Q&A with Brian Cox, part 2: Space Exploration and Hopes for the Future

Brian Cox. Photo by Vincent Connare

[/caption]

Professor Brian Cox is the Chair in Particle Physics at the University of Manchester, and works on the ATLAS experiment (A Toroidal LHC ApparatuS) at the Large Hadron Collider at CERN. But he’s also active in the popularization of science, specifically with his new television series and companion book, Wonders of the Universe. Universe Today had the chance to talk with Cox, and yesterday he told us about the recent advances in particle physics. Today we ask him about his favorite space missions and his hopes for the future of science.

For a chance to win a copy of the “Wonders of the Universe” book, see our contest post.

Universe Today: The Juno mission just launched to Jupiter and there are lots of other space missions going on. What are some your favorites and your hopes of what those kinds of missions will discover?

Brian Cox: The enormous question for space exploration is origin of life on other worlds. That is currently THE big question. We’ve seen discoveries recently about possible, plausible evidence of flowing water on Mars. There’s been evidence for awhile that there is perhaps subsurface water, but seeing what looks to be the signature of flowing, briny water — today — is very suggestive. On Earth, where we have water we have life, so this new finding makes Mars even more fascinating. The ExoMars project, the joint European-American mission to Mars to look for life is going to be one of most exciting missions yet, because there’s a good chance of finding it.

The ExoMars/Trace Gas Orbiter mission is a joint mission being developed by the European Space Agency (ESA) and NASA/JPL. This mission would be the first in a series of joint missions to Mars for ESA and NASA. Credit: NASA

Now we’re heading off to Jupiter, and Europa is actually a fascinating place for the same reason. There is a huge amount subsurface water on Europa, and there has been speculation that colored markings on the surface of Europa could be life. It looks as though there may be seasonal shifts, and that could be possible cyanobacteria in the ice. This is really speculative, but this is the kind of language people are using now, talking about finding life with real optimism.

Beyond the solar system, the search for exoplanets is going very, very well. Virtually every star we survey we find planets! Well, that might be a bit of an exaggeration, but we’ve found hundreds and hundreds of planets. We’ve begun to see Earth-like planets and so the next step is to do spectroscopy to look at light passing through the atmospheres of those planets and look for signatures of elements like oxygen. Again, if you find oxygen-rich atmospheres — which we are on the verge of looking for now — if you find that, then you’ve got pretty good evidence there is life on those planets.

So, it could be we find life on a distant planet before we find life in the solar system, which would be tremendous. But really, I do think the big discoveries will be all about life, certainly in solar system exploration.

UT : What are your hopes for the future regarding physics, technology and space?

Particle Collider
Large Hadron Collider (CERN/LHC/GridPP)

COX: I’d like to see an increase in rational thinking, which is synonymous with
scientific thinking.

Scientifically, the Large Hadron Collider is going to make a huge difference. It really is going to revolutionize our fundamental understanding of the way the universe works. Then there are these huge questions in fundamental physics, the question of why gravity is so weak, why the universe began in such an ordered way.

Then, what is 96% of the Universe made of? We know our Universe is full of something called Dark Matter and we don’t know what it is. The Universe is accelerating in its expansion, which we call Dark Energy and we don’t know what that is either. There is something fundamental going on.

I’d like to think this period of time is like the period of 1890 onwards to the turn of the 20th century. There were some small problems with things like understanding the spectrum of light, what atoms were; little problems really. But when we finally understood, it revolutionized our understanding of the Universe. Shortly after the turn of the century we got quantum theory, relativity – a complete change in our understanding. I’d like to think that maybe it’s a bit like that at the moment. There are so many little — and big — chinks in the armor of our picture of the Universe at the fundamental level. I think within the next few years, there will be big shifts, and probably, they will be led by the data from the LHC.

Tomorrow: Wonders

Find out more about Brian Cox at his website, Apollo’s Children

In Their Own Words: Experts Talk Juno

Several scientists and experts discussed the Juno mission to Jupiter with Universe Today. Photo Credit: Alan Walters/awaltersphoto.com

CAPE CANAVERAL Fla. – Many experts took time out of their hectic schedules to talk with Universe Today in the day leading up to the launch of the Juno spacecraft. Some even took the time to talk to us just minutes before the probe was scheduled to be launched on its mission. Check out what they had to say below:

Juno Project Scientist Steve Levin was at Kennedy Space Center to watch the Juno probe begin its five-year journey to Jupiter. He took a few minutes of his time to talk about what his expectations are for this mission.

