The Big Dipper Like You’ve Never Seen It Before!

Junocam image of the stars that make up the "Big Dipper" asterism

[/caption]

All right, it may look just like any other picture you’ve ever seen of the Big Dipper. Maybe even a little less impressive, in fact. But, unlike any other picture, this one was taken from 290 million km away by NASA’s Juno spacecraft en route to Jupiter, part of a test of its Junocam instrument!  Now that’s something new concerning a very old lineup of stars!

“I can recall as a kid making an imaginary line from the two stars that make up the right side of the Big Dipper’s bowl and extending it upward to find the North Star,” said Scott Bolton, principal investigator of NASA’s Juno mission. “Now, the Big Dipper is helping me make sure the camera aboard Juno is ready to do its job.”

Diagram of the Juno spacecraft (NASA/JPL)

The image is a section of a larger series of scans acquired by Junocam between 20:23 and 20:56 UTC (3:13 to 3:16 PM EST) on March 14, 2012. Still nowhere near Jupiter, the purpose of the imaging exercise was to make sure that Junocam doesn’t create any electromagnetic interference that could disrupt Juno’s other science instruments.

In addition, it allowed the Junocam team at Malin Space Science Systems in San Diego, CA to test the instrument’s Time-Delay Integration (TDI) mode, which allows image stabilization while the spacecraft is in motion.

Because Juno is rotating at about 1 RPM, TDI is crucial to obtaining focused images. The images that make up the full-size series of scans were taken with an exposure time of 0.5 seconds, and yet the stars (brightened above by the imaging team) are still reasonably sharp… which is exactly what the Junocam team was hoping for.

“An amateur astrophotographer wouldn’t be very impressed by these images, but they show that Junocam is correctly aligned and working just as we expected”, said Mike Caplinger, Junocam systems engineer.

As well as the Big Dipper, Junocam also captured other stars and asterisms, such as Vega, Canopus, Regulus and the “False Cross”. (Portions of the imaging swaths were also washed out by sunlight but this was anticipated by the team.)

These images will be used to further calibrate Junocam for operation in the low-light environment around Jupiter, once Juno arrives in July 2016.

Read more about the Junocam test on the MSSS news page here.

As of May 10, Juno was approximately 251 million miles (404 million kilometers) from Earth. Juno has now traveled 380 million miles (612 million kilometers) since its launch on August 5, 2011 and is currently traveling at a velocity of 38,300 miles (61,600 kilometers) per hour relative to the Sun.

Watch a video of the Juno launch here, taken by yours truly from the press site at Kennedy Space Center!

ESA Turns On The JUICE For New Jupiter Mission

Galileo image of Ganymede, Jupiter's - and the Solar System's - largest moon. (Ted Stryk)

[/caption]

The European Space Agency has given the go-ahead for an exciting mission to explore the icy moons of Jupiter, as well as the giant planet itself.

JUICEJUpiter ICy moons Explorer — will consist of a solar-powered spacecraft that will spend 3.5 years within the Jovian system, investigating Ganymede, Europa and the upper atmosphere of Jupiter. Anticipated to launch in June 2022, JUICE would arrive at Jupiter in early 2030.

As its name implies, JUICE’s main targets are Jupiter’s largest icy moons — Ganymede and Europa — which are thought to have liquid oceans concealed beneath their frozen surfaces.

The largest moon in the Solar System, Ganymede is also thought to have a molten iron core generating a magnetic field much like Earth’s. The internal heat from this core may help keep Ganymede’s underground ocean liquid, but the dynamics of how it all works are not quite understood.

JUICE will also study the ice-coated Europa, whose cueball-smooth surface lined with cracks and jumbled mounds of frozen material seem to be sure indicators of a subsurface ocean, although how deep and how extensive is might be are still unknown — not to mention its composition and whether or not it could be hospitable to life.

The rust-colored cracks lining Europa's otherwise smooth surface hint at a subsurface ocean. (Ted Stryk)

“JUICE will give us better insight into how gas giants and their orbiting worlds form, and their potential for hosting life,” said Professor Alvaro Giménez Cañete, ESA’s Director of Science and Robotic Exploration.

The JUICE spacecraft was originally supposed to join a NASA mission dedicated to the investigation of Europa, but NASA deemed their proposed mission too costly and it was cancelled. According to Robert Pappalardo, study scientist for the Europa mission based at JPL, NASA may still supply some instruments for the spacecraft “assuming that the funding situation in the United States can bear it.”

Artist's rendering of JUICE at Jupiter. (ESA/AOES)

JUICE will also capture images of Jupiter’s moon Callisto and search for aurorae in the gas giant’s upper atmosphere, as well as measure the planet’s powerful magnetic field. Once arriving in 2030, it will spend at least three years exploring the Jovian worlds.

Read more in today’s news release from Nature, and stay tuned to ESA’s JUICE mission page here.

Recalibrated Galileo images © Ted Stryk. See more of Ted’s excellent work on his site Planetary Images From Then And Now.

Outer Space – Mind Blowing Video from Jupiter and Saturn

Video Caption: This mesmerizing video unveils incredibly amazing sequences around Jupiter and Saturn from NASA’s Cassini and Voyager missions set to stirring music by “The Cinematic Orchestra -That Home (Instrumental)”. Credit: Sander van den Berg

Don’t hesitate 1 moment ! Look and listen to this mind blowing video of the Jupiter and Saturnian systems.

