 a.m. local time. Things get dicier in the Midwest where Jupiter climbs to only 5-10 degrees. From the mountain states the planet won’t rise until Callisto’s shadow has left the disk, leaving a two-shadow consolation prize. If you live in the Pacific time zone and points farther west, you’ll unfortunately miss the event altogether.
Key to seeing all three shadows clearly, especially if Jupiter is low in the sky, is steady air or what skywatchers call “good seeing”. The sky can be so clear you’d swear there’s a million stars up there, but a look through the telescope will sometimes show dancing, blurry images due to invisible air turbulence. That’s “bad seeing”. Unfortunately, bad seeing is more common near the horizon where we peer through a greater thickness of atmosphere. But don’t let that keep you inside Friday night. With a spell of steady air, all you need is a 4-inch or larger telescope magnifying around 100x to spot all three.
If bad weather blocks the view, there are two more triple transits coming up soon – a 95-minute-long event on June 3, 2014 starring Europa, Ganymede and Callisto (not visible in the Americas) and a 25-minute show on Jan. 24, 2015 featuring Io, Europa and Callisto and visible across Western Europe and the Americas. That’s it until dual triple transits in 2032.
Io – Jupiter’s innermost Galilean moon – is the most geologically active body in the Solar System. With over 400 active volcanic regions, plumes of sulfur can climb as high as 300 miles above the surface. It is dotted with more than 100 mountains, some of which are taller than Mount Everest. In between the volcanoes and mountains there are extensive lava flows and floodplains of liquid rock.
Intense volcanic activity leads to a thin atmosphere consisting mainly of sulfur dioxide (SO2), with minor species including sulfur monoxide (SO), sodium chloride (NaCl), and atomic sulfur and oxygen. Despite Io’s close proximity to the Earth the composition of its atmosphere remains poorly constrained. Models predict a variety of other molecules that should be present but have not been observed yet.
Recently a team of astronomers from institutions across the United States, France, and Sweden, set out to better constrain Io’s atmosphere. They detected the second-most abundant isotope of sulfur (34-S) and tentatively detected potassium chloride (KCl). The latter is produced in volcanic plumes – suggesting that these plumes continuously contribute to Io’s atmosphere.
Expected yet undetected molecular species include potassium chloride (KCl), silicone monoxide (SiO), disulfur monoxide (S2O), and various isotopes of sulfur. Most of these elements emit in radio wavelengths.
“Depending on their geometry, some molecules emit at well known frequencies when they change rotational state,” Dr. Arielle Moullet, lead author on the study, told Universe Today. “These spectral features are called rotational lines and show up in the (sub)millimeter spectral range.”
These observations were therefore obtained at the Atacama Pathfinder Experiment (APEX) antenna – a radio telescope located 16,700 feet above sea level in northern Chile. The main dish has a diameter of 12 meters, and is a prototype antenna for the Atacama Large Millimeter Array (ALMA).
Following 16.5 hours of total observation time and months of data reduction and analysis, Moullet et al. made a tentative detection of potassium chloride (KCl). Io’s volcanic ejecta produce a large plasma torus around Jupiter, which inlcudes many molecular species including potassium. This detection is therefore considered the “missing link” between Io and this plasma torus.
The team also made the first detection of one of Sulfur’s isotopes known as 34-S. Sulfur has 25 known isotopes – variants of sulfur that still have 16 protons but differ in their number of neutrons. 34-S is the second most abundant isotope with 18 neutrons.
Previously, the first-most abundant isotope of sulfur, 32-S with 16 neutrons, had been detected. Surprisingly the ratio between the two (34/32 S) is twice as high as the solar system reference, suggesting that there is an abundance of 34-S. A fraction this high has only been reported before in a distant quasar – an early galaxy consisting of an intensely luminous core powered by a huge black hole.
“This result tells us that there probably is some fractionation process that we haven’t yet identified, which is happening either in the magma, at the surface, or in the atmosphere itself,” explains Dr. Moullet. Something somewhere is producing an unexplained abundance of this isotope.