Levin has been with JPL since 1990, one of the previous projects he worked on is the Planck mission which launched in 2009.

Levin believes that Juno could fundamentally change the way we view Jupiter. He was one of many VIPs that descended on Kennedy Space Center to watch as Juno thundered to orbit atop at Atlas V rocket.

Sami Asmar is part of the science team that is working on the Juno project. He was at the rollout of the Atlas rocket to the pad. Here is what he had to say about the mission (note the Atlas rocket moving out behind him).

Bill Nye the Science Guy was a very busy man while at Kennedy Space Center. He still took the time to chat with Universe Today about his views on this mission. Unfortunately, with little time to spare, we had to conduct the interview within minutes of the first launch attempt. A good chunk of Nye’s interview – was drowned out by the lead up to the countdown!

The usual launch of an Atlas consists of the launch team coming in, pushing a button and going home – the launch vehicle is that reliable. This day, things occurred quite differently. A technical issue coupled with a wayward boat that had drifted too close to the launch pad saw the launch time slip from 11:34 a.m. EDT to 12:25 p.m. When the rocket did take off however it was a spectacular sight to behold, faster than other iterations of the Atlas, it roared off the pad, sending Juno on its way to Jupiter.

Juno Spacecraft Honors Those Who Started It All

Juno begins its five-year journey to the planet Jupiter. On board are several artifacts meant to honor the history of the gas giant. Photo Credit: Alan Walters/awaltersphoto.com

[/caption]
The Juno spacecraft, now safely on its way to the planet Jupiter, is carrying along with it several artifacts in honor of its voyage. Onboard the probe are three, tiny figurines of key players in the mythological and historical background of the gas giant. LEGO figurines of the Roman god Jupiter, his wife Juno and Italian astronomer Galileo Galilei have had their 1.5-inch likenesses added to the voyage.

In Roman mythology Jupiter had cast a veil of clouds over himself to hide his activities. Undeterred, his wife, Juno, peered through the clouds to see Jupiter’s true nature. Hence, her representation onboard the Juno spacecraft – is holding a spyglass. The last member of this odd ‘crew’ is Galileo, the man who made a number of important discoveries regarding the Jovian system.

From left-to-right: The Roman god Jupiter, his wife Juno (with spyglass to check up on Jupiter's activities) and the famous Italian astronomer Galileo Galilei. Photo Credit: NASA

The inclusion of these three figures is part of a joint effort between NASA and the LEGO group to spark interest in Science, Technology, Engineering and Math or STEM in children. NASA went one step further in acknowledging the accomplishments of the man that made so many discoveries about this massive world. It has included a plaque in honor or Galileo.

During his life, Galileo contributed greatly to mankind’s understanding of the solar system. He discovered in 1610 what have since been dubbed the “Galilean moons” – Io, Europa, Ganymede and Callisto.

This plaque is affixed to the Juno probe bound for Jupiter. It shows an illustration of Galileo as well as an inscription he made regarding the gas giant. Photo Credit: NASA

The plaque was donated by the Italian Space Agency and it measures 2.8 by 2 inches (71 by 51 millimeters). The plaque is manufactured from flight grade aluminum and weighs six grams or about 0.2 ounces. The plaque includes an illustration of the famous astronomer along with an inscription – in his own hand – a passage he made in 1610 concerning his observations of Jupiter. The inscription reads:

“On the 11th it was in this formation — and the star closest to Jupiter was half the size than the other and very close to the other so that during the previous nights all of the three observed stars looked of the same dimension and among them equally afar; so that it is evident that around Jupiter there are three moving stars invisible till this time to everyone.”

Juno thunders to orbit, with three very odd crew members on board. Photo Credit: Jason Rhian

Juno successfully lifted off from Cape Canaveral Air Force Station’s Space Launch Complex 41 at 12:25 p.m. EDT on Friday, August 5. It will take the probe about five years to reach Jupiter. Once there it will enter in a polar orbit around the world where it will use its suite of instruments to peer beneath the veil of Jupiter’s clouds to study the planet’s gravity, magnetosphere and whether-or-not the planet has a rocky core.