If you love the wonders of the hitherto unknown Universe unveiled before your eyes – and long to explore – feast your eyes on this short new video right now titled simply; “Outer Space”. Continue reading “Outer Space – Mind Blowing Video from Jupiter and Saturn”

JUICE to Jupiter Could Be ESA’s Next Major Science Mission

Artist concept of JUICE, a Jupiter moons orbiter mission. Credit: ESA

[/caption]

The Science Programme Committee of the European Space Agency has recommended that the next major space mission for ESA be an orbiter mission to the Jupiter system named JUICE, the JUpiter ICy moons Explorer. This mission would launch in about 2020 and explore potentially habitable moon around the gas giant, Callisto, Europa, and Ganymede.

This recommendation is not the final decision, but puts JUICE as a front-runner for when representatives of all 19 ESA member states meet to discuss the various mission candidates on May 2, 2012

Other missions being considered are ATHENA , the Advanced Telescope for High-ENergy Astrophysics (originally called IXO) – which would be the biggest X-ray telescope ever built — even though smaller in scope than the original IXO) and study the extremes of the Universe: from black holes to large-scale structure ; and NGO, the New Gravitational wave Observatory, a smaller version of LISA, a space-borne gravitational wave detector which would place a three satellites in orbit.

“This is a big blow to space based astrophysics,” wrote European science blogger Steinn Sigurdsson, who added that rumors are floating around that the NGO science team may be disbanded immediately, even though the new report issued by the Science Programme Committee is just a recommendation.

Planetary Society blogger Emily Lakdawalla also commented on the selection — if it is accepted — “represents a big win for planetary science and a big loss for space-based astrophysics in Europe. Which is, one can’t help but notice, opposite to what the currently-proposed NASA budget represents.”

Whatever mission is chosen for the next flagship science mission, ESA knows it will likely have to do it on their own.

In March 2011, NASA informed ESA that that it was highly unlikely that they could become a major partner in an “L” (large) mission for the 2020 timeframe.

“Given the resulting impossibility to continue with the mission concepts defined in the Assessment Phase, the Executive terminated the relative activities for EJSM-Laplace, IXO, and LISA, and informed the members of the three Science Study Teams of the termination of their mandate,” the new report says. “To preserve as much as possible the investment of the scientific community and of the Member States in the study activities of the L mission candidates, the Executive implemented a recovery action in the form of a fast-track re-formulation activity. The aim has been to ascertain if and which of the science goals of the L mission candidates could be implemented in the context of a programmatically feasible European-led, or potentially European-only mission.”

With NASA no longer in the mix, ESA knew they would have to descope their proposed missions, and with costs needing to be at least 20% less than originally planned. “Needless to say, missions within these constraints must be significantly less complex than the original L mission concepts selected in 2007,” the report says.

ESA’s science goals for the front-runner JUICE mission is to visit the Jupiter system concentrating on the characterization of three possible ocean-bearing worlds, Ganymede, Europa and Callisto as planetary objects and potential habitats and on the exploration of the Jupiter system considered as an archetype for gas giants in the solar system and elsewhere. The focus of JUICE is to characterize the conditions that may have led to the emergence of habitable environments among the Jupiter’s icy satellites.

Sources: Dynamics of Cats, Planetary Society blog,

First Ever Geologic Map of Io: 425 Volcanoes, No Craters

A map of hotspots and mountians on Io, just one of the features of the first geologic map of Io. Credit: ASU

[/caption]

With billowing volcanoes, lava lakes and a sulfurous landscape, Jupiter’s moon Io is one of the most exotic and intriguing places in the Solar System. The geologic features of Io are now detailed in the first global geologic map ever made of this unusual and active planetary body. The map, published by the U. S. Geological Survey and created by scientists from the Planetary Science Institute and Arizona State University, shows the characteristics and relative ages of some of the most geologically unique and active volcanoes and lava flows ever documented in the Solar System.

Want to figure out where you’d like to go mountain climbing or conduct a little volcanology on Io?

“One of the reasons for making this map was to create a tool for continuing scientific studies of Io, and a tool for target planning of Io observations on future missions to the Jupiter system,” said David Williams, who led the six-year research project to produce the geologic map.

On this detailed map there are 19 different surface material types. You can see all sorts of volcanic features including: paterae (caldera-like depressions), lava flow fields, tholi (volcanic domes), and plume deposits, in various shapes, sizes and colors, as well as high mountains and large expanses of sulfur- and sulfur dioxide-rich plains. The mapping identified 425 paterae, or individual volcanic centers.

“Our mapping has determined that most of the active hot spots occur in paterae, which cover less than 3 percent of Io’s surface. Lava flow fields cover approximately 28 percent of the surface, but contain only 31 percent of hot spots,” said Williams. “Understanding the geographical distribution of these features and hot spots, as identified through this map, are enabling better models of Io’s interior processes to be developed.”

However, there is one feature you won’t see on the geologic map: impact craters.

“Io has no impact craters; it is the only object in the Solar System where we have not seen any impact craters, testifying to Io’s very active volcanic resurfacing,” says Williams.