Other expected yet undetected molecules including silicone monoxide and disulfur monoxide remain undetected. It is possible that these molecules are simply not present, but more likely that the observations are not sensitive enough to detect them.
“To perform a deeper spectral search with a better sensitivity, our group has been awarded observation time with the Atacama Large Millimeter Array, a cutting edge interferometric facility in Chile, which will eventually include more than fifty 12-meter wide dishes,” explains Dr. Moullet. “We are in the process of analyzing our first dataset obtained with sixteen antennas, which is already much more sensitive than the APEX data.”
While Io is certainly an extreme example, it will likely help us characterize volcanism in general – providing a better understanding of volcanism here on Earth as well as outside the Solar System.
The paper has been accepted for publication in The Astrophysical Journal and is available for download here.
Yesterday, NASA announced that as of August 2012, Voyager 1 is in a new frontier to humanity: interstellar space. Our most distant spacecraft is now in a region where the plasma (really hot gas) environment comes more from between the stars than from the sun itself. (There’s still debate as to whether it’s in or out of the solar system, as this article explains.)
The plucky spacecraft is close to 12 billion miles (19 million kilometers) from home, and in its 36 years of voyaging has taught us a lot about the planets, their moons and other parts of space. Here are 10 of some of its most historic moments. Did we miss any? Let us know in the comments.
10. The launch: Aug. 20, 1977
Voyager 1 blasted off from Cape Canaveral on Sept. 5, 1977. Its twin, Voyager 2, departed Earth 16 days earlier. Each spacecraft carried various scientific instruments on board as well as a “Golden Record” that had sounds of Earth on it, as well as a diagram showing where Earth is in the universe.
9. Capturing the Earth and Moon together for the first time
About two weeks after launching, Voyager 1 turned back towards Earth and took three images, which were combined into this single view of the Earth and Moon together in space. This was the first time both bodies were pictured together, NASA said.
8. The ‘Pale Blue Dot’ image
On February 14, 1990, Voyager 1 was about 3.7 billion miles (6 billion kilometers) away from Earth. Scientists commanded the spacecraft to turn its face towards the solar system and snap some pictures of the planets. Among them was this famous image of Earth, which astronomer Carl Sagan called the Pale Blue Dot. “Look again at that dot. That’s here. That’s home. That’s us,” wrote Sagan in his 1997 book of the same name. In 2013, the spacecraft Cassini also took a picture of Earth, and NASA encouraged everyone to wave back.
7. Finding moons “shepherding” Saturn’s F ring
Voyager 1 spotted Prometheus and Pandora, two moons of Saturn that keep the F ring separate from the rest of the debris, as well as Atlas, which “shepherds” the A ring. More recently, astronomers have found even more interesting things in Saturn’s rings — such as rain.
6. Spotting what appeared to be a LOT of water ice on Saturn’s moons
After many years of seeing Saturn’s moons as mere points of light, Voyager 1 buzzed several of them in its quick flyby through the system: Dione, Enceladus, Mimas, Rhea, Tethys and Titan among them. Many of these moons appeared to be icy, which was a surprising find since astronomers previously thought water was pretty rare in the Solar System. We know better now.
5. Imaging Titan’s orange haze
Voyager 1 pictures such as this tortured astronomers for decades — what lies beneath this mysterious haze surrounding Titan, Saturn’s moon? That mystery, in fact, inspired the European Space Agency to send a lander to the moon, called Huygens, which successfully reached the surface in 2005.
4. Finding active volcanoes on Io
Voyager 1 helped show us that the Solar System is full of very interesting moons. At Io — a moon of Jupiter — it turns out the moon flexes during its 42-hour orbit of massive Jupiter, which powers a lot of volcanic activity.
3. Voyager 1 becomes the most distant human object
On Feb. 17, 1998, Voyager 1’s distance surpassed that of another long-flying probe, Pioneer 10. This made Voyager 1 the farthest-flung human object in space.
