Jupiter has Van Allen Belts too, Just Bigger; Implications for Space Weather Prediction

Jupiter has a powerful magnetic field 20,000 times stronger than the Earth’s. It is therefore of no surprise that the highly energetic and damaging particles flying around in the Earths Van Allen Belts can be found within Jupiter’s magnetosphere too. But are the mechanisms energizing these particles the same for both planets? New research suggests that the magnetospheres of Jupiter and Earth may have more in common than previously thought…

As previously reported on Universe Today, there is a possible source to the magnetospheric “hiss” that energizes protons and electrons within the Earth’s Van Allen Belts. The discovery that low frequency “chorus” waves propagating through the upper atmosphere evolve into waves that can interact with charged particles is significant in that it helps to solve a 40 year debate as to where these waves come from. Now, the nature of Jupiter’s highly energetic particles trapped in its strong magnetic field has been brought into question.
The Galileo spacecraft undergoing preparations in 1989 (credit: NASA)
The Galileo spacecraft (pictured) measured radio wave activity inside the magnetosphere as it orbited the gas giant over eight years. According to the scientific collaboration including researchers at the British Antarctic Survey (BAS), University of California, Los Angeles (UCLA), and the University of Iowa (UI), similar low frequency radio waves may be responsible for electron energization in the Jovian high energy particle belts as in the terrestrial Van Allen Belts.

Although details on the source of Earth’s “chorus” waves are sketchy (we know they originate outside of the plasmasphere surrounding Earth and evolve into a radio wave “hiss” inside the Van Allen Belts), the source of low frequency radio waves around Jupiter comes from the interactions between the moon Io and the Jovian magnetic field.

On Jupiter, the waves are powered by energy from volcanoes on the moon Io, combined with the planet’s rapid rotation – once every 10 hours. Volcanic gasses are ionized and flung out away from the planet by centrifugal force. This material is replaced by an inward flow of particles that excite the waves that in turn accelerate the electrons.” – Dr Richard Horne, lead author of research, British Antarctic Survey (BAS).

The interaction of Jupiter’s moons with its atmosphere is highlighted when analysing the pattern of the polar auroral regions on the planet. As the magnetic field is so strong on Jupiter, massive regions of bright emission can be seen in the UV wavelengths (pictured top). This is emission from huge auroral displays as highly energetic particles funnel down magnetic flux and interact with Jupiter’s atmosphere (similar to Earth’s auroral displays, only much bigger). There are some strange patterns in the auroral “crown” – “footprints” of the Jovian moons, Io, Ganymede and Europa. The moons emit particles which get directed down to Jupiter by the gas giant’s magnetic field. These footprints appear as little spots in Jovian polar regions, rotating with the moons as they pass through the magnetosphere.
The interaction of Io and Jupiters magnetic field - wave-particle interactions (credit: BAS)
By far the strongest influence on Jupiter’s magnetosphere, Io is constantly erupting with material, firing it through the Jovian magnetic field. Thanks to Galileo data, it appears this fast orbiting moon generates low frequency radio waves, driving the high energy particles trapped within Jupiter’s plasmasphere through wave-particle interactions.

For more than 30 years it was thought that the electrons are accelerated as a result of transport towards Jupiter, but now we show that gyro-resonant wave acceleration is a very important step that acts in concert.” – Dr Horne

These results will have a huge impact on space weather forecasting. As the Sun erupts during periods of heightened solar activity (i.e. during “solar maximum”), the reaction of the Earth’s plasmasphere is critical to understanding the quantities of damaging high energy particles that may influence space missions, damaging satellites and causing harm to astronauts. Looking into Jupiter’s huge magnetosphere will aid understanding of our own magnetosphere, hopefully improving solar storm predictions.

Source: British Antarctic Survey

Gigantic Storms on Jupiter Grow in a Single Day

hubble20080123-browse.thumbnail.jpg

As a giant planet, Jupiter takes everything to the extreme. Even the weather. A ferocious storm raging across the cloud tops has surprised scientists: it’s churning up material that was deeper down in the planet’s atmosphere. And there’s evidence that the planet’s jet streams are generated by its own heat, and not just from the Sun.