Although Io is so volcanically active — more than 25 times more volcanically active than Earth — most of the long-term surface changes resulting from volcanism are restricted to less than 15 percent of the surface, mostly in the form of changes in lava flow fields or within paterae.

Interestingly, the new map comes from fairly old – but enhanced – data. It combines the best images from the Voyager 1 and 2 missions (acquired in 1979) as well as the Galileo orbiter (1995-2003), and is unique from other USGS-published planetary geologic maps because surface features were mapped and characterized from using four distinct global image mosaics.

“Because of the non-uniform coverage of Io by multiple Voyager and Galileo flybys, including a variety of lighting conditions, it was absolutely necessary to use the different mosaics to identify specific geologic features, such as separating mountains and paterae from plains, and separating the colored plume deposits from the underlying geologic units,” Williams said.

Though the geology history of Io has been studied in detail for several decades, completion of the geologic map establishes a critical framework for integrating and comparing diverse studies.

Because of Io’s active nature, this map may not be completely accurate to Io’s current appearance. “Because Io is so active, and continues to be studied by Earth-based telescopes, we are doing something different than producing just the paper geologic map,” says Williams. “We are also making an online Io database, to include the geologic map, the USGS mosaics, and all useful Galileo spacecraft observations of Io. This database, when completed later this year, will allow users to track the history of surface changes due to volcanic activity. We also have proposals submitted to NASA to include in our Io database Earth-based telescopic observations and images from the February 2007 NASA New Horizons spacecraft flyby, to create a single online source to study the history of Io volcanism.”

The geologic map can be downloaded from the USGS here.

Source: ASU

Weekly SkyWatcher’s Forecast – March 19-25, 2012

NGC 2539 - Credit: Palomar Observatory Courtesy of Caltech

[/caption]

Greetings, fellow SkyWatchers! The week starts off with new Moon and the perfect opportunity to do a Messier Marathon. The planets continue to dazzle as we not only celebrate the Vernal Equinox, but the March Geminid meteor shower as well! If that doesn’t get your pulsar racing – nothing will. It’s time to get out your binoculars and telescopes and meet me in the backyard!

Monday, March 19 – Right now the Moon is between the Earth and the Sun, and you know what that means…New Moon! Tonight we’ll start in northern Puppis and collect three more Herschel studies as we begin at Alpha Monoceros and drop about four fingerwidths southeast to 19 Puppis.

NGC 2539 (Right Ascension: 8 : 10.7 – Declination: -12 : 50) averages around 6th magnitude and is a great catch for binoculars as an elongated hazy patch with 19 Puppis on the south side. Telescopes will begin resolution on its 65 compressed members, as well as split 19 Puppis – a wide triple. Shift about 5 degrees southwest and you find NGC 2479 (Right Ascension: 7 : 55.1 – Declination: -17 : 43) directly between two finderscope stars. At magnitude 9.6 it is telescopic only and will show as a smallish area of faint stars at low power. Head another degree or so southeast and you’ll encounter NGC 2509 (Right Ascension: 8 : 00.7 – Declination: -19 : 04) – a fairly large collection of around 40 stars that can be spotted in binoculars and small telescopes.

Tuesday, March 20 – Today is Vernal Equinox, one of the two times of the year that day and night become equal in length. From this point forward, the days will become longer – and our astronomy nights shorter! To the ancients, this was a time a renewal and planting – led by the goddess Eostre. As legend has it, she saved a bird whose wings were frozen from the winter’s cold, turning it into a hare which could also lay eggs. What a way to usher in the northern spring!

With the Moon still out of the picture, let’s finish our study of the Herschel objects in Puppis. Only three remain, and we’ll begin by dropping south-southeast of Rho and center the finder on a small collection of stars to locate NGC 2489 (Right Ascension: 7 : 56.2 – Declination: -30 : 04). At magnitude 7, this bright collection is worthy of binoculars, but only the small patch of stars in the center is the cluster. Under aperture and magnification you’ll find it to be a loose collection of around two dozen stars formed in interesting chains.

The next are a north-south oriented pair around 4 degrees due east of NGC 2489. You’ll find the northernmost – NGC 2571 (Right Ascension: 8 : 18.9 – Declination: -29 : 44) – at the northeast corner of a small finderscope or binocular triangle of faint stars. At magnitude 7, it will show as a fairly bright hazy spot with a few stars beginning to resolve with around 30 mixed magnitude members revealed to aperture. Less than a degree south is NGC 2567 (Right Ascension: 8 : 18.6 – Declination: -30 : 38). At around a half magnitude less in brightness, this rich open cluster has around 50 members to offer the larger telescope, which are arranged in loops and chains.

Congratulations on completing these challenging objects!

Are you up for another challenge? Then test your ability to judge magnitude as Mars has now dimmed to approximately -1.0. Does it look slightly different in size and brightness than it did a week or so ago? Keep watching!

