NASA’s First Completed Orion Takes First Step on Journey to the Launch Pad

NASA’s Orion EFT 1 crew module departs Neil Armstrong Operation and Checkout Building on Sept. 11, 2014 at the Kennedy Space Center, FL, beginning the long journey to the launch pad and planned liftoff on Dec. 4, 2014. Credit: Ken Kremer - kenkremer.com

NASA’s Orion EFT 1 crew module departs Neil Armstrong Operation and Checkout Building on Sept. 11, 2014 at the Kennedy Space Center, FL, beginning the long journey to the launch pad and planned liftoff on Dec. 4, 2014. Credit: Ken Kremer – kenkremer.com
Story updated[/caption]

KENNEDY SPACE CENTER – NASA’s first space worthy Orion crew module rolled out of its assembly facility at the Kennedy Space Center (KSC) on Thursday, Sept. 11, taking the first step on its nearly two month journey to the launch pad and planned blastoff this coming December.

The Orion spacecraft is NASA’s next generation human rated vehicle and is scheduled to launch on its maiden uncrewed mission dubbed Exploration Flight Test-1 (EFT-1) in December 2014.

Orion’s assembly was just completed this past weekend by technicians and engineers from prime contractor Lockheed Martin inside the agency’s Neil Armstrong Operations and Checkout (O & C) Facility. They have been working 24/7 to manufacture the capsule and prepare it for launch.

“I’m excited as can be,” said Scott Wilson, NASA’s Orion Manager of Production Operations at KSC during the move. “For some of us this has been ten years in the making.”

The black tiled Orion crew module (CM) was stacked atop an inert white colored service module (SM) in the O & C high bay in June. The CM/SM stack was placed on top of the Orion-to-stage adapter ring that will mate them to the booster rocket. Altogether the capsule, service module and adapter ring stack stands 40 feet tall and 16 feet in diameter.

“This is awesome,” Bob Cabana, Kennedy Space Center director and former shuttle commander, told the media during the rollout.

NASA’s Orion EFT 1 crew module enters the Payload Hazardous Servicing Facility on Sept. 11, 2014 at the Kennedy Space Center, FL, beginning the long journey to the launch pad and planned liftoff on Dec. 4, 2014.  Credit: Ken Kremer - kenkremer.com
NASA’s Orion EFT 1 crew module enters the Payload Hazardous Servicing Facility on Sept. 11, 2014 at the Kennedy Space Center, FL, beginning the long journey to the launch pad and planned liftoff on Dec. 4, 2014. Credit: Ken Kremer – kenkremer.com

Workers subsequently covered the crew module and its thermal insulating tiles with a see through foil to shield the capsule and blanket it under a protective climate controlled atmosphere to guard against humidity.

The CM/SM stack was then lifted and placed onto a 36-wheeled transporter and moved about 1 mile to a KSC facility named the Payload Hazardous Servicing Facility (PHFS) for fueling. The move took about an hour.

“Orion will stay at the PHFS for about a month,” Wilson told me in a KSC interview during the move.

Orion will be fueled with ammonia and hyper-propellants for its flight test, said Wilson.

NASA’s completed Orion EFT 1 crew module loaded on wheeled transporter during move to Launch Abort System Facility (LASF) on Sept. 11, 2014 at the Kennedy Space Center, FL.  Credit: Ken Kremer - kenkremer.com
NASA’s completed Orion EFT 1 crew module loaded on wheeled transporter during move to the Payload Hazardous Servicing Facility (PHSF) on Sept. 11, 2014 at the Kennedy Space Center, FL. Credit: Ken Kremer – kenkremer.com

The fueled Orion will then move yet again to the Launch Abort System Facility (LASF) for the installation of the launch abort system (LAS).

The full Orion stack will rollout to Space Launch Complex 37 in early November.

“Nothing about building the first of a brand new space transportation system is easy,” said Mark Geyer, Orion Program manager.

“But the crew module is undoubtedly the most complex component that will fly in December. The pressure vessel, the heat shield, parachute system, avionics — piecing all of that together into a working spacecraft is an accomplishment. Seeing it fly in three months is going to be amazing.”