2. Riding the “magnetic highway”
In December, NASA said Voyager 1 had reached an area (as of July 28, 2012) where high-energy magnetic particles were starting to bleed through the bubble of lower-energy particles from our sun. “Voyager’s discovered a new region of the heliosphere that we had not realized was there. It’s a magnetic highway where the magnetic field of the Sun is connected to the outside. So it’s like a highway, letting particles in and out,” said project scientist Ed Stone at the time. After that point, as more measurements were analyzed by different teams, there was a lot of debate as to whether Voyager had reached interstellar space.
1. Reaching interstellar space
With Voyager 1 now known to be in interstellar space, we’re lucky enough to have a few years left to communicate with it before it runs out of power. All of the instruments will be turned off by 2025, and then engineering data will be available for about 10 years beyond that. The silent emissary from humanity will then come within 1.7 light years of an obscure star in the constellation Ursa Minor (the Little Bear) called AC+79 3888 in the year 40,272 AD and then orbit the center of the Milky Way for millions of years.
Psst! Live in South Africa and read Universe Today? Then you might just get a peak at the Juno spacecraft as it receives a boost from our fair planet on the evening of October 9th, 2013.
Launched from Cape Canaveral Air Force Station on August 5th, 2011 atop an Atlas 5 rocket in a 551 configuration, Jupiter-bound Juno is approaching the Earth from interior to its orbit over the next month. Its closest approach to the Earth during its October 9th flyby will occur at 19:21 Universal Time (UT) which is 3:21 PM Eastern Daylight Saving Time. The spacecraft will pass 559 kilometres over the South Atlantic to a point 200 kilometres off of the southeastern coast of South Africa at latitude -34.2° south & longitude 34° east.
For context, this is just about 25% higher than the International Space Station orbits at an average of 415 kilometres above the Earth. The ISS is 108.5 metres across on its longest dimension, and we wouldn’t be surprised if Juno were a naked eye object for well placed observers watching from a dark sky site around Cape Town, South Africa. Especially if one of its three enormous 8.9 metre long solar panels were to catch the Sun and flare Iridium-style!
Two minutes before closest approach, Juno will experience the only eclipse of its mission, passing into the umbra of Earth’s shadow for about 20 minutes. Chris Peat at Heavens-Above also told Universe Today that observers in India are also well-placed to catch sight of Juno with binoculars after it exits the Earth’s shadow.
Juno passed its half-way mark to Jupiter last month on August 12th when the “odometer clicked over” to 9.464 astronomical units. Juno will enter orbit around Jupiter on July 4th, 2016. Juno will be the second spacecraft after Galileo to permanently orbit the largest planet in our solar system.
Catching a flyby of Juno will be a unique event. Unfortunately, the bulk of the world will miss out, although you can always vicariously fly along with Juno with Eyes on the Solar System. Juno is currently moving about 7 km/s relative to the Earth, and will move slightly faster than the ISS in its apparent motion across the sky from west to east before hitting Earth’s shadow. This slingshot will give Juno a 70% boost in velocity to just under 12km/s relative to Earth, just slower than Pioneer 10’s current motion relative to the Sun of 12.1km/s.
At that speed, Juno will be back out past the Moon in about 10 hours after flyby. There’s a chance that dedicated imagers based along North American longitudes could still spy Juno later that evening.
Juno approaches the Earth from the direction of the constellation Libra and will recede from us in the direction of the constellation Perseus on the night of October 9th.
There’s also a precedent for spotting such flybys previous. On August 18th, 1999, NASA’s Cassini spacecraft made a flyby of the Earth at 1,171 kilometres distant, witnessed by observers based in the eastern Pacific region. Back then, a fuss had been raised about the dangers that a plutonium-powered spacecraft might posed to the Earth, should a mis-calculation occur. No such worries surround Juno, as it will be the first solar-powered spacecraft to visit the outer solar system.