Even in the smallest telescope, it’s easy to see the distinct atmospheric bands that stretch around the planet, like a series of stripes. The strongest winds on the planet are at Jupiter’s northern latitudes. Here the winds can howl at 600 km per hour (370 miles per hour).

But astronomers have always wondered what drives these storms? Is it energy from the Sun, or is the planet’s own heat that gets the powerful jet streams driving winds across Jupiter.

In March 2007, several telescopes captured a rare atmospheric eruption, where two brand new storms appeared in the planet’s cloud tops.

The event was so well recorded because it coincided with the New Horizons spacecraft’s flyby with Jupiter. Many telescopes, including Hubble, NASA’s Infrared Telescope Facility, and a network of smaller telescopes around the world were making support observations of Jupiter.

An international team coordinated by Agustín Sánchez-Lavega from the Universidad del País Vasco in Spain presented their findings about this event in the January 24 issue of the journal Nature.

“Fortuitously, we captured the onset of the disturbance with Hubble, while monitoring the planet to support the New Horizons flyby observations of Jupiter in its route to Pluto. We saw the storm grow rapidly since its beginning, from about 400 kilometers [250 miles] to more than 2,000 kilometers [1,245 miles] in size in less than one day,” said Sánchez-Lavega.

With the storms, the researchers observed bright plumes of material. The newly forming storms pulled vast quantities of ammonia ice and water from deep below, and pushed it up 30 km (20 miles) above the cloud tops – higher than any other place on the planet.

By modeling the event, the researchers found that their observations supported the theory that Jupiter’s jet streams, which power the storm systems, come from much deeper inside the planet. Here on Earth, radiation from the Sun heats up the high atmosphere, and gets the jet streams going. But on Jupiter, it looks like the planet’s own heat drives these jet streams, and not the sunlight it receives.

Original Source: NASA/JPL News Release

New Horizons Makes Surprising Discoveries at Jupiter

2007-1009jupiter.thumbnail.jpg

Remember when New Horizons sped past Jupiter on its way to Pluto. It kept its cameras rolling during the flyby, and captured hard drives full of data. Researchers have had a chance crunch through some of this data, and announced a series of discoveries this week: polar lightning storms, clumpy rings, volcanic eruptions on Io, and more.

New Horizon’s goal may be Pluto, but it’s got some time to kill between now and then. Might as well gather some science along the way. The spacecraft sped past Jupiter on February 28, 2007, picking up a valuable gravity assisted speed boost. It was the 8th spacecraft to make a close encounter with Jupiter, and just those before, it revealed valuable new insights into Jupiter and its satellites.

When the spacecraft was approaching Jupiter, mission planners carefully planned out 700 observations they wanted New Horizons to make. In fact, this is twice the number planned for the brief flyby of Pluto in 2015. They focused their collection on outstanding scientific issues that needed further investigation; to try and give scientists some kind of closure to mysteries opened up by previous spacecraft flybys.

Top on the list is Jupiter’s weather. New Horizons observed the planet’s clouds using visible light, infrared and ultraviolet. They saw ammonia clouds welling up from deeper down and heat-induced lightning strikes in the polar regions – the first polar lightning seen apart from Earth.

The spacecraft also focused in on Jupiter’s tenuous rings. The detailed observations revealed clumps of material that could indicate there was a recent impact inside the rings. Just like Saturn, Jupiter has tiny moons that serve as shepherds, keeping the ring material together.

New Horizons also focused its cameras on Jupiter’s volcanic moon Io. The spacecraft observed 11 different volcanic plumes of varying size, and could see 36 hotspots on the moon in the infrared spectrum. Three of these volcanoes were seen for the very first time.

Finally, the spacecraft measured the magnetic tail that trails behind Jupiter. New Horizons saw material ejected by Io moving down the tail in large, dense, slow-moving blobs, captured in the magnetic field.

New Horizons is now halfway between the orbits of Jupiter and Saturn, and more than 1.19 billion km (743 million miles) from Earth.

Original Source: JHU APL News Release

Podcast: Jupiter’s Moons

2007-1008io.thumbnail.jpg

Last week we talked about Jupiter and we could sense right away it would be too much to handle. This week, we’ll talk about Jupiter’s moons – how many are there? What makes them so interesting? Is it true that the most likely place in the solar system to find life (other than Earth) is actually on one of Jupiter’s moons? Hang on tight. We’re going to cover a lot.