The Orion EFT-1 test flight is slated to soar to space atop the mammoth, triple barreled United Launch Alliance (ULA) Delta IV Heavy rocket from Cape Canaveral, Florida, on Dec. 4, 2014.

The state-of-the-art Orion spacecraft will carry America’s astronauts on voyages venturing farther into deep space than ever before – past the Moon to Asteroids, Mars and Beyond!

The two-orbit, four and a half hour EFT-1 flight will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years.

Stay tuned here for Ken’s continuing Orion, SLS, Boeing, Sierra Nevada, Orbital Sciences, SpaceX, commercial space, Curiosity, Mars rover, MAVEN, MOM and more Earth and planetary science and human spaceflight news.

Ken Kremer

Scott Wilson, NASA’s Orion Manager of Production Operations at KSC and Ken Kremer/Universe Today discuss Orion EFT-1 mission during capsule rollout on Sept. 11, 2014 at the Kennedy Space Center, FL.  Credit: Ken Kremer - kenkremer.com
Scott Wilson, NASA’s Orion Manager of Production Operations at KSC and Ken Kremer/Universe Today discuss Orion EFT-1 mission during capsule rollout on Sept. 11, 2014 at the Kennedy Space Center, FL. Credit: Ken Kremer – kenkremer.com

Assembly Complete for NASA’s First Orion Crew Module Blasting off Dec. 2014

NASA’s first completed Orion crew module sits atop its service module at the Neil Armstrong Operations and Checkout Facility at Kennedy Space Center in Florida in early September 2014. The crew and service module will be transferred soon to another facility for fueling. Credit: NASA/Rad Sinyak

This past weekend technicians completed assembly of NASA’s first Orion crew module at the agency’s Neil Armstrong Operations and Checkout (O & C) Facility at the Kennedy Space Center (KSC) in Florida, signifying a major milestone in the vehicles transition from fabrication to full scale launch operations.

Orion is NASA’s next generation human rated vehicle and is scheduled to launch on its maiden uncrewed mission dubbed Exploration Flight Test-1 (EFT-1) in December 2014. It replaces the now retired space shuttle orbiters.

The black Orion crew module (CM) sits stacked atop the white service module (SM) in the O & C high bay photos, shown above and below.

The black area is comprised of the thermal insulating back shell tiles. The back shell and heat shield protect the capsule from the scorching heat of re-entry into the Earth’s atmosphere at excruciating temperatures reaching over 4000 degrees Fahrenheit (2200 C) – detailed in my story here.

Technicians and engineers from prime contractor Lockheed Martin subsequently covered the crew module with protective foil. The CM/SM stack was then lifted and moved for the installation of the Orion-to-stage adapter ring that will mate them to the booster rocket.

Lifting and stacking NASA’s first completed Orion crew and service modules at the Neil Armstrong Operations and Checkout Facility at Kennedy Space Center in Florida in early September 2014.   Credit: NASA/Rad Sinyak
Lifting and stacking NASA’s first completed Orion crew and service modules at the Neil Armstrong Operations and Checkout Facility at Kennedy Space Center in Florida in early September 2014. Credit: NASA/Rad Sinyak

At the conclusion of the EFT-1 flight, the detached Orion capsule plunges back and hits the Earth’s atmosphere at 20,000 MPH (32,000 kilometers per hour).

“That’s about 80% of the reentry speed experienced by the Apollo capsule after returning from the Apollo moon landing missions,” Scott Wilson, NASA’s Orion Manager of Production Operations at KSC, told me during an interview at KSC.

The next step in Orion’s multi stage journey to the launch pad follows later this week with transport of the CM/SM stack to another KSC facility named the Payload Hazardous Servicing Facility (PHFS) for fueling, before moving again for the installation of the launch abort system (LAS) in yet another KSC facility.