And NASA wants to hear about your efforts to find and track Juno during its historic 2013 flyby of the Earth. JPL Horizons lists an ephemeris for the Juno spacecraft, which is invaluable for dedicated sky hunters. You can tailor the output for your precise location, then aim a telescope at low power at the predicted right ascension and declination at the proper time, and watch. Precise timing is crucial; I use WWV shortwave radio broadcasting out of Fort Collins, Colorado for ultra-precise time when in the field.
As of this writing, there are no plans to broadcast the passage of Juno live, though I wouldn’t be surprised if someone like Slooh decides to undertake the effort. Also, keep an eye on Heavens-Above, as they may post sighting opportunities as well. We’ll pass ‘em along if they surface!
Late Breaking: And surface they have… a page dedicated to Juno’s flyby of Earth is now up on Heavens-Above.
Juno is slated to perform a one year science mission studying the gravity and magnetic field of Jupiter as well as the polar magnetosphere of the giant planet. During this time, Juno will make 33 orbits of Jupiter to complete its primary science mission. Juno will study the environs of Jupiter from a highly inclined polar orbit, which will unfortunately preclude study of its large moons. Intense radiation is a primary hazard for spacecraft orbiting Jupiter, especially one equipped with solar panels. Juno’s core is shielded by one centimetre thick titanium walls, and it must thread Jupiter’s radiation belts while passing no closer than 4,300 kilometres above the poles on each pass. One run-in with the Io Plasma Torus would do the spacecraft in. Like Galileo, Juno will be purposely deorbited into Jupiter after its primary mission is completed in October 2017.
If you live in the right location, be sure to check out Juno as it visits the Earth, one last time. We’ll keep you posted on any live broadcasts or any further info on sighting opportunities as October 9th draws near!
– Got pics of Juno on its flyby of the Earth? Send ’em in to Universe Today!
– You can also follow the mission on Twitter as @NASAJuno.
Recent observations of Jupiter’s moon Io has revealed a massive volcanic eruption taking place 628,300,000 km (390,400,000 miles) from Earth. Io, the innermost of the four largest moons around Jupiter, is the most volcanically active object in the Solar System with about 240 active regions. But this new one definitely caught the eye of Dr. Imke de Pater, Professor of Astronomy and of Earth and Planetary Science at the University of California in Berkeley. She was using the Keck II telescope on Mauna Kea in Hawaii on August 15, 2013 when it immediately became apparent something big was happening at Io.
“When you are right at the telescope and see the data, this is something you can see immediately, especially with a big eruption like that,” de Pater told Universe Today via phone.
de Pater said this eruption is one of the top 10 most powerful eruptions that have been seen on this moon. “It is a very energetic eruption that covers over a 30 square kilometer area,” she said. “For Earth, that is big, and for Io it is very big too. It really is one of the biggest eruptions we have seen.”
She added the new volcano appears to have a large energy output. “We saw a big eruption in 2001, which was in the Surt region, which is well known as the biggest one anyone has ever seen,” she said. “For this one, the total energy is less but per square meter, it is bigger than the one in 2001, so it is very powerful.”
While Io’s eruptions can’t be seen directly from Earth,infrared cameras on the Keck telescope (looking between 1 and 5 microns) have been able to ascertain there are likely fountains of lava gushing from fissures in the Rarog Patera region of Io, aptly named for a Czech fire deity.
While many regions of Io are volcanically active, de Pater said she’s not been able to find any other previous activity that has been reported in the Rarog Patera area, which the team finds very interesting.
Ashley Davies of NASA’s Jet Propulsion Laboratory in Pasadena, California and a member of the observing team told Universe Today that Rarog Patera was identified as a small, relatively innocuous hot spot previously in Galileo PPR data and possibly from Earth, but at a level way, way below what was seen on August 15, and reported in New Scientist.
de Pater and other astronomers will be taking more data soon with Keck and perhaps more telescopes to try and find out more about this massive eruption.
“We never know about eruptions – they can last hours, days months or years, so we have no idea how long it will stay active,” she said, “but we are very excited about it.”