Wednesday, March 21 – Take your telescopes or binoculars out tonight to look just north of Xi Puppis for a celebration of starlight known as M93 (Right Ascension: 7 : 44.6 – Declination: -23 : 52). Discovered in March of 1781 by Charles Messier, this bright open cluster is a rich concentration of various magnitudes that will simply explode in sprays of stellar fireworks in the eyepiece of a large telescope. Spanning 18 light-years of space and residing more than 3400 light-years away, it contains not only blue giants, but lovely golds as well. Jewels in the night…

Thursday, March 22 – Today in 1799 Friedrich Argelander was born. He was a compiler of star catalogues, studied variable stars and created the first international astronomical organization.

Tonight let’s celebrate no Moon and have a look at an object from an alternative catalog that was written by Lacaille, and which is about two fingerwidths south of Eta Canis Majoris.

Also known as Collinder 140, Lacaille’s 1751 catalog II.2 “nebulous star cluster” is a real beauty for binoculars and very low power in telescopes. More than 50% larger than the Full Moon, it contains around 30 stars and may be as far as 1000 light-years away. When re-cataloged by Collinder in 1931, its age was determined to be around 22 million years. While Lacaille noted it as nebulous, he was using a 15mm aperture reflector, and it is doubtful that he was able to fully resolve this splendid object. For telescope users, be sure to look for easy double Dunlop 47 in the same field.

Now, kick back and enjoy a spring evening with two meteor showers. In the northern hemisphere, look for the Camelopardalids. They have no definite peak, and a screaming fall rate of only one per hour. While that’s not much, at least they are the slowest meteors – entering our atmosphere at speeds of only 7 kilometers per second!

Far more interesting to both hemispheres will be the March Geminids which peak tonight. They were first discovered and recorded in 1973 and then confirmed in 1975. With a much faster fall rate of about 40 per hour, these slower than normal meteors will be fun to watch! When you see a bright streak, trace it back to its point of origin. Did you see a Camelopardalid, or a March Geminid?

Friday, March 23 – Today in 1840, the first photograph of the Moon was taken. The daguerreotype was exposed by American astronomer and medical doctor J. W. Draper. Draper’s fascination with chemical responses to light also led him to another first – a photo of the Orion Nebula.

Our target for tonight is an object that’s better suited for southern declinations – NGC 2451 (Right Ascension: 7 : 45.4 – Declination: -37 : 58). As both a Caldwell object (Collinder 161) and a southern skies binocular challenge, this colorful 2.8 magnitude cluster was probably discovered by Hodierna. Consisting of about 40 stars, its age is believed to be around 36 million years. It is very close to us at a distance of only 850 light-years. Take the time to closely study this object – for it is believed that due to the thinness of the galactic disk in this region, we are seeing two clusters superimposed on each other.

With the Moon out of the picture early, why not get caught up in a galaxy cluster study – Abell 426. Located just 2 degrees east of Algol in Perseus, this group of 233 galaxies spread over a region of several degrees of sky is easy enough to find – but difficult to observe. Spotting Abell galaxies in Perseus can be tough in smaller instruments, but those with large aperture scopes will find it worthy of time and attention.

At magnitude 11.6, NGC 1275 (Right Ascension: 3 : 19.8 – Declination: +41 : 31) is the brightest of the group and lies physically near the core of the cluster. Glimpsed in scopes as small as 150 mm aperture, NGC 1275 is a strong radio source and an active site of rapid star formation. Images of the galaxy show a strange blend of a perfect spiral being shattered by mottled turbulence. For this reason NGC 1275 is thought to be two galaxies in collision. Depending on seeing conditions and aperture, galaxy cluster Abell 426 may reveal anywhere from 10 to 24 small galaxies as faint as magnitude 15. The core of the cluster is more than 200 million light-years away, so it’s an achievement to spot even a few!

Saturday, March 24 – Today is the birthday of Walter Baade. Born in 1893, Baade was the first to resolve the Andromeda galaxy’s individual stars using the Hooker telescope during World War II blackout times, and he also developed the concept of stellar populations. He was the first to realize that there were two types of Cepheid variables, thereby refining the cosmic distance scale. He is also well known for discovering an area towards our galactic center which is relatively free of dust, now known as “Baade’s Window.”

Just after sunset, you really need to take a look out your western window for a really beautiful bit of scenery. As the sky darkens, look for the very tender crescent Moon lit with “Earthshine”. Above it you will see bright Jupiter. Above that you will see blazing Venus. And, if that’s not enough, just a little higher will bring you to the Pleiades! What a great way to start a weekend evening!

With the Moon so near the horizon, we have only a short time to view its features. Tonight let’s start with a central feature – Langrenus – and continue further south for crater Vendelinus. Spanning 92 by 100 miles and dropping 14,700 feet below the lunar surface, Vendelinus displays a partially dark floor with a west wall crest catching the brilliant light of an early sunrise. Notice also that its northeast wall is broken by a younger crater – Lame. Head’s up! It’s an Astronomical League challenge.

Once the Moon has set, revisit M46 in Puppis – along with its mysterious planetary nebula NGC 2438. Follow up with a visit to neighboring open cluster M47 – two degrees west-northwest. M47 may actually seem quite familiar to you already. Did you possibly encounter it when originally looking for M46? If so, then it’s also possible that you met up with 6.7 magnitude open cluster NGC 2423 (Right Ascension: 7 : 37.1 – Declination: -13 : 52), about a degree northeast of M47 and even dimmer 7.9 magnitude NGC 2414 (Right Ascension: 7 : 33.3 – Declination: -15 : 27 ) as well. That’s four open clusters and a planetary nebula all within four square arc-minutes of sky. That makes this a cluster of clusters!