Stacking NASA’s first completed Orion crew and service modules at the Neil Armstrong Operations and Checkout Facility at Kennedy Space Center in Florida in early September 2014.   Credit: NASA/Rad Sinyak
Stacking NASA’s first completed Orion crew and service modules at the Neil Armstrong Operations and Checkout Facility at Kennedy Space Center in Florida in early September 2014. Credit: NASA/Rad Sinyak

The Orion EFT-1 test flight is slated to soar to space atop the mammoth, triple barreled United Launch Alliance (ULA) Delta IV Heavy rocket from Cape Canaveral, Florida, on Dec. 4, 2014 .

The state-of-the-art Orion spacecraft will carry America’s astronauts on voyages venturing farther into deep space than ever before – past the Moon to Asteroids, Mars and Beyond!

NASA’s first completed Orion crew and service modules being moved inside the High Bay at the Neil Armstrong Operations and Checkout Facility at Kennedy Space Center in Florida in early September 2014.   Credit: NASA/Rad Sinyak
NASA’s first completed Orion crew and service modules being moved inside the High Bay at the Neil Armstrong Operations and Checkout Facility at Kennedy Space Center in Florida in early September 2014. Credit: NASA/Rad Sinyak

NASA is simultaneously developing a monster heavy lift rocket known as the Space Launch System or SLS, that will eventually launch Orion on its deep space missions.

The maiden SLS/Orion launch on the Exploration Mission-1 (EM-1) unmanned test flight is now scheduled for no later than November 2018 – read my story here.

SLS will be the world’s most powerful rocket ever built.

The two-orbit, four and a half hour EFT-1 flight will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years.

Orion service module assembly in the Operations and Checkout facility at Kennedy Space Center - now renamed in honor of Neil Armstrong.   Credit: Ken Kremer/kenkremer.com
Orion service module assembly in the Operations and Checkout facility at Kennedy Space Center – now renamed in honor of Neil Armstrong. Credit: Ken Kremer/kenkremer.com

The EFT-1 mission will test the systems critical for EM-1 and future human missions to deep space that follow.

The Orion EFT-1 capsule has come a long way over the past two years of assembly.

The bare bones, welded shell structure of the Orion crew cabin arrived at KSC in Florida from NASA’s Michoud facility in New Orleans in June 2012 and was officially unveiled at a KSC welcoming ceremony on 2 July 2012, attended by this author.

“Everyone is very excited to be working on the Orion. We have a lot of work to do. It’s a marathon not a sprint to build and test the vehicle,” said Jules Schneider, Orion Project manager for Lockheed Martin at KSC, during an exclusive 2012 interview with Universe Today inside the Orion clean room at KSC.

Orion crew capsule, Service Module and 6 ton Launch Abort System (LAS) mock up stack inside the transfer aisle of the Vehicle Assembly Building (VAB) at the Kennedy Space Center (KSC) in Florida.  Service module at bottom.  Credit: Ken Kremer/kenkremer.com
Orion crew capsule, Service Module and 6 ton Launch Abort System (LAS) mock up stack inside the transfer aisle of the Vehicle Assembly Building (VAB) at the Kennedy Space Center (KSC) in Florida. Service module at bottom. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Orion, SLS, Boeing, Sierra Nevada, Orbital Sciences, SpaceX, commercial space, Curiosity, Mars rover, MAVEN, MOM and more Earth and planetary science and human spaceflight news.

Ken Kremer

Orion crew module back shell tiles and panels inside the Neil Armstrong Operations and Checkout Building high bay at the Kennedy Space Center in Florida.   Credit: Ken Kremer - kenkremer.com
Orion crew module back shell tiles and panels inside the Neil Armstrong Operations and Checkout Building high bay at the Kennedy Space Center in Florida. Credit: Ken Kremer – kenkremer.com
Orion EFT-1 capsule under construction inside the Structural Assembly Jig at the Operations and Checkout Building (O & C) at the Kennedy Space Center (KSC); Jules Schneider, Orion Project Manager for Lockheed Martin and Ken Kremer, Universe Today.  Credit: Ken Kremer - kenkremer.com
Orion EFT-1 capsule under construction inside the Structural Assembly Jig at the Operations and Checkout Building (O & C) at the Kennedy Space Center (KSC); Jules Schneider, Orion Project Manager for Lockheed Martin and Ken Kremer, Universe Today. Credit: Ken Kremer – kenkremer.com