NASA’s Jet Propulsion Laboratory (JPL) manages the Juno mission for the principal investigator, Scott Bolton, from the Southwest Research Institute in San Antonio. The Juno mission is part of the New Frontiers Program managed at NASA’s Marshall Space Flight Center in Huntsville, Ala. Lockheed Martin Space Systems, Denver, built the Juno spacecraft.

It will take the Juno spacecraft five years to reach Jupiter. Each one of its massive solar arrays is about the size of a tractor-trailer. Image Credit: NASA

Rockin’ With the Juno Launch

Here’s a fantastic look at launch day for the Juno spacecraft, now on its way to Jupiter. It’s hard not to get pumped up for the mission after watching the Atlas V rocket blast into space, sending Juno on its journey. This video is courtesy the United Launch Alliance (ULA). Universe Today will have more original videos from launch day soon from our team of photographers and videographers who were on hand at Kennedy Space Center.

Juno Blasts off on Science Trek to Discover Jupiter’s Genesis

JUNO blasts off for Jupiter on Aug. 5 from Cape Canaveral Air Force Station at 12:25 p.m. EDT. Credit: Alan Walters (awaltersphoto.com)

[/caption]

NASA’s solar powered Juno spacecraft blasted off today (Aug.5)from Cape Canaveral today to begin a 2.8 billion kilometer science trek to discover the genesis of Jupiter hidden deep inside the planet’s interior.

Upon arrival at Jupiter in July 2016, JUNO will fire its braking rockets and go into polar orbit and circle the planet 33 times over about one year. The goal is to find out more about the planets origins, interior structure and atmosphere, observe the aurora, map the intense magnetic field and investigate the existence of a solid planetary core.

The spacecraft is healthy and the solar panels successfully deployed.

Check out the photo album of Juno’s launch from the Universe Today team of Alan Walters and Ken Kremer.

“Jupiter is the Rosetta Stone of our solar system,” said Scott Bolton, Juno’s principal investigator from the Southwest Research Institute in San Antonio. “It is by far the oldest planet, contains more material than all the other planets, asteroids and comets combined and carries deep inside it the story of not only the solar system but of us. Juno is going there as our emissary — to interpret what Jupiter has to say.”

Juno was launched atop a powerful Atlas V rocket augmented by 5 solid rocket boosters – built by United Launch Alliance

JUNO blasts off for Jupiter on Aug. 5. Credit: Alan Walters (awaltersphoto.com)

“Today, with the launch of the Juno spacecraft, NASA began a journey to yet another new frontier,” NASA Administrator Charles Bolden said. “The future of exploration includes cutting-edge science like this to help us better understand our solar system and an ever-increasing array of challenging destinations.”

Juno Launch - View from the VAB Roof
Atlas V liftoff with JUNO to Jupiter on Aug. 5 from Cape Canaveral Air Force Station. Credit: Ken Kremer
Juno Launch - View from the VAB Roof
Atlas V liftoff with JUNO to Jupiter on Aug. 5 from Cape Canaveral Air Force Station. Credit: Ken Kremer (kenkremer.com)
Juno Launch - View from the VAB Roof
JUNO blasts off for Jupiter on Aug. 5 atop an Atlas V rocket from Cape Canaveral Air Force Station at 12:25 p.m. EDT.

Credit: Ken Kremer (kenkremer.com)

Send Ken your Juno launch photos to post at Universe Today

Read my continuing features about Juno
Juno Jupiter Orbiter poised at Launch Pad for Aug. 5 Blastoff
JUNO Orbiter Mated to Mightiest Atlas rocket for Aug. 5 Blastoff to Jupiter
Solar Powered Jupiter bound JUNO lands at Kennedy Space Center

Juno Jupiter Orbiter poised at Launch Pad for Aug. 5 Blastoff

Atlas V and Juno spacecraft sit poised at Launch Pad 41 after roll out to the launch pad on Aug 4 ahead of Aug. 5 blastoff set for 11:24 a.m.. Credit: Ken Kremer

[/caption]

The Atlas V rocket that will power NASA’s new Juno science probe to Jupiter was rolled out to the launch pad at Space Launch Complex 41 and now sits poised for blastoff on Friday, Aug. 5 at 15:34 UT (11:34 a.m. EDT) from Cape Canaveral Air Force Station in Florida.