Let’s return to study M47. Observers with binoculars or using a finderscope will notice how much brighter, and fewer, the stars of M47 are when compared to M46. This 12 light-year diameter compact cluster is only 1600 light-years away. Even as close as it is, not more than 50 member stars have been identified. M47 has about one tenth the stellar population of larger, denser, and three times more distant, M46.

Of historical interest, M47 was “discovered” three times: first by Giovanni Batista Hodierna in the mid-17th century, then by Charles Messier some 17 years later, and finally by William Herschel 14 years after that. How is it possible that such a bright and well-placed cluster needed “re-discovery?” Hodierna’s book of observations didn’t surface until 1984, and Messier gave the cluster’s declination the wrong sign, making its identification an enigma to later observers – because no such cluster could be found where Messier said it was!

Sunday, March 25 – Today in 1655, Titan – Saturn’s largest satellite – was discovered by Christian Huygens. He also discovered Saturn’s ring system during this same year. 350 years later, the probe named for Huygens stunned the world as it reached Titan and sent back information on this distant world. How about if we visit Saturn? You’ll find the creamy yellow planet located about a fistwidth northwest of bright, white Spica! Even a small telescope will reveal Titan, but remember… it orbits well outside the ring plane, so don’t mistake it for a background star! While you’re there, look closely around the ring edges for the smaller moons. A 4.5” telescope can easily show you three of them. How about the shadow the rings on the planet’s surface? Or how about the shadow of the planet on the rings? Is the Cassini division visible? If you have a larger telescope, look for other ring divisions as well. All are part and parcel of viewing incredible Saturn!

If you missed yesterday evening’s scenic line-up, don’t despair. Just after the Sun sets tonight – and above the western horizon – you’ll find the young Moon very closely paired with Jupiter. Keep traveling eastward (up) and you’ll encounter Venus. Continue east and the next stop is M45. Watch in the days ahead as the Moon sweeps by, continuing to provide us with a show! Need more? Then check out Leo and Mars! You’ll find a great triangulation of Regulus to the west, Mars to the east and Algieba to the north. If you didn’t know better, you’d almost swear the Lion swallowed the red planet.

Tonight let’s return to our previous studies of the Moon and revisit a challenging crater. Further south than Vendelinus, look for another large, mountain-walled plain named Furnerius, located not too far from the terminator. Although it has no central peak, its walls have been broken numerous times by many smaller impacts. Look at a rather large one just north of central on the crater floor. If skies are stable, power up and search for a rima extending from the northern edge. Keep in mind as you observe that our own Earth has been pummeled just as badly as its satellite.

On this day in 1951, 21 cm wavelength radiation from atomic hydrogen in the Milky Way was first detected. 1420 MHz H I studies continue to form the basis of a major part of modern radio astronomy. If you would like to have a look at a source of radio waves known as a pulsar, then aim your binoculars slightly more than a fistwidth east of bright Procyon. The first two bright stars you encounter will belong to the constellation of Hydrus and you will find pulsar CP0 834 just above the northernmost – Delta.

Unitl next week? May all your journeys be at light speed!

Astrophoto: Conjunction Symmetry by Rick Ellis

Multiple images of the Venus-Jupiter conjuction on Mar. 13, 2012 from Toronto, Canada. Credit: Rick Ellis.

[/caption]

It’s poetry in motion! Rick Ellis from Toronto, Canada created this 27 frame-composite of the conjunction between Venus and Jupiter on March 13, 2012, with 6 second exposures five minutes apart. Rick used a Canon A460, ISO 80.

Beautiful!

Check out Rick’s website for more poetry — seriously — and more images.

See our previous gallery of Venus-Jupiter conjunction images from around the world.

Want to get your astrophoto featured on Universe Today? Join our Flickr group, post in our Forum or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Jupiter’s Jet Streams Get Thrown Off Course

Jupiter's jet streams. Image credit: NASA/JPL/SSI
Jupiter's jet streams. Image credit: NASA/JPL/SSI

[/caption]

Both Earth and Jupiter have jet streams; fast-moving winds that circle the globe. On Jupiter, those jet streams are constrained to very specific bands of the planet, while they meander around the Earth. We can see huge variations of weather when Earth’s jet streams move around – like unusually cold weather in Florida.

These strange weather patterns can occur on Earth when the jet streams interact with another atmospheric phenomenon called Rossby waves. We have them here on Earth, and they were first identified on Jupiter about 20 years ago.

And now scientists have identified the signature of Rossby waves throwing the jet streams off course on Jupiter. During its flyby of Jupiter, NASA’s Cassini spacecraft captured these images of Jupiter’s atmosphere; 100 were stitched together into a time-lapse movie.

If you watch the movie, you’ll be able to see a series of small, dark, V-shaped “chevrons” forming along the side of the jet stream. Eventually the well-defined atmospheric band starts to ripple and distort because of these Rossby waves. This shows that the jet streams on Jupiter, like Earth, can be thrown off course by the Rossby waves.