MAVEN Mars Orbiter Ideally Poised to Uniquely Map Comet Siding Spring Composition – Exclusive Interview with Principal Investigator Bruce Jakosky

MAVEN is NASA’s next Mars Orbiter and will investigate how the planet lost most of its atmosphere and water over time. Credit: NASA

MAVEN to conduct up close observations of Comet Siding Spring during Oct. 2014
MAVEN is NASA’s next Mars Orbiter and will investigate how the planet lost most of its atmosphere and water over time. Credit: NASA
Story updated[/caption]

NASA’s MAVEN Mars Orbiter is “ideally” instrumented to uniquely “map the composition of Comet Siding Spring” in great detail when it streaks past the Red Planet during an extremely close flyby on Oct. 19, 2014 – thereby providing a totally “unexpected science opportunity … and a before and after look at Mars atmosphere,” Prof. Bruce Jakosky, MAVEN’s Principal Investigator of CU-Boulder, CO, told Universe Today in an exclusive interview.

The probes state-of-the-art ultraviolet spectrograph will be the key instrument making the one-of-a-kind compositional observations of this Oort cloud comet making its first passage through the inner solar system on its millions year orbital journey.

“MAVEN’s Imaging Ultraviolet Spectrograph (IUVS) is the ideal way to observe the comet coma and tail,” Jakosky explained.

“The IUVS can do spectroscopy that will allow derivation of compositional information.”

“It will do imaging of the entire coma and tail, allowing mapping of composition.”

Comet: Siding Spring. The images above show -- before and after filtering -- comet C/2013 A1, also known as Siding Spring, as captured by Wide Field Camera 3 on NASA's Hubble Space Telescope.  Image Credit: NASA, ESA, and J.-Y. Li (Planetary Science Institute)
Comet: Siding Spring
The images above show — before and after filtering — comet C/2013 A1, also known as Siding Spring, as captured by Wide Field Camera 3 on NASA’s Hubble Space Telescope. Image Credit: NASA, ESA, and J.-Y. Li (Planetary Science Institute)

Moreover the UV spectrometer is the only one of its kind amongst NASA’s trio of Martian orbiters making its investigations completely unique.

“IUVS is the only ultraviolet spectrometer that will be observing the comet close up, and that gives the detailed compositional information,” Jakosky elaborated

And MAVEN, or the Mars Atmosphere and Volatile Evolution, is arriving just in the nick of time to fortuitously capture this fantastically rich data set of a pristine remnant from the solar system’s formation.

The spacecraft reaches Mars in less than 15 days. It will rendezvous with the Red Planet on Sept. 21 after a 10 month interplanetary journey from Earth.

Furthermore, since MAVEN’s purpose is the first ever detailed study of Mars upper atmosphere, it will get a before and after look at atmospheric changes.

“We’ll take advantage of this unexpected science opportunity to make observations both of the comet and of the Mars upper atmosphere before and after the comet passage – to look for any changes,” Jakosky stated.

How do MAVEN’s observations compare to NASA’s other orbiters Mars Odyssey (MO) and Mars Reconnaissance Orbiter (MRO), I asked?

“The data from the other orbiters will be complementary to the data from IUVS.”

“Visible light imaging from the other orbiters provides data on the structure of dust in the coma and tail. And infrared imaging provides information on the dust size distribution.”

IUVS is one of MAVENS’s nine science sensors in three instrument suites targeted to study why and exactly when did Mars undergo the radical climatic transformation.

How long will MAVEN make observations of Comet C/2013 A1 Siding Spring?

“We’ll be using IUVS to look at the comet itself, about 2 days before comet nucleus closest approach.”

“In addition, for about two days before and two days after nucleus closest approach, we’ll be using one of our “canned” sequences to observe the upper atmosphere and solar-wind interactions.”

“This will give us a detailed look at the upper atmosphere both before and after the comet, allowing us to look for differences.”