No data or imagery has been released on the new eruption yet since the team is still making their observations and will be writing a paper on this topic.
Scientists think a gravitational tug-of-war with Jupiter is one cause of Io’s intense vulcanism.
In perhaps the neatest astronomical application of geneology yet, astronomers found 28 “hidden” families of asteroids that could eventually show them how some rocks get into orbits that skirt the Earth’s path in space.
From scanning millions of snapshots of asteroid heat signatures in the infrared, these groups popped out in an all-sky survey of asteroids undertaken by NASA’s orbiting Wide-Field Infrared Survey Explorer. This survey took place in the belt of asteroids between Mars and Jupiter, where most near-Earth objects (NEOs) come from.
NEOs, to back up for a second, are asteroids and comets that approach Earth’s orbit from within 28 million miles (45 million kilometers). Sometimes, a gravitational push can send a previously unthreatening rock closer to the planet’s direction. The dinosaurs’ extinction roughly 65 million years ago, for example, is widely attributed to a massive rock collision on Earth.
There are about 600,000 known asteroids between Mars and Jupiter, and the survey looked at about 120,000 of them. Astronomers then attempted to group some of them into “families”, which are best determined by the mineral composition of an asteroid and how much light it reflects.
While it’s hard to measure reflectivity in visible light — a big, dark asteroid reflects a similar amount of light as a small shiny one — infrared observations are harder to fool. Bigger objects give off more heat.
This allowed astronomers to reclassify some previously studied asteroids (which were previously grouped by their orbits), and come up with 28 new families.
“This will help us trace the NEOs back to their sources and understand how some of them have migrated to orbits hazardous to the Earth,” stated Lindley Johnson, NASA’s program executive for the Near-Earth Object Observation Program.
The astronomers next hope to study these different families to figure out their parent bodies. Astronomers believe that many asteroids we see today broke off from something much larger, most likely through a collision at some point in the past.
While Earthlings will be most interested in how NEOs came from these larger bodies and threaten the planet today, astronomers are also interested in learning how the asteroid belt formed and why the rocks did not coalesce into a planet.
The prevailing theory today says that was due to influences from giant Jupiter’s strong gravity, which to this day pulls many incoming comets and asteroids into different orbits if they swing too close. (Just look at what happened to Shoemaker-Levy 9 in 1994, for example.)
Triple planets (Venus/Jupiter/Mercury) conjunction over Mont-Saint-Michel, Normandy, France on May 26. Credit: Thierry Legault – www.astrophoto.fr Update: See expanded Conjunction astrophoto gallery below[/caption]
The rare astronomical coincidence of a spectacular triangular triple conjunction of 3 bright planets happening right now is certainly wowing the entire World of Earthlings! That is if our gallery of astrophotos assembled here is any indication.
Right at sunset, our Solar System’s two brightest planets – Venus and Jupiter – as well as the sun’s closest planet Mercury are very closely aligned for about a week in late May 2013 – starting several days ago and continuing throughout this week.
And, for an extra special bonus – did you know that a pair of spacecraft from Earth are orbiting two of those planets?
Have you seen it yet ?
Well you’re are in for a celestial treat. The conjunction is visible to the naked eye – look West to Northwest shortly after sunset. No telescopes or binoculars needed.
Just check out our Universe Today collection of newly snapped astrophoto’s and videos sent to Nancy and Ken by stargazing enthusiasts from across the globe. See an earlier gallery – here.
Throughout May, the trio of wandering planets have been gradually gathering closer and closer.
On May 26 and 27, Venus, Jupiter and Mercury appear just 3 degrees apart as a spectacular triangularly shaped object in the sunset skies – which
adds a palatial pallet of splendid hues not possible at higher elevations.
And don’t dawdle if you want to see this celestial feast. The best times are 30 to 60 minutes after sunset – because thereafter they’ll disappear below the horizon.
The sky show will continue into late May as the planets alignment changes every day.
