PLAYALINDA BEACH/KENNEDY SPACE CENTER, FL – The path to an October launch trifecta from Florida’s Spaceport was cleared following SpaceX’s successful static fire test of the Falcon 9 boosters first stage engines this afternoon, Oct. 26, and thereby targeting Monday, Oct. 30 for blastoff of the KoreaSat-5A commercial telecomsat.
KoreaSat-5A is being launched by SpaceX under a commercial contract for South Korean operator KTSAT (a KT Corporation company) using a new first stage and will provide Direct to Home (DTH) broadcasting services.
If all goes well, the end of October KoreaSat-5A liftoff will count as the third rocket launch this month from the sunshine states increasingly busy Spaceport following two earlier launches carried out by both ULA and SpaceX.
The brief engine test of the two stage Falcon 9 took place at 12 noon EDT (1600 GMT) Thursday, Oct. 26, with the sudden eruption of smoke and ash rushing out the north facing flame trench and into the air over historic pad 39A on NASA’s Kennedy Space Center during a very comfortably sunny and windy afternoon – as I witnessed from the crashing waves of Playalinda Beach, FL just a few miles away. See photo and video gallery from myself and space journalist colleague Jeff Seibert.
“Static fire test of Falcon 9 complete,” SpaceX confirmed via tweet soon after the hotfire test was conducted.
“Targeting October 30 launch of Koreasat-5A from Pad 39A in Florida.”
Monday’s mid-afternoon liftoff with the private KoreaSat-5A mission is targeted for a window that opens at 3:34 p.m. EDT (1934 GMT) from seaside Launch Complex 39A at NASA’s Kennedy Space Center in Florida.
The launch window for the virgin booster extends nearly two and a half hours until 5:58 p.m. EDT (2158 GMT).
The SpaceX Falcon 9 will deliver Koreasat-5A to a geostationary transfer orbit (GTO).
SpaceX will also attempt to recover this booster by soft landing on an ocean going platform prepositioned in the Atlantic Ocean – about 8 minutes after blastoff.
Playalinda Beach is a spectacular place to witness the launch from – while surfing the waves too – if you’re in the area.
During today’s hold down static fire test, the rocket’s first and second stages are fueled with liquid oxygen and RP-1 propellants like an actual launch, and a simulated countdown is carried out to the point of a brief engine ignition.
The hold down engine test with the erected Falcon 9 rocket involved the ignition of all nine Merlin 1D first stage engines generating some 1.7 million pounds of thrust at pad 39A while the two stage rocket was restrained on the pad.
The static fire test lasted approximately three seconds. The test is routinely conducted by SpaceX engineers to confirm the rockets readiness to launch.
The engines exhaust cloud quickly dissipated within about a minute due to the high winds.
Watch this up close static hot fire test video:
Video Caption: SpaceX Falcon 9 Static Test Fire for Koreasat 5A / Oct 26, 2017. Credit: Jeff Seibert
The engine test was run without the expensive payload on top to keep it safe in case of a launch pad accident as happened during a fueling test last September with the Israeli AMOS-6 payload.
The rocket will now be rolled back down the pad ramp and into the SpaceX processing hangar at the pad about ¼ mile away for integration with the Koreasat-5A spacecraft encapsulated inside the payload fairing.
In this case the SpaceX Falcon 9 will fly as a brand new rocket rather than a reused booster as happened earlier this month for the SES-11 launch.
The launch will be the 16th this year by a SpaceX Falcon 9 rocket.
Koreasat-5A was built by prime contractor, Thales Alenia Space, responsible for the design, production, testing and ground delivery. It arrived at the Florida launch base on Oct. 5 for integration with the Falcon 9 rocket.
The 3,700 kg satellite is equipped with 36 Ku-band transponders and based on Thales Alenia Space’s new-generation Spacebus 4000B2 platform. It will replace Koreasat 5.
The solar panels provide a payload power of approximately 6.5 kW. It will be positioned at 113° East and provide coverage for Indochina, Japan, Korea, the Philippines and the Middle East including Direct to Home (DTH) services.
Pad 39A has been repurposed by SpaceX from its days as a NASA shuttle launch pad.
To date SpaceX has accomplished 18 successful landings of a recovered Falcon 9 first stage booster by land and by sea.
The first stage from this months SES-11 launch arrived back into Port Canaveral, FL on top of the OCISLY droneship on Oct. 15.
Watch for Ken’s continuing onsite coverage of SpaceX KoreaSat-5A & SES-11, ULA NROL-52 and NASA and space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
CAPE CANAVERAL AIR FORCE STATION, FL — As one Atlas rocket carrying a covert spy satellite for the U.S. National Reconnaissance Office (NRO) to monitor Earth for national security purposes faded into cloudy nighttime skies over the Cape in the dead of night shrouded in liftoff secrecy, rocket builder United Launch Alliance (ULA) won another significant Atlas launch contract for NASA’s Landsat 9 satellite to monitor the health of Earth’s environment.
Capping two launches from two different rocket companies in four days by ULA and SpaceX followed by the arrival back in port of SpaceX’s ocean landed recovered booster, last week provided all the proof that’s needed to demonstrate that the revitalization of Florida’s Spaceport is well underway and America’s rocket makers are capturing lucrative launch contracts ensuring an upswing nationwide in rocket and spacecraft manufacturing – for critical military surveillance, government, civilian and science needs.
Check out the exciting gallery of Atlas launch imagery and videos including the thrilling droneship return of SpaceX’s 156 foot tall first stage booster back into Port Canaveral less than 4 hours after ULA delivered the classified NROL-52 surveillance satellite to a secret orbit – from this author and several space media colleagues. And check back here as the gallery grows!
A ULA Atlas V launch carrying the covert NROL-52 mission in support of U.S. national security blasted off overnight Sunday, Oct. 15 at 3:28 a.m. EDT (0728 GMT) from seaside Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida.
“Congratulations to the team who helped make #NROL52 a success! United Launch Alliance, 45th Space Wing at Patrick Air Force Base, Fla., Air Force Space Command, and the Space and Missile Systems Center,” the NRO announced post launch on social media.
It was a case of ‘Going, Going, Gone’ as seemingly endless stormy weather plagued the space coast and the Atlas soon disappeared behind clouds from many but not all vantage points, as the two stage rocket was finally cleared to launch on its fifth try. Postponed three times by poor weather and once due to a technical glitch to fix a faulty second stage transmitter.
“We’ve had an incredible month,” said Brig. Gen. Wayne R. Monteith, Commander, 45th Space Wing.
“Not only did we restore our base to full mission capable status just a few hours after Hurricane Irma impacted our coast, but we’ve successfully launched two rockets in less than four days just weeks later.”
“The 45th Space Wing supported ULA’s Atlas V launch of the NROL-52 mission for the National Reconnaissance Office early morning on Oct. 15!”