Describe the risk that Comet Siding Spring poses to MAVEN, and the timing?

“We have the encounter with Comet Siding Spring about 2/3 of the way through the commissioning phase we call transition.”

“We think that the risk to the spacecraft from comet dust is minimal, but we’ll be taking steps to reduce the risk even further so that we can move on toward our science mission.”

“Throughout this entire period, though, spacecraft and instrument health and safety come first.”

This graphic depicts the orbit of comet C/2013 A1 Siding Spring as it swings around the sun in 2014. On Oct. 19, 2014 the comet will have a very close pass at Mars. Its nucleus will miss Mars by about 82,000 miles (132,000 kilometers).   Credit: NASA/JPL-Caltech
This graphic depicts the orbit of comet C/2013 A1 Siding Spring as it swings around the sun in 2014. On Oct. 19, 2014 the comet will have a very close pass at Mars. Its nucleus will miss Mars by about 82,000 miles (132,000 kilometers). Credit: NASA/JPL-Caltech

What’s your overall hope and expectation from the comet encounter?

“Together [with the other orbiters], I’m hoping it will all provide quite a data set!

“From Mars, the comet truly will fill the sky!” Jakosky gushed.

The comet’s nucleus will fly by Mars at a distance of only about 82,000 miles (132,000 kilometers) at 2:28 p.m. ET (18:28 GMT) on Oct. 19, 2014. That’s barely 1/3 the distance from the Earth to the Moon.

What’s the spacecraft status today?

“Everything is on track.”

Maven spacecraft trajectory to Mars. Credit: NASA
Maven spacecraft trajectory to Mars on Sept. 4, 2014. Credit: NASA

The $671 Million MAVEN spacecraft’s goal is to study Mars upper atmosphere to explore how the Red Planet lost most of its atmosphere and water over billions of years and the transition from its ancient, water-covered past, to the cold, dry, dusty world that it has become today.

MAVEN soared to space over nine months ago on Nov. 18, 2013 following a flawless blastoff from Cape Canaveral Air Force Station’s Space Launch Complex 41 atop a powerful Atlas V rocket and thus began a 10 month interplanetary voyage from Earth to the Red Planet.

It is streaking to Mars along with ISRO’s MOM orbiter, which arrives a few days later on September 24, 2014.

So far it has traveled 95% of the distance to the Red Planet, amounting to over 678,070,879 km (421,332,902 mi).

As of Sept. 4, MAVEN was 205,304,736 km (127,570,449 miles) from Earth and 4,705,429 km (2,923,818 mi) from Mars. Its Earth-centered velocity is 27.95 km/s (17.37 mi/s or 62,532 mph) and Sun-centered velocity is 22.29 km/s (13.58 mi/s or 48,892 mph) as it moves on its heliocentric arc around the Sun.

One-way light time from MAVEN to Earth is 11 minutes and 24 seconds.

MAVEN is NASA’s next Mars orbiter and launched on Nov. 18, 2014 from Cape Canaveral, Florida. It will study the evolution of the Red Planet’s atmosphere and climate. Universe Today visited MAVEN inside the clean room at the Kennedy Space Center. With solar panels unfurled, this is exactly how MAVEN looks when flying through space and circling Mars and observing Comet Siding Spring. Credit: Ken Kremer/kenkremer.com
MAVEN is NASA’s next Mars orbiter and launched on Nov. 18, 2014 from Cape Canaveral, Florida. It will study the evolution of the Red Planet’s atmosphere and climate. Universe Today visited MAVEN inside the clean room at the Kennedy Space Center. With solar panels unfurled, this is exactly how MAVEN looks when flying through space and circling Mars and observing Comet Siding Spring. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing MAVEN, MOM, Rosetta, Opportunity, Curiosity, Mars rover and more Earth and planetary science and human spaceflight news.