On May 28, Venus and Jupiter close in to within just 1 degree.
And on May 30 & 31, Venus, Jupiter and Mercury will form an imaginary line in the sky.
Triple planetary conjunctions are a rather rare occurrence. The last one took place in May 2011. And we won’t see another one until October 2015.
Indeed the wandering trio are also currently the three brightest planets visible. Venus is about magnitude minus 4, Jupiter is about minus 2.
While you’re enjoying the fantastic view, ponder this: The three planets are also joined by two orbiting spacecraft from humanity. NASA’s MESSENGER is orbiting Mercury. ESA’s Venus Express is orbiting Venus. And NASA’s Juno spacecraft is on a long looping trajectory to Jupiter.
Send Ken you conjunction photos to post here.
And don’t forget to “Send Your Name to Mars” aboard NASA’s MAVEN orbiter- details here. Deadline: July 1, 2013
…………….
Learn more about Conjunctions, Mars, Curiosity, Opportunity, MAVEN, LADEE and NASA missions at Ken’s upcoming lecture presentations:
June 4: “Send your Name to Mars” and “CIBER Astro Sat, LADEE Lunar & Antares Rocket Launches from Virginia”; Rodeway Inn, Chincoteague, VA, 8:30 PM
June 11: “Send your Name to Mars” and “LADEE Lunar & Antares Rocket Launches from Virginia”; NJ State Museum Planetarium and Amateur Astronomers Association of Princeton (AAAP), Trenton, NJ, 730 PM.
Caption: Taken on 2013-05-23 from Salem, Missouri. Canon T1i, Nikkor 105mm lens. 297 1/4s at 1s interval. Images assembled by QuickTime Pro. Credit: Joseph Shuster
Venus and Mars may be all right tonight, but there’s still a lot we don’t understand about these planets. Why does one, Venus, have such a thick atmosphere? Why is that of Mars so thin? And why is Earth’s atmosphere so different again from what we see on Venus and Mars?
A new JAXA (Japan Aerospace Exploration Agency) satellite aims to better understand what’s going on. It’s called SPRINT-A, for Spectroscopic Planet Observatory for Recognition of Interaction of Atmosphere.
JAXA has set an official launch date of Aug. 22 from the Uchinoura Space Center, although the window extends as far as Sept. 30. (Launches can be delayed due to weather and mechanical difficulties.) The satellite’s expected Earth orbit will range from 590 to 715 miles (950 to 1150 kilometers) above the planet.
“Venus and Earth may be called twin planets, and it recently becomes clear that three terrestrial planets in the solar system – including Mars – have very similar environments in the beginning era of the solar system,” JAXA stated in a press release.
The agency pointed out, however, that these three planets ended up with different fates. Venus has a runaway greenhouse effect on its planet, with surface temperatures reaching a scorching 752 degrees Fahrenheit (400 degrees Celsius). Mars, on the other hand, has a very thin atmosphere and more variable temperatures that can get a little chilly.
Understanding how atmospheres escape into outer space is the main goal of SPRINT-A. The sun, the scientists stated, had more intense activity in the past than what we see presently, which could have blown away the atmosphere on some terrestrial planets.
“The study on interaction of the strong solar wind on the atmosphere of the planet leads to acquiring knowledge of history in the early stage of the solar system,” JAXA stated.
Besides looking at the inner solar system, SPRINT-A will investigate a phenomenon related to a splotchy volcanic moon orbiting the planet Jupiter.
SPRINT-A aims to better understand a ring of material surrounding Jupiter that came from Io.
Electrons and ions from the volcanic moon surround Jupiter and, as they collide, produce ultraviolet light in a process similar to what causes auroras in the upper atmosphere of Earth and other planets. How this happens is still being figured out, though.
It’s a pretty radiation-heavy environment in that region of the solar system. The spacecraft Galileo safely orbited the Jovian moons for years, but humans would have a little more trouble surviving the radiation without heavy shielding and careful precautions.