“The men and women of the 45th Space Wing continue to make the impossible possible.”
More than a quarter of all the world’s rocket launches take place from Florida’s burgeoning spaceports.
“Our team’s resiliency and tireless efforts in launching over 25% of all world-wide launches this year proves why we are the ‘World’s Premier Gateway to Space,’” Montieth gushed in pride.
Meanwhile, NASA selected ULA to provide launch services for the Landsat 9 mission with another Atlas V rocket as soon as late 2020.
“The mission is currently targeted for a contract launch date of June 2021, while protecting for the ability to launch as early as December 2020, on an Atlas V 401 rocket from Space Launch Complex 3E at Vandenberg Air Force Base in California,” said NASA.
The Landsat 9 launch contract is worth $153.8 million.
Landsat 9 is a joint mission between NASA and the U.S. Geological Survey (USGS).
“Landsat 9 will continue the Landsat program’s critical role in monitoring, understanding, and managing the land resources needed to sustain human life.”
“We are honored that NASA has entrusted ULA with launching this critical land imaging satellite,” said Tory Bruno, ULA’s president and chief executive, in a statement.
“ULA’s world-leading performance and reliability, paired with the tremendous heritage of 74 consecutive successful Atlas V launches, provides the optimal value for our customer. We look forward to working together again with our mission partners at NASA’s Launch Services Program, Goddard Space Flight Center and the U.S. Geological Survey in the integration and launch of this significant mission, contributing to the international strategy for examining the health and state of the Earth.”
NROL-52 is the fourth of five launches slated for the NRO in 2017 by both ULA and SpaceX.
“Never before has innovation been more important for keeping us ahead of the game. As the eagle soars, so will the advanced capabilities this payload provides to our national security,” said Colonel Matthew Skeen, USAF, Director, NRO Office of Space Launch, in a statement. “Kudos to the entire team for a job well done.”
Check out this exciting video compilation from remote cameras circling the Atlas pad 41.
Video Caption: Launch of the NROL-52 satellite on an Atlas 5 booster from Pad 41. A United Launch Alliance Atlas 5 421 rocket launches the NROL-52 payload on Oct. 15, 2017 at 328 a.m. EDT on the 5th launch attempt. Previous launch attempts were halted by weather issues 3 times, and a faulty telemetry radio that needed to be replaced after the rocket was rolled back to the Pad 41 Vertical Integration Facility. Credit Jeff Seibert
The venerable two stage Atlas V stands 194 feet tall and sports a 100% success record. The first stage generates approx. 1.6 million pounds of liftoff thrust.
This Atlas Evolved Expendable Launch Vehicle (EELV) mission launched in the 421 configuration vehicle, which includes a 4-meter payload fairing (PLF) encapsulating the payload and two strap on solid rocket first stage boosters.
The Atlas first stage booster for this mission was powered by the Russian-built RD AMROSS RD-180 engine, and the Centaur upper stage was powered by the Aerojet Rocketdyne RL10C-1 engine.
The dual chamber, dual-nozzle RD-180 is fueled by a mixture of RP-1 kerosene and LOX (liquid oxygen).
The next NRO launch is scheduled on a ULA Delta IV in December from Vandenberg Air Force Base, California.
Watch for Ken’s continuing onsite NROL-52, SpaceX SES-11 and NASA and space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
5 years after a heart throbbing Martian touchdown, Curiosity is climbing Vera Rubin Ridge in search of “aqueous minerals” and “clays” for clues to possible past life while capturing “truly breathtaking” vistas of humongous Mount Sharp – her primary destination – and the stark eroded rim of the Gale Crater landing zone from ever higher elevations, NASA scientists tell Universe Today in a new mission update.
“Curiosity is doing well, over five years into the mission,” Michael Meyer, NASA Lead Scientist, Mars Exploration Program, NASA Headquarters told Universe Today in an interview.
“A key finding is the discovery of an extended period of habitability on ancient Mars.”
The car-sized rover soft landed on Mars inside Gale Crater on August 6, 2012 using the ingenious and never before tried “sky crane” system.
A rare glimpse of Curiosity’s arm and turret mounted skyward pointing drill is illustrated with our lead mosaic from Sol 1833 of the robot’s life on Mars – showing a panoramic view around the alien terrain from her current location in October 2017 while actively at work analyzing soil samples.
“Your mosaic is absolutely gorgeous!’ Jim Green, NASA Director Planetary Science Division, NASA Headquarters, Washington D.C., told Universe Today
“We are at such a height on Mt Sharp to see the rim of Gale Crater and the top of the mountain. Truly breathtaking.”
The rover has ascended more than 300 meters in elevation over the past 5 years of exploration and discovery from the crater floor to the mountain ridge. She is driving to the top of Vera Rubin Ridge at this moment and always on the lookout for research worthy targets of opportunity.
Additionally, the Sol 1833 Vera Rubin Ridge mosaic, stitched by the imaging team of Ken Kremer and Marco Di Lorenzo, shows portions of the trek ahead to the priceless scientific bounty of aqueous mineral signatures detected by spectrometers years earlier from orbit by NASA’s fleet of Red Planet orbiters.
“Curiosity is on Vera Rubin Ridge (aka Hematite Ridge) – it is the first aqueous mineral signature that we have seen from space, a driver for selecting Gale Crater,” NASA HQ Mars Lead Scientist Meyer elaborated.
“And now we have access to it.”
The Sol 1833 photomosaic illustrates Curiosity maneuvering her 7 foot long (2 meter) robotic arm during a period when she was processing and delivering a sample of the “Ogunquit Beach” for drop off to the inlet of the CheMin instrument earlier in October. The “Ogunquit Beach” sample is dune material that was collected at Bagnold Dune II this past spring.
The sample drop is significant because the drill has not been operational for some time.
“Ogunquit Beach” sediment materials were successfully delivered to the CheMin and SAM instruments over the following sols and multiple analyses are in progress.
To date three CheMin integrations of “Ogunquit Beach” have been completed. Each one brings the mineralogy into sharper focus.
What’s the status of the rover health at 5 years, the wheels and the drill?
“All the instruments are doing great and the wheels are holding up,” Meyer explained.
“When 3 grousers break, 60% life has been used – this has not happened yet and they are being periodically monitored. The one exception is the drill feed (see detailed update below).”
NASA’s 1 ton Curiosity Mars Science Laboratory (MSL) rover is now closer than ever to the mineral signatures that were the key reason why Mount Sharp was chosen as the robots landing site years ago by the scientists leading the unprecedented mission.
Along the way from the ‘Bradbury Landing’ zone to Mount Sharp, six wheeled Curiosity has often been climbing. To date she has gained over 313 meters (1027 feet) in elevation – from minus 4490 meters to minus 4177 meters today, Oct. 19, 2017, said Meyer.
The low point was inside Yellowknife Bay at approx. minus 4521 meters.