Click here to download the episode

Jupiter’s Moons – Show notes and transcript

Or subscribe to: astronomycast.com/podcast.xml with your podcatching software.

Podcast: Jupiter

2007-1001jupiter.thumbnail.jpg

Last week we talked about rubble, this week we’re going to dig into the largest planet in the Solar System: Jupiter, but will it all just be hot gas? There’s so much to talk about, we’ve decided to break this up into two shows. This week we’re going to just talk about Jupiter, and then next week, we’re going to cover its moons.

Click here to download the episode

Jupiter – Show notes and transcript

Or subscribe to: astronomycast.com/podcast.xml with your podcatching software.

How Jupiter Changes Over Time

web.thumbnail.jpg

We experience changing weather here on Earth. One day it’s overcast, and then the next day has clear skies. Same goes for the other planets, it just happens on different timescales. The Hubble Space Telescope has been watching how the planet Jupiter’s weather transforms over time – it happens surprisingly quickly.

The latest photographs released from Hubble show two pictures, before and after. The first picture was captured on March 25, and then the second was snapped on June 5. Between this period, entire bands on the planet have changed colour.

Regions where the atmosphere is rising are called “zones”; where the atmosphere is falling are called “belts”. During this 3+ month period, many of these zones have transformed into belts, and vice versa.

Astronomers have seen these transformations before with ground-based observatories, but never with such detail. These Hubble images will help astronomers better predict atmospheric changes on Jupiter. And perhaps even help explain how massive storms like the Great Red Spot can form.

Original Source:HubbleSite

Torrent of New Jupiter Images from New Horizons

2007-0503europa.thumbnail.jpg

Although its primary target will be Pluto, NASA’s New Horizons spacecraft is taking the time to do a little science along the way. During its recent Jupiter flyby, the spacecraft was able to test out its scientific instruments as a dress rehearsal for its final Pluto encounter. NASA held a big press conference this week, and released dozens of new images and scientific findings gathered by New Horizons.

New Horizons made its closest approach to Jupiter on February 28, 2007 when it came within 2.3 million km (1.4 million miles) of the giant planet. As part of this flyby, it captured the closest ever view of Jupiter’s “Little Red Spot”, detailed images of its faint rings, and events on its moons. It made a total of 700 observations, and it’s now transmitting that data back to Earth – 70% of the 34 gigabits of data have been returned so far.

The spacecraft made many discoveries. Here are a few examples. It’s view of “Little Red” shows how these kinds of vast storms evolve in Jupiter’s high atmosphere. It showed how the planet’s rings change quickly, over the course of weeks and months and revealed the effect of a recent impact. It made several observations of Jupiter’s moon Io, with its volcanic plumes scattering lava across its surface.

New Horizons is the fastest spacecraft ever launched. This Jupiter flyby gave it an additional speed boost, and helped put it on target to reach Pluto in 2015.

All the images presented by NASA are available here.

Original Source: NASA News Release

More Images from New Horizon’s Jupiter Flyby

Jupiter captured by New Horizons. Image credit: NASA/JPL/JHUAPLEven though New Horizon’s Jupiter flyby happened weeks ago, scientists are only just starting to crunch through the data sent back. They’re revealing better and better images of Jupiter, taken by the spacecraft’s powerful instruments. The image attached to this story was taken using New Horizon’s LEISA infrared camera. It’s a false colour photograph – not what you’d actually see if you were looking at Jupiter – but the fine details in the image are impressive.
Continue reading “More Images from New Horizon’s Jupiter Flyby”

Chandra and Hubble Imaged Jupiter During New Horizons Flyby

X-rays from JupiterWhile NASA’s New Horizon spacecraft was making its gravity assisted flyby past Jupiter, some friends back at home were watching to help give the science some perspective. NASA’s Hubble Space Telescope and the Chandra X-Ray Observatory gathered images of Jupiter for several days before the flyby, and the combined photographs were released today.
Continue reading “Chandra and Hubble Imaged Jupiter During New Horizons Flyby”