Here’s a quote from the press release:

“A planet’s atmosphere is a lot like the string of an instrument,” says co-author Michael D. Allison of the NASA Goddard Institute for Space Studies in New York. “If you pluck the string, it can resonate at different frequencies, which we hear as different notes. In the same way, an atmosphere can resonate with different modes, which is why we find different kinds of waves.”

By studying these waves, scientists hope to be able to get an idea of what lies beneath Jupiter’s thick cloud layers; to understand the deeper atmospheric composition and structure.

Original source: NASA/JPL/SSI News Release

Weekly SkyWatcher’s Forecast – March 12-18, 2012

Venus & Jupiter above Backyard Observatory - Credit: John Chumack

[/caption]

Greetings, fellow SkyWatchers! What an awesome display of planets! Please take the time to walk outdoors just after skydark – regardless of where you live – and enjoy the bright display of Venus and Jupiter! However, this isn’t the only planetary action going on this week… Mars and M96 pair up, as well as Uranus and the Moon. There’s even a Southern Hemisphere meteor shower to enjoy! Pretty exciting, huh? Join the party by getting out your binoculars or telescopes and meet me for more in the backyard…

Monday, March 12 – No. That’s not the “headlights” of a UFO on the western horizon tonight… It’s a very cool pairing of Venus and Jupiter! It’s not often you see the two visually brightest planets making a close visual pass at each other and tonight you’ll spot the inner planet to the south and the outer planet to the north. This would make a great photo opportunity! Why not consider adding something interesting to your picture like a scenic building, tree, or even a person? Watch in the days ahead as Jupiter appears to stay in the same spot at the same time, yet Venus will climb higher.

Tonight let’s return again to NGC 2362 and start at the cluster’s north-northeast corner to have a look at a single, unusual star – UW Canis Majoris. At magnitude 4.9, this super-giant spectroscopic binary is one of the most massive and luminous in our galaxy. Its two stars are separated by only 27 million kilometers (17 million miles) and revolve around each other at a frenzied pace – in less than four and a half days. This speed means the stars themselves are flattened and would appear to be almost egg-shaped. The primary itself is shedding material that’s being collected by the secondary star.

Now drop southwest of NGC 2362 for another open cluster – NGC 2354 (Right Ascension: 7 : 14.3 – Declination: -25 : 44). While at best this will appear as a small, hazy patch to binoculars, NGC 2354 is actually a rich galactic cluster containing around 60 metal-poor members. As aperture and magnification increase, the cluster shows two delightful circle-like structures of stars, similar to a figure 8. Be sure to make a note… You’ve captured another Herschel 400 object!

Tuesday, March 13 – On this day in 1781, Uranus was discovered by William Herschel. Also on this day, in 1855, Percival Lowell was born in Boston. Educated at Harvard, Lowell went on to found the observatory which bears his name in Flagstaff, Arizona, and spent a lifetime studying Mars. During the early morning hours, you can honor Lowell by seeing Mars yourself – it’s best viewed when as high a possible on the ecliptic. While there won’t be a great many details, think of how many strides have been made since Lowell’s time and how advanced our knowledge of Mars has become!

Tonight let’s hop about four fingerwidths east-northeast of Sirius. Look for 5th magnitude SAO 152641 to guide you to a faint patch of stars in binoculars and a superb cluster in a telescope – NGC 2360 (Right Ascension: 7 : 17.8 – Declination: -15 : 37). Comprised of around eighty 10th magnitude and fainter stars, this particular cluster will look like a handful of diamond dust scattered on the sky. Discovered by Caroline Herschel in 1783, this intermediate-aged galactic cluster is home to red giants and heavy in metal abundance. Mark your notes, because not only is this a Herschel object, but is known as Caldwell 58 as well!

Wednesday, March 14 – Today is the birthday of Albert Einstein. Born in 1879, Einstein was one of the finest minds of our times. He developed the theory of gravity in terms of spacetime curvature – dependent on the energy density. Winner of the 1921 Physics Nobel prize, Einstein’s work on the photoelectric effect is the basis of modern light detectors.

Tonight let’s hop about a fistwidth north of bright Eta Canis Majoris and have a look at a “double cluster” – NGC 2383 (Right Ascension: 7 : 24.8 – Declination: -20 : 56) and NGC 2384 (Right Ascension: 7 : 25.1 – Declination: -21 : 02). Just showing in binoculars as a faint patch, this pair will begin resolution with larger scopes. Studied photometrically, it would appear these fairly young clusters have contaminated each other by sharing stars – which has also occurred in some clusters located in the Magellanic Clouds. Enjoy this unusual collection of stars…

Thursday, March 15 – Today celebrates the birth of Nicolas Lacaille. Born in 1713, Lacaille’s measurements confirmed the Earth’s equatorial bulge. He also named fourteen southern constellations. To honor Lacaille tonight, let’s begin some explorations in a constellation he named – Puppis!

For SkyWatchers living in high northern latitudes, you’ll never see all of this constellation, but there will be some things for you to explore, as well as a great deal for our friends in the southern hemisphere. The first is a Herschel object that lies directly on the galactic equator around five degrees north-northwest of Xi.