VRR alone stands about 20 stories tall and gains Curiosity approx. 65 meters (213 feet) of elevation to the top of the ridge. Overall the VRR traverse is estimated by NASA to take drives totaling more than a third of a mile (570 m).
“Vera Rubin Ridge” or VRR is also called “Hematite Ridge.” It’s a narrow and winding ridge located on the northwestern flank of Mount Sharp. It was informally named earlier this year in honor of pioneering astrophysicist Vera Rubin.
The intrepid robot reached the base of the ridge in early September.
The ridge possesses steep cliffs exposing stratifications of large vertical sedimentary rock layers and fracture filling mineral deposits, including the iron-oxide mineral hematite, with extensive bright veins.
VRR resists erosion better than the less-steep portions of the mountain below and above it, say mission scientists.
What’s ahead for Curiosity in the coming weeks and months exploring VRR before moving onward and upwards to higher elevation?
“Over the next several months, Curiosity will explore Vera Rubin Ridge,” Meyer replied.
“This will be a big opportunity to ground-truth orbital observations. Of interest, so far, the hematite of VRR does not look that different from what we have been seeing all along the Murray formation. So, big question is why?”
“The view from VRR also provides better access to what’s ahead in exploring the next aqueous mineral feature – the clay, or phyllosilicates, which can be indicators of specific environments, putting constraints on variables such as pH and temperature,” Meyer explained.
The clay minerals or phyllosilicates form in more neutral water, and are thus extremely scientifically interesting since pH neutral water is more conducive to the origin and evolution of Martian microbial life forms, if they ever existed.
How far away are the clays ahead and when might Curiosity reach them?
“As the crow flies, the clays are about 0.5 km,” Meyer replied. “However, the actual odometer distance and whether the clays are where we think they are – area vs. a particular location – can add a fair degree of variability.”
The clay rich area is located beyond the ridge.
Over the past few months Curiosity make rapid progress towards the hematite-bearing location of Vera Rubin Ridge after conducting in-depth exploration of the Bagnold Dunes earlier this year.
“Vera Rubin Ridge is a high-standing unit that runs parallel to and along the eastern side of the Bagnold Dunes,” said Mark Salvatore, an MSL Participating Scientist and a faculty member at Northern Arizona University, in a mission update.
“From orbit, Vera Rubin Ridge has been shown to exhibit signatures of hematite, an oxidized iron phase whose presence can help us to better understand the environmental conditions present when this mineral assemblage formed.”
Curiosity is using the science instruments on the mast, deck and robotic arm turret to gather detailed research measurements with the cameras and spectrometers. The pair of miniaturized chemistry lab instruments inside the belly – CheMin and SAM – are used to analyze the chemical and elemental composition of pulverized rock and soil gathered by drilling and scooping selected targets during the traverse.
A key instrument is the drill which has not been operational. I asked Meyer for a drill update.
“The drill feed developed problems retracting (two stabilizer prongs on either side of the drill retract, controlling the rate of drill penetration),” Meyer replied.
“Because the root cause has not been found (think FOD) and the concern about the situation getting worse, the drill feed has been retracted and the engineers are working on drilling without the stabilizing prongs.”
“Note, a consequence is that you can still drill and collect sample but a) there is added concern about getting the drill stuck and b) a new method of delivering sample needs to be developed and tested (the drill feed normally needs to be moved to move the sample into the chimera). One option that looks viable is reversing the drill – it does work and they are working on the scripts and how to control sample size.”
Ascending and diligently exploring the sedimentary lower layers of Mount Sharp, which towers 3.4 miles (5.5 kilometers) into the Martian sky, is the primary destination and goal of the rover’s long term scientific expedition on the Red Planet.
“Lower Mount Sharp was chosen as a destination for the Curiosity mission because the layers of the mountain offer exposures of rocks that record environmental conditions from different times in the early history of the Red Planet. Curiosity has found evidence for ancient wet environments that offered conditions favorable for microbial life, if Mars has ever hosted life,” says NASA.
Stay tuned. In part 2 we’ll discuss the key findings from Curiosity’s first 5 years exploring the Red Planet.
As of today, Sol 1850, Oct. 19, 2017, Curiosity has driven over 10.89 miles (17.53 kilometers) since its August 2012 landing inside Gale Crater from the landing site to the ridge, and taken over 445,000 amazing images.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
KENNEDY SPACE CENTER, FL – Elon Musk’s extraordinary vision of an era when re-flown rockets are offered as a ‘routine service’ rather than the exception is a ‘major sea change getting closer’ to fruition with each passing day thanks to SpaceX, said SES CTO Martin Halliwell in an exclusive interview with Universe Today, following the stunning sunset blastoff of the SES-11 UHDTV commercial satellite on another ‘flight-proven’ Falcon 9 booster that also re-landed – thus completing another remarkable round of rocket recovery and recycling or ‘launch, land and relaunch!’
“As I’ve said before, I think in a couple years time you won’t even consider whether it’s a preflown rocket or a new rocket or a second time rocket,” SES Chief Technology Officer Martin Halliwell told Universe Today in a one-on-one post launch interview.
“It will just be a flight and you will buy a service to get to orbit – and that will be that!”
“It’s a major sea change,” Halliwell explained. “That’s absolutely true.”
“We’re getting closer to that every day. It’s exactly where we are going. There is no doubt about it.”
The private SES-11/EchoStar 105 communications satellite mission soared to space with an on time liftoff of the recycled SpaceX Falcon 9 first stage at dinnertime Wednesday Oct. 11 at 6:53 p.m. EDT from seaside Launch Complex 39A at NASA’s Kennedy Space Center in Florida.
“The launch was fantastic,” Halliwell gushed. “Everything went perfectly. The countdown went perfectly, no hiccups, no drama, nothing whatsoever. So we were good to go!”
Plus its saving SES “months of time” and thereby “tens of millions of dollars of real money” to fly with a used booster rather than having their expensive satellite sit and languish uselessly on the ground.
SES-11 is primarily intended to significantly upgrade SES capabilities to transmit Ultra High Definition (UHD) TV signals or 4 K vs. standard HDTV – thereby pulling in more revenue streams.
SES made rocket history jointly with SpaceX earlier this year when they became the first company ever to agree to fly a payload on a recycled liquid fueled rocket that SpaceX’s billionaire CEO Elon Musk dubs ‘flight-proven’.
And Halliwell, as SES Chief Technology Officer, was instrumental in partnering with SpaceX CEO Musk to take a big leap make that happen.
The maiden ‘used’ Falcon 9 lifted off successfully with the SES-10 satellite and delivered the comsat to geostationary orbit on March 30, 2017 – in a monumental space achievement.
“This was our second reflown mission with SpaceX for SES-11. And we had a lot of discussion about it.”
“The more that we looked at it and the transparency we’ve gotten from SpaceX, working together with them we were convinced of the ‘flight worthiness’ of the Falcon 9 vehicle,” Halliwell told me.