The Atlas V booster rocket was pushed out of its protective hanger, known as the Vertical Integration Facility, and towards Pad 41 this morning starting at 8:01 a.m. and took about 40 minutes to reach its destination.

Weather forecasters continues to call for a 70 percent chance of favorable conditions at launch time, but the approach of Tropical Storm Emily could throw a wrench in NASA’s plans depending on the track following by the storm over the remaining prelaunch period.

According to continuing weather updates, Emily is dissipating.

Juno Jupiter Orbiter encapsulated inside Payload Fairing atop Atlas V Rocket at Pad 41. NASA’s Juno science spacecraft sits inside the 5 meter diameter payload fairing which is bolted on top of an Atlas V rocket. Credit: Ken Kremer (kenkremer.com)

Managers approved Juno for flight at this morning’s Launch Readiness Review. The 4 ton Juno spacecraft will embark on a five year trek to Jupiter, our solar system’s largest planet and seek to understand the ingredients necessary for planetary formations.

Juno is perched inside a 5 meter diameter payload fairing and mated to the most powerful version of the Atlas V rocket – an Atlas 551 – with 2.4 million pounds of liftoff thrust. The 20 story tall Atlas 551 uses a standard Atlas booster with five solid rocket boosters in the first stage and a single engine Centaur in the second stage.

The launch window extends for 69 minutes.

The Atlas V is built by United Launch Alliance (ULA).

Juno will orbit Jupiter 33 times and search for the existence of a solid planetary core, map Jupiter’s intense magnetic field, measure the amount of water and ammonia in the deep atmosphere, and observe the planet’s auroras. Each orbit lasts 11 days

The spacecraft will provide the first detailed glimpse of Jupiter’s poles via a specially designed camera. The elliptical orbit will allow Juno to avoid most of Jupiter’s harsh radiation regions that can severely damage the spacecraft systems.

See my photo album from the launch pad published here.

Atlas and Juno at Space Launch Complex 41 at Cape Canaveral Air Force Station, Florida. Juno is slated for an Aug. 5 blastoff to Jupiter. 465,000 gallon Liquid Oxygen tank at right. Credit: Ken Kremer
A bank of remote cameras set up to record the blastoff of Juno spacecraft. Credit: Ken Kremer
Atlas V, Juno and the Flame Trench at Space Launch Complex 41 at Cape Canaveral Air Force Station, Florida. Credit: Ken Kremer
Atlas and Juno begin wheeling out from the Vertical Integration Facilty (VIF) to launch pad at Space Launch Complex 41 at Cape Canaveral Air Force Station, Florida. Credit: Ken Kremer (kenkremer.com)

Read my continuing features about Juno
JUNO Orbiter Mated to Mightiest Atlas rocket for Aug. 5 Blastoff to Jupiter
Solar Powered Jupiter bound JUNO lands at Kennedy Space Center for blastoff

JUNO Orbiter Mated to Mightiest Atlas rocket for Aug. 5 Blastoff to Jupiter

Hoisting Juno at Launch Pad 41 to bolt atop most powerful Atlas Rocket. At Space Launch Complex 41, a crane is lowered over the nose of the Atlas payload fairing enclosing the Juno spacecraft in preparation for its lift to the top of the Atlas rocket stacked in the Vertical Integration Facility. Juno is scheduled to launch Aug. 5 aboard the most powerful ever United Launch Alliance Atlas V rocket from Cape Canaveral Air Force Station in Florida. The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. Credit: NASA/Cory Huston

[/caption]

In less than one week’s time, NASA’s $1.1 Billion Juno probe will blast off on the most powerful Atlas V rocket ever built and embark on a five year cruise to Jupiter where it will seek to elucidate the mysteries of the birth and evolution of our solar system’s largest planet and how that knowledge applies to the remaining planets.

The stage was set for Juno’s liftoff on August 5 at 11:34 a.m. after the solar-powered spacecraft was mated atop the Atlas V rocket at Space Launch Complex 41 at Cape Canaveral and firmly bolted in place at 10:42 a.m. EDT on July 27.

“We’re about to start our journey to Jupiter to unlock the secrets of the early solar system,” said Scott Bolton, the mission’s principal investigator from the Southwest Research Institute in San Antonio. “After eight years of development, the spacecraft is ready for its important mission.”