NGC 2421 (Right Ascension: 7 :36.3 – Declination: -20 : 37) is a magnitude 8.3 open cluster that will look like an exquisitely tiny “Brocchi’s Cluster” in binoculars and begin good resolution of its 50 or so members to an intermediate telescope, in an arrowhead-shaped pattern. It’s bright, it’s fairly easy to find, and it’s a great open cluster to add to your challenge study lists!

If you’re looking for a curiosity, then look no further than Leo and Mars. Tonight the happy red planet is situated just to the east of Messier 96 (Right Ascension: 10 : 46.8 – Declination: +11 : 49)! Enjoy celestial mechanics over the next few nights as Mars gently changes its position in relation with this distant galaxy… and gets much closer!

Friday, March 16 – On this day in 1926, Robert Goddard launched the first liquid-fuel rocket. But he was first noticed in 1907 when a cloud of smoke issued from a powder rocket fired in the basement of the physics building in Worcester Polytechnic Institute. Needless to say, the school took an interest in the work of this shy student. Thankfully they did not expel him, and thus began his lifetime of work in rocket science. Goddard was also the first to realize the full implications of rocketry for missiles and space flight, and his lifetime of work was dedicated to bringing this vision to realization. While most of what he did went unrecognized for many years, tonight we celebrate the name of Robert H. Goddard. This first flight may have gone only 12 meters, but forty years later on the date of his birth, Gemini 8 was launched, carrying Neil Armstrong and David Scott into orbit!

Let’s begin our observing evening with Mars. While you may have been keeping track of its position, did you know that it’s less than a degree away from a Messier object tonight? That’s right! You’ll find the dusty red planet just to the north of M96 (Right Ascension: 10 : 46.8 – Declination: +11 : 49).

Tonight we’ll pick up a challenge cluster and a planetary nebula on the Herschel list by returning to NGC 2421 and hopping about a fingerwidth northeast for NGC 2432 (Right Ascension: 7 : 40.9 – Declination: -19 : 05). This small, loose open cluster is rather dim and contains around 20 or so faint members shaped like the letter B. About another degree northeast is NGC 2440 – an elongated, small 11th magnitude planetary nebula. Look for its central star to cause a brightening and up the magnifying power to reveal it.

While out, be on watch for the Corona-Australids meteor shower. While the fall rate is low – 5 to 7 per hour – our friends in the southern hemisphere might stand a chance with this one!

Saturday, March 17 – On this day in 1958, the first solar-powered spacecraft was launched. Named Vanguard 1, it was an engineering test satellite. From its orbital position, the data taken from its transmission helped to redefine the true shape of the Earth.

Tonight let’s return to Xi Puppis and head less than a fingerwidth east-northeast for Herschel study NGC 2482 (Right Ascension: 7 : 54.9 – Declination: -24 : 18). At magnitude 7, this small fuzzy spot in binoculars will resolve into around two dozen stars to the telescope. Look for the diagonal chain of stars along its edge.

Now let’s have a look at an open cluster easily located in northeastern Orion. This 5.9 magnitude scattered group of stars may have been first observed by Giovanni Batista Hodierna in the mid-17th century. While bright enough to have been a Messier object, William Herschel added it to his log of discoveries on October 15, 1784, as H VIII.24. Of the 30 known stars associated with this 3,600 light-year distant group, the brightest is 50 million years old. A half-dozen of the cluster’s very brightest members can be seen in small scopes at mid-range powers. Look for NGC 2169 (Right Ascension: 6 : 08.4 – Declination: +13 : 57) slightly less than a fist width north-northeast of Betelguese and slightly south of Xi and Nu Orionis.

Sunday, March 18 – Although you can’t see it with just your eyes, Uranus is less than a degree from the Moon this morning. For some areas this could be an occultation, so be sure to check IOTA information!

Today in 1965, the first ever spacewalk was performed by Alexei Leonov onboard the Soviet Voskhod spacecraft. The “walk” only lasted around 20 minutes and Alexei had problems in re-entering the spacecraft because his space suit had enlarged slightly. Imagine his fear as he had to let air leak out of his space suit in order to squeeze back inside. When they landed off target in the heavily forested Ural Mountains, the crew of two had to spend the night in the woods surrounded by wolves. It took over twenty-four hours before they were located and workers had to chop their way through the forest and recover them on skis. Brave men!

Tonight let’s honor them by studying a small area which contains not only three Herschel objects – but two Messiers as well – M46 and M47. You’ll find them less than a handspan east of Sirius and about a fistwidth north of Xi Puppis.

The brighter of the two clusters is M47 (Right Ascension: 7 : 36.6 – Declination: -14 : 30) and at 1600 light-years away, it’s a glorious object for binoculars. It is filled with mixed magnitude stars that resolve fully to aperture with the double Struve 1211 near its center. While M47 is in itself a Herschel object, look just slightly north (about a field of view) to pick up another cluster which borders it. At magnitude 6.7, NGC 2423 isn’t as grand, but it contains more than two dozen fairly compressed faint stars with a lovely golden binary at its center.