SpaceX successfully delivered the 5.7 ton EchoStar 105/SES-11 joint mission satellite for SES and EchoStar to geostationary transfer orbit some 22,000 miles (36,000 kilometers) above the equator.
EchoStar 105/SES-11 is a high-powered hybrid Ku and C-band communications satellite launching as a dual-mission satellite for US-based operator EchoStar and Luxembourg-based operator SES.
How exactly does Halliwell and SES assess whether its worth taking a gamble on a ‘flight-proven’ booster to ensure it meets the high standards expected and really is robust and reliable and not end in disaster? How did the booster fare after the first reflown mission for SES-10?
Halliwell explained that SES employs a team of engineers embedded with SpaceX.
“We have US citizens who work embedded with SpaceX,” Halliwell replied. “They can understand and filter and react to that data they are exposed to and see what’s going on. And then determine if we are good to go or not.”
Why did SES decide on using a pre-flown booster?
“We sat down with SpaceX to see how the launch manifest and scheduling looks and asked whats the best way we can get SES-11 to orbit? Do we wait for new equipment or does SpaceX have preflown equipment that you can make available to us after refurbishment?”
“It came out that the fastest way we can get to orbit is by using a refurbished preflown vehicle. So we said OK we will go down that path. And that’s why we are here today.”
Did it save time or money for SES to go with a used booster?
“It saved us a few months. So we concentrated on the preflown booster after making that decision. For sure if we had chosen to use a new booster our SES-11 launch would have been somewhat later compared to launching today.”
So it turns out that SES got a faster trip to orbit for SES-11 and that in turn quickly translates into real money generated instead of more money wasted with a satellite parked somewhere in a storage shed for half a year of more. The actual savings on a launch was not that big.
“The average launch delay we have right now is about 7 months,” Halliwell explained.
“So we have the spacecraft already built and its ready, and ready to ship [to the launch site]. And then – we just wait! Until we have launch vehicle availability.”
“So think about it. I spent all my money on my spacecraft and most of my money on my launch vehicle. Plus a whole chunk of insurance money is already gone.”
“So I’m sitting there for 7 months. It’s just cash out and a very expensive wait!”
How much money does waiting around on the ground with a fully ready to launch spacecraft cost?
“That works out to tens of millions of dollars lost due to delays,” he replied. “Its real money. A ton of money!”
“Revenue we are not making. And paying for the money you spent. It’s gone !”
So with SES-11 now safely in orbit it will soon be generating revenue to recoup all the investments thus far accrued.
Is the era of reliable rocket reusability coming even sooner than some had expected?
“I think so certainly for SpaceX,” Halliwell responded.
“The other companies are all now running behind. You look towards Ariane with the reusable Prometheus and being cheaper – but there is a ways to go there. You look at Blue Origin and they are making progress. But they are not there yet.”
“Will Vulcan do this? I think everybody will consider this, and try to figure out the pros and cons of this and try to figure out an industrial model and a financial model, etc, etc.”
“Whether they go down that reusability path or not depends on whether it suits their business plan.”
“SpaceX has certainly taken a very, very difficult road. But they have come through it very well.”
Is SpaceX actually saving money? The company sunk huge sums of its own money amounting into the hundreds of millions of dollars to develop the reusability technology.
The advertised cost of a SpaceX launch is about $61 million.
Elon Musk routinely promotes the reusability technology as a means to drastically reduce space launch costs.
Thus SES CEO Karim Michel Sabbagh is looking for a reduction to about half that advertised price, in the neighborhood of $30 million.
To date Musk has only offered a marginal reduction to the contact price, citing the high development costs.
Musk has even joked that he should charge more for a reliable ‘flight-proven’ booster.
Halliwell says the real benefit thus far is the earlier launch date. SpaceX has a huge backlog of over 50 contracted launches that only grew longer following a pair of rocket explosions that forced launch delays while the firm investigated root causes.
What does Halliwell think is realistic regarding pricing and achieving the $30 million target?
“I’d love to see that,” Halliwell told me. “But I don’t think we’ll see that $30 million any time soon. Maybe it will stabilize in the mid $50 millions or $60 millions somewhere. I think that’s realistic.”
“I think we have to see how people like SpaceX work on their industrial/financial model.”
“To be honest, I think SpaceX themselves is trying to figure out where the pricing should be. How much is it really costing them? How much is the refurb costing them? How much are their ops costing?”
To date SpaceX has accomplished 18 successful landings of a recovered Falcon 9 first stage booster by land and by sea.
The first stage stands 156 feet tall.
Watch this SES-11 launch video:
Video caption: Reused Falcon 9 Launches SES-11 Into Sunset (Remote Cameras). Credit: Jeff Seibert
Stay tuned. More upcoming.
Watch for Ken’s continuing onsite coverage of SpaceX SES-11, ULA NROL-52 and NASA and space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
KENNEDY SPACE CENTER, FL – SpaceX staged a stunning sunset blastoff this evening Oct. 11, of the commercial SES-11/EchoStar 105 HDTV satellite that will serve the everyday needs of millions of customers across North America as it soared to geostationary orbit on a recycled Falcon 9 from the Florida Space Coast.
Minutes later the now doubly ‘flight-proven’ booster safely made its way back to Cape Canaveral after reigniting its engines to carry out another upright soft landing and recovery – that potentially sets the stage for an unprecedented third launch.
The private SES-11/EchoStar 105 communications satellite mission made an on time liftoff of the recycled first stage booster at dinnertime Wednesday Oct. 11 at 6:53 p.m. EDT from seaside Launch Complex 39A at NASA’s Kennedy Space Center in Florida.
SpaceX successfully delivered the nearly six ton EchoStar 105/SES-11 joint mission satellite for SES and ExchoStar to geostationary transfer orbit some 22,000 miles (36,000 kilometers) above the equator.
“Successful deployment of EchoStar 105/SES-11 to geostationary transfer orbit confirmed,” said SpaceX.
Remarkably today’s launch was the second launch for SpaceX this week following Monday’s Falcon 9 launch from Vandenberg AFB, Ca., carrying 10 Iridium-NEXT satellites to orbit – and a record setting 15th of 2017!
The launch, landing and satellite deployment were broadcast live on a SpaceX hosted webcast.
The weather was near perfect and there was scarcely a cloud in the sky. Space enthusiasts who traveled far and wide from around the globe to witness a launch were richly rewarded with time and money well spent.
That’s in stark contrast to the horrible weather conditions existing just days ago that forced a part of weather scrubs for the ULA Atlas V. Launch of the NROL-52 spy satellite is currently rescheduled for Sat., Oct 14.
EchoStar 105/SES-11 is a high-powered hybrid Ku and C-band communications satellite launching as a dual-mission satellite for US-based operator EchoStar and Luxembourg-based operator SES.