Ken Kremer

NASA’s Mars bound MAVEN spacecraft launches atop Atlas V booster at 1:28 p.m. EST from Space Launch Complex 41 at Cape Canaveral Air Force Station on Nov. 18, 2013. Image taken from the roof of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center.  Credit: Ken Kremer/kenkremer.com
NASA’s Mars bound MAVEN spacecraft launches atop Atlas V booster at 1:28 p.m. EST from Space Launch Complex 41 at Cape Canaveral Air Force Station on Nov. 18, 2013. Image taken from the roof of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center. Credit: Ken Kremer/kenkremer.com
NASA’s MAVEN Mars orbiter, chief scientist Prof. Bruce Jakosky of CU-Boulder and Ken Kremer of Universe Today inside the clean room at the Kennedy Space Center on Sept. 27, 2013. MAVEN launches to Mars on Nov. 18, 2013 from Florida. Credit: Ken Kremer/kenkremer.com
NASA’s MAVEN Mars orbiter, chief scientist Prof. Bruce Jakosky of CU-Boulder and Ken Kremer of Universe Today inside the clean room at the Kennedy Space Center on Sept. 27, 2013. MAVEN launched to Mars on Nov. 18, 2013 from Florida. Credit: Ken Kremer/kenkremer.com

Heat Protecting Back Shell Tiles Installed on NASA’s Orion EFT-1 Spacecraft Set for Dec. 2014 Launch

Inside the Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, technicians dressed in clean-room suits install a back shell tile panel onto the Orion crew module. Credit: NASA/Dimitri Gerondidakis

Fabrication of the pathfinding version of NASA’s Orion crew capsule slated for its inaugural unmanned test flight in December is entering its final stages at the Kennedy Space Center (KSC) launch site in Florida.

Engineers and technicians have completed the installation of Orion’s back shell panels which will protect the spacecraft and future astronauts from the searing heat of reentry and scorching temperatures exceeding 3,150 degrees Fahrenheit.

Orion is scheduled to launch on its maiden uncrewed mission dubbed Exploration Flight Test-1 (EFT-1) test flight in December 2014 atop the mammoth, triple barreled United Launch Alliance (ULA) Delta IV Heavy rocket from Cape Canaveral, Florida.

Inside the Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, technicians dressed in clean-room suits have installed a back shell tile panel onto the Orion crew module and are checking the fit next to the middle back shell tile panel. Preparations are underway for Exploration Flight Test-1, or EFT-1. Credit: NASA/Dimitri Gerondidakis
Inside the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, technicians dressed in clean-room suits have installed a back shell tile panel onto the Orion crew module and are checking the fit next to the middle back shell tile panel. Preparations are underway for Exploration Flight Test-1, or EFT-1. Credit: NASA/Dimitri Gerondidakis

The cone-shaped back shell actually has a rather familiar look since its comprised of 970 black thermal protection tiles – the same tiles which protected the belly of the space shuttles during three decades and 135 missions of returning from space.

However, Orion’s back shell tiles will experience temperatures far in excess of those from the shuttle era. Whereas the space shuttles traveled at 17,000 miles per hour, Orion will hit the Earth’s atmosphere at some 20,000 miles per hour on this first flight test.

The faster a spacecraft travels through Earth’s atmosphere, the more heat it generates. So even though the hottest the space shuttle tiles got was about 2,300 degrees Fahrenheit, the Orion back shell could get up to 3,150 degrees, despite being in a cooler area of the vehicle.

Engineers have also rigged Orion to conduct a special in flight test to see just how vulnerable the vehicle is to the onslaught of micrometeoroid orbital debris.

Two one-inch-wide holes have been drilled into tiles on Orion’s back shell to simulate micrometeoroid orbital debris damage.  Sensors on the vehicle will record how high temperatures climb inside the hole during Orion’s return through Earth’s atmosphere following its first flight in December.  Credit:  NASA
Two one-inch-wide holes have been drilled into tiles on Orion’s back shell to simulate micrometeoroid orbital debris damage. Sensors on the vehicle will record how high temperatures climb inside the hole during Orion’s return through Earth’s atmosphere following its first flight in December. Credit: NASA

Even tiny particles can cause immense and potentially fatal damage at high speed by punching a hole through the back shell tiles and possibly exposing the spacecrafts structure to temperatures high than normal.