Now return to M47 and hop east to locate M46 (Right Ascension: 7 : 41.8 – Declination: -14 : 49). While this star cluster will appear to be fainter and more compressed in binoculars, you’ll notice one star seems brighter than the rest. Using a telescope, you’ll soon discover the reason. 300 million year old M47 contains a Herschel planetary nebula known as NGC 2438 in its northern portion. The cluster contains around 150 resolvable stars and may involve as many as 500. The bright planetary nebula was first noted by Sir William Herschel and then again by John. While it would appear to be a member of the cluster, the planetary nebula is just a little closer to us than the cluster. Be sure to mark your notes… There’s a lot there in just a little area!

Until next week? May all of your journeys be at light speed!

Many thanks to John Chumack for the inspiring image!

Night Sky Guide: March 2012

Special thanks to Ninian Boyle astronomyknowhow.com for information in parts of this guide.

March brings us some wonderful sights to see in the night skies for those who are armed with binoculars, telescopes or just their eyes.

The brightest object in the night sky this month (apart from the Moon) is the Planet Venus. Venus and mighty Jupiter have already been providing a treat n the western skies for naked eye observers, but by the middle of the month the two planets will inch even closer. There are other planetary conjunctions this month as well.

The stars of spring are starting to become more prominent and the mighty constellation of Orion sets earlier in the west as the nights roll on. The constellations of Leo, Coma Berenices and Virgo herald the region of the sky known as the “Realm of the Galaxies” more so as the month moves on.

We have Comet Garradd visible all night long through binoculars, as it starts to fade from 7th to 8th magnitude. You can find it near the north celestial North pole near the star Kochab or Beta Ursa Minoris (The little Bear) on the 6th, and the star Dubhe in the Plough on the 21st. Scan this region with binoculars and you should pick it up as a faint misty patch of light.

The Sun continues to become more active as it approaches “Solar Maximum” in 2013 and this is a time when we need to be on our guard for sudden bursts of activity which can result in aurora for observers in high latitudes. Some large geomagnetic storms in the past have resulted in Aurora being spotted as far south as regions near the Caribbean and Mediterranean. Will we get a show like this soon?

Planets

There are going to be some excellent conjunctions this month, as planets and even sometimes the Moon are close together and appear in the same region of the sky.

Mercury. Keep an eye out for the tiny planet Mercury. This planet (closest one to the Sun) is notoriously difficult to see. The best time to try and catch it is on the 4th, low down near the western horizon shortly after sunset. Make sure the Sun has fully set if you plan to sweep the area with binoculars. Never ever look at the sun directly with binoculars, telescopes or your naked eyes – This will damage your eyes or permanently blind you!

Mercury just after sunset - Beginning of March

Mars reaches what we call ‘opposition’ on the 3rd, when it is directly opposite the Sun in the sky from our point of view here on Earth. This is the best time to view the “Red Planet” with a telescope. Try and see if you can spot its ice caps and dark markings. It will need a clear steady sky and a good magnification to see these well, try different coloured filters and even have a go at webcam imaging this amazing Planet. On the 7th the nearly full Moon lies 10-degrees to the south of the planet Mars. You’ll know its Mars by its distinct orange/pink colour.

Mars

Venus & Jupiter bring us the highlight of the month when they appear to be very close to each other and are just separated by 3 degrees on the 15th of March. The brightest out of the pair will be Venus with Jupiter below it and the pair will be an amazing sight – like a pair of heavenly eyes staring down at us. The two planets will be close to each other either side of the 15th, so there should be plenty of picture-taking opportunities. The Moon joins the Venus and Jupiter on the 25th and 26th and the thin crescent Moon will make the show even more stunning.

Venus Jupiter 15 March

Saturn rises later in the evenings in the constellation of Virgo, the rings are now nicely tilted towards us and the planet looks stunning right throughout the month. If you have never seen Saturn through a telescope before, you must see it! It is the most beautiful of all the planets and one of the reasons so many people get interested in astronomy.

Saturn

Moon phases

  • First Quarter – 1st March
  • Full Moon – 8th March
  • Last Quarter – 15th March
  • New Moon – 22nd March

Constellations

In March Orion is getting lower in the West and setting earlier as the spring constellations of Leo, Coma Berenices and Virgo come into view; this is the “Realm of the Galaxies.”

In the month of March the Earth’s orbit around the Sun means that during the night we see out from our own galaxy the ‘Milky Way’ into the depths of deep space. Because of this, we can see many other galaxies and some similar to our own, each contains hundreds of billions of stars. You will need a good telescope to see these amazing wonders; however a good pair of binoculars will show one or two faint fuzzy patches. Some of these faint fuzzy objects are many millions of light years distant.

A few brighter examples lay in the constellation of Leo the Lion. Have a look for M 95, M96 and M105; these are not far from Mars during March. You will need a dark Moonless night to see them well.

Another trio of galaxies still in the constellation of Leo are M65, M66 and NGC 3628 otherwise known as the ‘Leo Triplet’ A small telescope and a low to medium power should show these objects in the same field of view.

The region of sky within Leo, Coma and Virgo is packed with galaxies and whatever telescope you use, you will be sure to spot something.

For those of you without a telescope, see if you can discern the asterism of the ‘Bowl of Virgo’. This is a chain of five stars in a loose semi-circle pointing towards the ‘tail’ of Leo. The brightest star in the chain is Porrima. South of Porrima lays the brightest star in the constellation, called Spica. Saturn can be found to the east of this.

Credit: Adrian West