The used two stage 229-foot-tall (70-meter) Falcon 9 rocket was rolled out to pad 39A Tuesday to ready it for today’s liftoff.
The EchoStar 105/SES-11 spacecraft was built by Airbus and shipped from the Airbus facilities in Toulouse, France to Cape Canaveral, FL for flight processing.
The satellite was successfully deployed as planned approximately 36 minutes after liftoff.
“SES-11 is a high-powered communications satellite designed to especially accelerate the development of the US video neighbourhood, and the delivery of HD and UHD channels. Optimised for digital television delivery, SES-11 joins SES-1 and SES-3 at the centre of its robust North American orbital arc, which reaches more than 100 million TV homes. Together with SES-1 and SES-3, SES-11 will be utilised for the expansion of the North America Ultra HD platform,” according to SES.
“SES-11 offers comprehensive coverage over North America, including Hawaii, Mexico and the Caribbean, and will also empower businesses and governments to capture new opportunities and expand their reach across the region.”
The 5,200 kg (11,500 pounds) satellite was encapsulated inside the payload fairing and integrated with the Falcon 9 rocket.
This is only the third recycled SpaceX Falcon 9 ever to be launched from Pad 39A.
SES was the first company to ever fly a payload on a ‘flight-proven’ Falcon 9. The SES-10 satellite lifted off successfully this spring on March 30, 2017.
The second reflown booster successfully launched the BulgariaSat-1 a few months later.
Pad 39A has been repurposed by SpaceX from its days as a NASA shuttle launch pad.
After the 156 foot tall first stage booster completed its primary mission task, SpaceX engineers guided it to a second landing on the tiny football field sized OCISLY drone ship for a soft touchdown some eight and a half minutes after liftoff.
“Falcon 9 first stage has landed on Of Course I Still Love You — third successful mission with a flight-proven orbital class rocket,” said SpaceX.
This marked the 18th successful landing of a recovered Falcon 9 first stage booster.
This booster originally flew on the NASA Dragon CRS-10 resupply mission to the International Space Station in February of this year.
OCISLY or “Of Course I Still Love You” left Port Canaveral several days ahead of the planned Oct. 11 launch and was prepositioned in the Atlantic Ocean some 400 miles (600 km) off the US East coast, just waiting for the boosters 2nd approach and pinpoint propulsive soft landing.
The booster was outfitted with four grid fins and four landing legs to accomplish the pinpoint touchdown on the barge at sea.
Watch for Ken’s continuing onsite coverage of SpaceX SES-11, ULA NROL-52 and NASA and space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.
To date SpaceX has successfully recovered 18 first stage boosters by land and sea.
The SES-11 stage is expected back in Port Canaveral in a few days if all goes well.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
KENNEDY SPACE CENTER, FL – SpaceX is all set for a sunset blastoff Wednesday, Oct. 11 of the commercial SES-11/EchoStar 105 Ultra High Definition (UHD) TV satellite serving North America on a ‘used’ Falcon 9 booster from the Florida Space Coast – that is also targeted to re-land a second time on an sea going platform off shore in the Atlantic.
Spectators should enjoy a spectacular view of the SpaceX Falcon 9 dinnertime launch with a forecast of extremely favorable weather conditions. This comes on the heels of multiple deluges of torrential rain that twice scrubbed last week’s launch of a United Launch Alliance V carrying a USAF spy satellite.
The private SES-11/EchoStar 105 communications satellite mission will launch on a ‘flight-proven’ booster and is slated for a dinnertime liftoff on Oct. 11 at 6:53 p.m. EDT from seaside Launch Complex 39A at NASA’s Kennedy Space Center in Florida, carrying the SES-11.
All systems are GO at L Minus 1 Day!
“#EchoStar105 is targeted for launch Oct. 11 from launch Complex 39A at NASA’s Kennedy Space Center in Florida-launch window 6:53-8:53 PM EDT,” EchoStar tweeted today.
“Getting Echostar-105/#SES11 ready for launch!” SES tweeted further.
If all goes well this will be the second launch for SpaceX this week following Monday’s Falcon 9 launch from Vandenberg AFB, Ca carrying 10 Iridium-NEXT satellites to orbit – and a record setting 15th of 2017!
EchoStar 105/SES-11 is a high-powered hybrid Ku and C-band communications satellite launching as a dual-mission satellite for US-based operator EchoStar and Luxembourg-based operator SES.
The used two stage 229-foot-tall (70-meter) Falcon 9 rocket was rolled out to pad 39A today, erected to vertical launch position and is now poised for liftoff Wednesday.
It will launch the two and a half ton EchoStar 105/SES-11 to geostationary orbit some 22,000 miles (36,000 kilometers) above the equator.
SpaceX will also attempt to recover this recycled Falcon 9 first stage booster again by soft landing on a droneship platform prepositioned hundreds of miles off shore in the Atlantic Ocean – some 8 minutes after blastoff.
Spectacular weather is expected Wednesday for space enthusiasts gathering in local regional hotels after traveling here from across the globe.
Playalinda Beach is among the best places to witness the launch from – while surfing the waves too – if you’re in the area.
You can watch the launch live on a SpaceX dedicated webcast starting about 10 minutes prior to the 6:53 pm EDT or 10:53 pm UTC liftoff time.
Watch the SpaceX broadcast live at: SpaceX.com/webcast
The two hour long launch window closes at 8:53 p.m. EDT.
The weather outlook is currently exceptional along the Florida Space Coast with a 90% chance of favorable conditions at launch time according to U.S. Air Force meteorologists with the 45th Space Wing Weather Squadron at Patrick Air Force Base. The primary concerns on Oct. 11 are only for Cumulus Clouds.
The odds remain high at 90% favorable for the 24 hour scrub turnaround day on Oct. 12.
The 45th Space Wing forecast is also favorable for the landing recovery area through Thursday “when a low pressure system may move into the area, increasing winds and seas. This low will migrate west and possibly impact Florida by the weekend.”
After the 156 foot tall first stage booster complets its primary mission task, SpaceX engineers seek to guide it to a second landing on the tiny OCISLY drone ship for a soft touchdown some eight and a half minutes after liftoff.
OCISLY or “Of Course I Still Love You” left Port Canaveral several days ahead of the planned Oct. 11 launch and is prepositioned in the Atlantic Ocean some 400 miles (600 km) off the US East coast, just waiting for the boosters 2nd approach and pinpoint propulsive soft landing.
The EchoStar 105/SES-11 spacecraft was built by Airbus and shipped from the Airbus facilities in Toulouse, France to Cape Canaveral, FL for flight processing.
The satellite is scheduled to be deployed approximately 36 minutes after liftoff.
“SES-11 is a high-powered communications satellite designed to especially accelerate the development of the US video neighbourhood, and the delivery of HD and UHD channels. Optimised for digital television delivery, SES-11 joins SES-1 and SES-3 at the centre of its robust North American orbital arc, which reaches more than 100 million TV homes. Together with SES-1 and SES-3, SES-11 will be utilised for the expansion of the North America Ultra HD platform,” according to SES.