Inside the Vertical Integration Facility at Space Launch Complex 41, the Juno spacecraft, enclosed in an Atlas payload fairing, is in position on top of its Atlas launch vehicle. The spacecraft was prepared for launch in the Astrotech Space Operations' payload processing facility in Titusville, Fla. Credit: NASA/Cory Huston

The launch window for Juno extends from Aug. 5 through Aug. 26. The launch time on Aug. 5 opens at 11:34 a.m. EDT and closes at 12:43 p.m. EDT. Juno is the second mission in NASA’s New Frontiers program.

JUNO’s three giant solar panels will unfurl about five minutes after payload separation following the launch, said Jan Chodas, Juno’s project manager at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, Calif.

The probe will cartwheel through space during its five year trek to Jupiter.

Upon arrival in July 2016, JUNO will fire its braking rockets and go into polar orbit and circle Jupiter 33 times over about one year. The goal is to find out more about the planet’s origins, interior structure and atmosphere, observe the aurora, map the intense magnetic field and investigate the existence of a solid planetary core.

Hoisting Juno inside the payload fairing at Space Launch Complex 41. Credit: NASA/Cory Huston

“Juno will become the first polar orbiting spacecraft at Jupiter. Not only are we over the poles, but we’re getting closer to Jupiter in our orbit than any other spacecraft has gone,” Bolton elaborated at a briefing for reporters at the Kennedy Space Center. “We’re only 5,000 kilometers above the cloud tops and so we’re skimming right over those cloud tops and we’re actually dipping down beneath the radiation belts, which is a very important thing for us. Because those radiation belts at Jupiter are the most hazardous region in the entire solar system other than going right to the sun itself.”

“Jupiter probably formed first. It’s the largest of all the planets and in fact it’s got more material in it than all the rest of the solar system combined. If I took everything in the solar system except the sun, it could all fit inside Jupiter. So we want to know the recipe.”

Watch for my continuing updates and on-site launch coverage of Juno, only the 2nd probe from Earth to ever orbit Jupiter. Galileo was the first.

Worlds Apart: Planet and Moon Align

Conjunction of Jupiter and Phobos from Mars Express (rotated so north is up.)

Here’s a cool animation showing Mars’ little moon Phobos passing in front of distant Jupiter from the viewpoint of ESA’s Mars Express orbiter:

The conjunction event occurred on June 1.

[/caption]

Only 21 km (13 miles) across at the widest, the irregularly-shaped Phobos may have been created by a large impact on Mars in its distant past, a chunk of the planet’s crust thrown into orbit. Mars Express most recently performed a close flyby of Phobos back on January 9, passing it at a distance of only 100 km (62 miles).

What’s really amazing to think about is the distances between these two worlds – about 529 million km! But those kinds of distances are no hindrance to vision out in space, especially when the farther object is a giant planet like Jupiter.

The images were taken with Mars Express’ High Resolution Stereo Camera (HRSC), which was kept centered on Jupiter during the conjunction. A total of 104 images were taken over a span of 68 seconds to create the animation.

“By knowing the exact moment when Jupiter passed behind Phobos, the observation will help to verify and even improve our knowledge of the orbital position of the martian moon.”

– ESA

Read the news release on the ESA Space Science site here.

All images shown here were processed at the Department of Planetary Sciences and Remote Sensing at the Institute of Geological Sciences of the Freie Universität Berlin. Credit: ESA/DLR/FU Berlin (G. Neukum)

New Movie Revives Old Voyager Data of Jupiter’s Clouds

I remember, some time after Voyager 1 flew past Jupiter, of seeing a television show that played a movie of Jupiter’s bands of rolling clouds. I was mesmerized. Now, UnmannedSpaceflight.com member Bjorn Jonsson has re-mastered that data into a crisp, clear video. I find it just as mesmerizing! In his description, Jonsson says, “The movie is based on 58 orange-green-blue color composites obtained on every Jovian rotation from January 6 to January 29, 1979. Over this period Voyager 1’s distance from Jupiter dropped from 58 to 36 million km so the resolution and sharpness of the frames increases from start to finish. The 58 frames were tweened, increasing the number of frames by a factor of 8 (that is, 7 synthetic frames are inserted between each real frame).”

You can see more of Jonsson’s work at his website.

Credit: NASA/JPL/Processed by Bjorn Jonsson