“SES-11 offers comprehensive coverage over North America, including Hawaii, Mexico and the Caribbean, and will also empower businesses and governments to capture new opportunities and expand their reach across the region.”
The path to launch was cleared following last weeks successful static fire test of the first stage engines Falcon 9.
During the Oct. 2 static fire test, the rocket’s first and second stages were fueled with liquid oxygen and RP-1 propellants like an actual launch, and a simulated countdown was carried out to the point of a brief engine ignition.
The hold down engine test with the erected rocket involved the ignition of all nine Merlin 1D first stage engines generating some 1.7 million pounds of thrust at pad 39A while the two stage rocket was restrained on the pad – minus the expensive payload.
Following the hot fire test, the rocket was rolled back to the processing hangar located just outside the pad perimeter fence.
The 5,200 kg (11,500 pounds) satellite encapsulated inside the payload fairing was then integrated with the Falcon 9 rocket.
This is only the third recycled SpaceX Falcon 9 ever to be launched from Pad 39A.
SES was the first company to ever fly a payload on a ‘flight-proven’ Falcon 9. The SES-10 satellite lifted off successfully this spring on March 30, 2017.
The second reflown booster successfully launched the BulgariaSat-1 a few months later.
This Falcon 9 booster previously flew on SpaceX’s 10th resupply mission to the International Space Station (CRS-10) in February of this year and made a ground landing at the Cape at LZ-1.
Pad 39A has been repurposed by SpaceX from its days as a NASA shuttle launch pad.
The last SpaceX Falcon 9 launch from KSC took place on Sept. 7 carrying the USAF X-37B military space plane to orbit just ahead of Hurricane Irma.
Watch for Ken’s continuing onsite coverage of SpaceX SES-11, ULA NROL-52 and NASA and space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
PLAYALINDA/KENNEDY SPACE CENTER, FL – SpaceX is targeting Saturday Oct. 7 for blastoff of the SES-11/EchoStar 105 commercial telecomsat following a successful static fire test of the first stage engines of the ‘used’ Falcon 9 booster, as a Florida Space Coast gator gazed on in wondrous glee as the engines fired away Monday afternoon, Oct. 2.
The brief engine test took place at 430 p.m. EDT (2030 GMT) Monday Oct. 2, with the sudden eruption of smoke and ash rushing out the north facing flame trench and into the air over historic pad 39A on NASA’s Kennedy Space Center during a windy and overcast afternoon – as I witnessed from the Playalinda Beach causeway FL with the jet black hungry gator just feet away from me in the inland waterways.
The static fire test lasted approximately three seconds. The test is routinely conducted by SpaceX engineers to confirm the rockets readiness to launch.
In this case the SpaceX Falcon 9 will refly and relaunch as a recycled rocket.
“Static fire test of Falcon 9 complete,” SpaceX confirmed via tweet soon after the hotfire test was conducted.
“Targeting October 7 launch of EchoStar 105/SES-11 from Pad 39A in Florida.”
The private SES-11/EchoStar 105 mission will launch on a ‘flight-proven’ booster and is slated for a dinnertime lift off on Oct. 7 at 6:53 p.m. EDT from seaside Launch Complex 39A at NASA’s Kennedy Space Center in Florida, carrying the SES-11 telecommunications payload.
SpaceX will also attempt to recover this booster again by soft landing on an ocean going platform prepositioned in the Atlantic Ocean- about 8 minutes after blastoff.
EchoStar 105/SES-11 is a high-powered hybrid Ku and C-band communications satellite launching as a dual-mission satellite for US-based operator EchoStar and Luxembourg-based operator SES.
It will be launched to geostationary orbit some 22,000 miles (36,000 kilometers) above the equator.
The EchoStar 105/SES-11 spacecraft was built by Airbus and shipped from the Airbus facilities in Toulouse, France to Cape Canaveral, FL for flight processing.
This is only the third recycled SpaceX Falcon 9 ever to be launched from Pad 39A.
SES was the first company to ever fly a payload on a ‘flight-proven’ Falcon 9. The SES-10 satellite lifted off successfully this spring on March 30, 2017.
The second reflown booster successfully launched the BulgariaSat-1 a few months later.
Pad 39A has been repurposed by SpaceX from its days as a NASA shuttle launch pad.
During Monday’s static fire test, the rocket’s first and second stages are fueled with liquid oxygen and RP-1 propellants like an actual launch, and a simulated countdown is carried out to the point of a brief engine ignition.
The hold down engine test with the erected rocket involved the ignition of all nine Merlin 1D first stage engines generating some 1.7 million pounds of thrust at pad 39A while the two stage rocket was restrained on the pad.
Playalinda Beach is a spectacular place to witness the launch from – while surfing the waves too – if you’re in the area.
This launch is the first for SpaceX from KSC in the aftermath of Hurricane Irma which forced the center and Cape Canaveral Air Force Station to close several days and postponed this liftoff.
EchoStar 105/SES-11 provides EchoStar with 24 Ku-band transponders of 36 MHz, marketed as EchoStar 105, while it provides SES with a C-band payload of 24 transponders, marketed under the name SES-11, says SES. EchoStar 105/SES-11 replaces Ku-band capacity for AMC-15 and C-band capacity for AMC-18 at SES’ well-established 105 degrees West orbital slot.
SES-11 is the 47th satellite based on Airbus’s highly reliable Eurostar E3000 platform.
The engine test was carried out without the expensive payload attached to the top – a measured instituted since the catastrophic launch pad explosion and loss of the AMOS-6 commercial payload.
Following the hot fire test, the rocket is rolled back to the processing hangar located just outside the pad perimeter fence.
The 5,200 kg satellite will now be integrated with the rocket for the planned weekend liftoff.
The solar arrays generate a spacecraft power of 12 kW.
Watch for Ken’s continuing coverage direct from onsite at the Kennedy Space Center press site and Cape Canaveral Air Force Station.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
Learn more about the upcoming ULA Atlas NRO NROL-52 spysat launch on Oct 5 and SpaceX Falcon 9 SES-11 launch on Oct 7, JWST, OSIRIS-REx, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:
Oct 4-6, 8: “ULA Atlas NRO NROL-52 spysat launch, SpaceX SES-11, CRS-12 resupply launches to the ISS, Intelsat35e, BulgariaSat 1 and NRO Spysat, SLS, Orion, Commercial crew capsules from Boeing and SpaceX , Heroes and Legends at KSCVC, ULA Atlas/John Glenn Cygnus launch to ISS, SBIRS GEO 3 launch, GOES-R weather satellite launch, OSIRIS-Rex, Juno at Jupiter, InSight Mars lander, SpaceX and Orbital ATK cargo missions to the ISS, ULA Delta 4 Heavy spy satellite, Curiosity and Opportunity explore Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings
KENNEDY SPACE CENTER, FL – NASA’s OSIRIS-REx asteroid mission captured a lovely ‘Blue Marble’ image of our Home Planet during last Fridays (Sept. 22) successful gravity assist swing-by sending the probe hurtling towards asteroid Bennu for a rendezvous next August on a round trip journey to snatch pristine soil samples.
The newly released color composite image of Earth was taken on Sept. 22 by the spacecrafts MapCam camera.
It was taken at a range of approximately 106,000 miles (170,000 kilometers), just a few hours after OSIRIS-REx completed its critical Earth Gravity Assist (EGA) maneuver.
“NASA’s asteroid sample return spacecraft successfully used Earth’s gravity on Friday, Sept. 22 to slingshot itself on a path toward the asteroid Bennu, for a rendezvous next August,” the agency confirmed after receiving the eagerly awaited telemetry.
OSIRIS-Rex, which stands for Origins, Spectral Interpretation, Resource Identification, and Security – Regolith Explorer, is NASA’s first ever asteroid sample return mission.
As it swung by Earth at 12:52 p.m. EDT on Sept. 22, OSIRIS-REx passed only 10,711 miles (17,237 km) above Antarctica, just south of Cape Horn, Chile.
The probe departed Earth by following a flight path that continued north over the Pacific Ocean and has already travelled 600 million miles (1 billion kilometers) since launching on Sept. 8, 2016.
The preplanned EGA maneuver provided the absolutely essential gravity assisted speed boost required for OSIRIS-Rex to gain enough velocity to complete its journey to the carbon rich asteroid Bennu and back.
The mission was only made possible by the slingshot which provided a velocity change to the spacecraft of 8,451 miles per hour (3.778 kilometers per second).
“The encounter with Earth is fundamental to our rendezvous with Bennu,” said Rich Burns, OSIRIS-REx project manager at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, in a statement.
“The total velocity change from Earth’s gravity far exceeds the total fuel load of the OSIRIS-REx propulsion system, so we are really leveraging our Earth flyby to make a massive change to the OSIRIS-REx trajectory, specifically changing the tilt of the orbit to match Bennu.”
The spacecraft conducted a post flyby science campaign by collecting images and science observations of Earth and the Moon that began four hours after closest approach in order to test and calibrate its onboard suite of five science instruments and help prepare them for OSIRIS-REx’s arrival at Bennu in late 2018.
The MapCam camera Blue Marble image is the first one to be released by NASA and the science team.
The image is centered on the Pacific Ocean and shows several familiar landmasses, including Australia in the lower left, and Baja California and the southwestern United States in the upper right.
“The dark vertical streaks at the top of the image are caused by short exposure times (less than three milliseconds),” said the team.
“Short exposure times are required for imaging an object as bright as Earth, but are not anticipated for an object as dark as the asteroid Bennu, which the camera was designed to image.”
The instrument will gather additional data and measurements scanning the Earth and the Moon for three more days over the next two weeks.
“The opportunity to collect science data over the next two weeks provides the OSIRIS-REx mission team with an excellent opportunity to practice for operations at Bennu,” said Dante Lauretta, OSIRIS-REx principal investigator at the University of Arizona, Tucson.
“During the Earth flyby, the science and operations teams are co-located, performing daily activities together as they will during the asteroid encounter.”
The OSIRIS-Rex spacecraft originally departed Earth atop a United Launch Alliance Atlas V rocket under crystal clear skies on September 8, 2016 at 7:05 p.m. EDT from Space Launch Complex 41 at Cape Canaveral Air Force Station, Florida.
Everything with the launch and flyby went exactly according to plan for the daring mission boldly seeking to gather rocks and soil from carbon rich Bennu.
OSIRIS-Rex is equipped with an ingenious robotic arm named TAGSAM designed to collect at least a 60-gram (2.1-ounce) sample and bring it back to Earth in 2023 for study by scientists using the world’s most advanced research instruments.
Watch for Ken’s continuing onsite NASA mission and launch reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news. Ken Kremer
As it swings by Earth NASA’s first ever asteroid sample return mission, OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security – Regolith Explorer), will pass only 11,000 miles (17,000 kilometers) above Earth just before 12:52 p.m. EDT on Friday.
And NASA is asking the public to try and ‘Catch It If You Can’ – by waving hello and/or taking snapshots during and after the probes high speed flyby.
OSIRIS-REx will be approaching Earth at a velocity of about 19,000 mph on Friday as it begins flying over Australia during the Earth Gravity Assist (EGA) maneuver.
Since blastoff from the Florida Space Coast on Sept. 8, 2016 the probe has already racked up almost 600 million miles on its round trip journey from Earth and back to set up Friday’s critical gravity assist maneuver to Bennu and back.
As OSIRIS-REx continues along its flight path the spacecraft will reach its closest point to Earth over Antarctica, just south of Cape Horn, Chile. It will gain a velocity boost of about 8400 mph.
The spacecraft will also conduct a post flyby science campaign by collecting images and science observations of Earth and the Moon four hours after closest approach to calibrate its five science instruments.
The allure of Bennu is that it is a carbon rich asteroid – thus OSIRIS-REx could potentially bring back samples infused with the organic chemicals like amino acids that are the building blocks of life as we know it.
“We are interested in that material because it is a time capsule from the earliest stages of solar system formation,” OSIRIS-Rex Principal Investigator Dante Lauretta told Universe Today in a prelaunch interview with the spacecraft in the cleanroom at NASA’s Kennedy Space Center.
The do or die gravity assist plunge is absolutely essential to set OSIRIS-REx on course to match the asteroid’s path and speed when it reaches the vicinity of asteroid Bennu a year from now in October 2018.
“The Earth Gravity Assist is a clever way to move the spacecraft onto Bennu’s orbital plane using Earth’s own gravity instead of expending fuel,” says Lauretta, of the University of Arizona, Tucson.
Bennu’s orbit around the Sun is tilted at a six-degree inclination with respect to Earth’s orbital plane.
The asteroid is 1,614-foot (500 m) in diameter and crosses Earth’s orbit around the sun every six years.
Numerous NASA spacecraft – including NASA’s just completed Cassini mission to Saturn – utilize gravity assists around a variety of celestial bodies to gain speed and change course to save vast amounts of propellant and time in order to accomplish science missions and visit additional target objects that would otherwise be impossible.
The flyby will be a nail-biting time for NASA and the science team because right afterwards the refrigerator sized probe will be out of contact with engineers – unable to receive telemetry for about an hour.
“For about an hour, NASA will be out of contact with the spacecraft as it passes over Antarctica,” said Mike Moreau, the flight dynamics system lead at Goddard, in a statement.
“OSIRIS-REx uses the Deep Space Network to communicate with Earth, and the spacecraft will be too low relative to the southern horizon to be in view with either the Deep Space tracking station at Canberra, Australia, or Goldstone, California.”
NASA says the team will regain communication with OSIRIS-REx roughly 50 minutes after closest approach over Antarctica at about 1:40 p.m. EDT.
The post flyby science campaign is set to begin at 4:52 p.m. EDT, Friday, Sept. 22.
The OSIRIS-Rex spacecraft originally departed Earth atop a United Launch Alliance Atlas V rocket under crystal clear skies on September 8, 2016 at 7:05 p.m. EDT from Space Launch Complex 41 at Cape Canaveral Air Force Station, Florida.
Everything with the launch went exactly according to plan for the daring mission boldly seeking to gather rocks and soil from carbon rich Bennu.
OSIRIS-Rex is equipped with an ingenious robotic arm named TAGSAM designed to collect at least a 60-gram (2.1-ounce) sample and bring it back to Earth in 2023 for study by scientists using the world’s most advanced research instruments.
“The primary objective of the OSIRIS-Rex mission is to bring back pristine material from the surface of the carbonaceous asteroid Bennu,” OSIRIS-Rex Principal Investigator Dante Lauretta told me in the prelaunch interview in the KSC cleanroom with the spacecraft as the probe was undergoing final launch preparations.
“We are interested in that material because it is a time capsule from the earliest stages of solar system formation.”
“It records the very first material that formed from the earliest stages of solar system formation. And we are really interested in the evolution of carbon during that phase. Particularly the key prebiotic molecules like amino acids, nucleic acids, phosphates and sugars that build up. These are basically the biomolecules for all of life.”
NASA and the mission team is also inviting the public to get engaged by participating in the Wave to OSIRIS-REx social media campaign.
“Individuals and groups from anywhere in the world are encouraged to take photos of themselves waving to OSIRIS-REx, share them using the hashtag #HelloOSIRISREx and tag the mission account in their posts on Twitter (@OSIRISREx) or Instagram (@OSIRIS_REx).
Participants may begin taking and sharing photos at any time—or wait until the OSIRIS-REx spacecraft makes its closest approach to Earth at 12:52p.m. EDT on Friday, Sept. 22.”
The probe’s flight path during the flyby will pass through the ring of numerous satellites orbiting in geosynchronous orbit, but none are expected to be within close range.
Watch for Ken’s continuing onsite NASA mission and launch reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
Aerospace giant Northrop Grumman will acquire Orbital ATK for approximately $9.2 billion, in a deal the companies announced Monday and they say will “expand capability” is largely “complementary” and involves “little overlap.”
Orbital ATK specializes in a wide variety of launch vehicles, satellites, missiles and munitions that Northrop believes will significantly enhance capabilities it lacks while offering Orbital significantly more technical and financial resources to grow sales and business opportunities.
Under the terms of the huge deal West Falls Church, Virginia based Northrop will dole out approximately $7.8 billion in cash to buy Dulles, Virginia based Orbital ATK and assume $1.4 billion in net debt. Orbital ATK shareholders will receive all-cash consideration of $134.50 per share, which is about a 20% premium above the stock’s price of $110 per share at the close of trading Friday, Sept. 15.
Rumors of the deal first appeared on Sunday.
The final purchase is expected to take place around mid-2018, subject to approval by government regulators and Orbital ATK shareholders.
The Boards of Directors of both companies have already given unanimous approval to the mega buyout.
“Our two companies represent a very complementary fit,” Wes Bush, chief executive officer and president of Northrop Grumman said in a conference call on Monday, Sept. 18.
“We have very little overlap, and we fully expect our combined portfolios of leading technologies, along with our aligned and innovation-focused cultures, to yield significant value creation through revenue, cost and operational synergies, accelerating our profitable growth trajectory.”
Northrop indicated that Orbital ATK will operate as a separate fourth unit – at least initially – and that Orbital programs will benefit from the increased financial resources available from Northrup.
“Upon completion of the acquisition, Northrop Grumman plans to establish Orbital ATK as a new, fourth business sector to ensure a strong focus on operating performance and a smooth transition into Northrop Grumman.”
For his part Orbital ATK CEO David Thompson was very pleased with the buyout and future opportunities.
“The agreement reflects the tremendous value that Orbital ATK has created for our customers, our shareholders and our employees,” David Thompson, Orbital ATK president and chief executive officer said at the conference call.
“The combination will allow our team as a new business sector within Northrop Grumman to maintain strong operational performance on existing customer programs and to pursue new opportunities that require greater technical and financial resources than we currently possess.”
“Our collective customers should benefit from the expanded capabilities for innovation, increased speed of delivery and improved affordability of production resulting from the combination.”
“The combination of our companies and human capital will also significantly benefit our customers,” Bush elaborated. “Together, we can offer our customers enhanced mission capabilities and more competitive offerings in areas such as space, missiles and strategic deterrents.
“Our shareholders can expect revenue synergies from these new business opportunities.”
Northrop Grumman sales for 2017 amount to about $25 billion vs. about $4.5 billion for Orbital ATK
Orbital ATK itself is the product of a very recent merger in 2015 of Orbital Sciences and ATK.
The company employs over 13,000 people including over 4,200 scientists and engineers. It holds a heft backlog of contracts worth more than $15 billion.
Northrop Grumman employs over 68,000 people and is the fifth largest defense contractor.
“The agreement will also provide expanded career options for our employees as part of a larger, more diverse aerospace and defense company,” said Thompson.
It will also benefit stockholders.
“The transaction represents a truly compelling financial proposition for our shareholders, valuing the enterprise at about $9.2 billion and providing our investors with more than 120% total return over the 3-year period from the completion of the Orbital ATK merger in early 2015 to the expected closing in the first half of 2018.”
Orbital ATK launchers run the gamut from small to medium to large.
The rockets include the massive solid rocket boosters for NASA’s Space Launch System (SLS) heavy lift rocket under development, the Antares liquid fueled booster used to launch Cygnus cargo freighters to the International Space Station for NASA, the Minotaur family of medium class solid rocket launchers, as well as sounding rockets for a variety of low weight science missions.
The most recent Orbital ATK launch took place on Aug. 26 when a Minotaur 4 rocket (a retired Peacekeeper ICBM) lifted off from Cape Canaveral with a USAF surveillance satellite.
Orbital ATK also has a thriving satellite manufacturing business building NASA science, commercial, government and military satellites.
The purchase is also estimated to result in $150 million in annual cost savings by 2020.
“We believe that this combination represents a compelling value creation opportunity for the customers, shareholders and employees of both our companies,” stated Bush. “Through our combination, all of our stakeholders will benefit from expanded capabilities, accelerated innovation and greater competitiveness in critical global security domains.”
Watch for Ken’s continuing onsite NASA mission and launch reports direct from the Kennedy Space Center, and Cape Canaveral Air Force Station, Florida, and NASA Wallops Flight Facility, Va.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.