“Below the tiles, the vehicle’s structure doesn’t often get hotter than about 300 degrees Fahrenheit, but if debris breeched the tile, the heat surrounding the vehicle during reentry could creep into the hole it created, possibly damaging the vehicle,” says NASA.

The team has run done numerous modeling studies on the effect of micrometeoroid hits. Now it’s time for a real world test.

Therefore engineers have purposely drilled a pair of skinny 1 inch wide holes into two 1.47 inches thick tiles to mimic damage from a micrometeoroid hit. The holes are 1.4 inches and 1 inch deep and are located on the opposite side of the back shell from Orion’s windows and reaction control system jets, according to NASA.

“We want to know how much of the hot gas gets into the bottom of those cavities,” said Joseph Olejniczak, manager of Orion aerosciences, in a NASA statement.

“We have models that estimate how hot it will get to make sure it’s safe to fly, but with the data we’ll gather from these tiles actually coming back through Earth’s atmosphere, we’ll make new models with higher accuracy.”

Orion crew module back shell tiles and panels inside the Neil Armstrong Operations and Checkout Building high bay at the Kennedy Space Center in Florida.   Credit: Ken Kremer - kenkremer.com
Orion crew module back shell tiles and panels inside the Neil Armstrong Operations and Checkout Building high bay at the Kennedy Space Center in Florida. Credit: Ken Kremer – kenkremer.com

The data gathered will help inform the team about the heat effects from potential damage and possible astronaut repair options in space.

Orion is NASA’s next generation human rated vehicle now under development to replace the now retired space shuttle.

The state-of-the-art spacecraft will carry America’s astronauts on voyages venturing farther into deep space than ever before – past the Moon to Asteroids, Mars and Beyond!

The two-orbit, four and a half hour EFT-1 flight will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years.

The EFT-1 mission will test the systems critical for future human missions to deep space.

Orion’s back shell attachment and final assembly is taking place in the newly renamed Neil Armstrong Operations and Checkout Building, by prime contractor Lockheed Martin.

Inside the Operations and Checkout Building high bay at the Kennedy Space Center, Fl, technicians on work platform monitor progress as crane lowers the middle back shell tile panel for installation on the Orion crew module.   Credit: NASA/Dimitri Gerondidakis
Inside the Operations and Checkout Building high bay at the Kennedy Space Center, Fl, technicians on work platform monitor progress as crane lowers the middle back shell tile panel for installation on the Orion crew module. Credit: NASA/Dimitri Gerondidakis

One of the primary goals of NASA’s eagerly anticipated Orion EFT-1 uncrewed test flight is to test the efficacy of the heat shield and back shell tiles in protecting the vehicle – and future human astronauts – from excruciating temperatures reaching over 4000 degrees Fahrenheit (2200 C) during scorching re-entry heating.

At the conclusion of the EFT-1 flight, the detached Orion capsule plunges back and re-enters the Earth’s atmosphere at 20,000 MPH (32,000 kilometers per hour).

“That’s about 80% of the reentry speed experienced by the Apollo capsule after returning from the Apollo moon landing missions,” Scott Wilson, NASA’s Orion Manager of Production Operations at KSC, told me during an interview at KSC.

A trio of parachutes will then unfurl to slow Orion down for a splashdown in the Pacific Ocean.

The Orion EFT-1 vehicle is due to roll out of the O & C in about two weeks and be moved to its fueling facility at KSC for the next step in launch processing.

Orion will eventually launch atop the SLS, NASA’s new mammoth heavy lift booster which the agency is now targeting for its maiden launch no later than November 2018 – detailed in my story here.

Stay tuned here for Ken’s continuing Orion, SLS, Boeing, Sierra Nevada, Orbital Sciences, SpaceX, commercial space, Curiosity, Mars rover, MAVEN, MOM and more Earth and planetary science and human spaceflight news.

Ken Kremer

US Heavy Lift Mars Rocket Passes Key Review and NASA Sets 2018 Maiden Launch Date

Looking to the future of space exploration, NASA and TopCoder have launched the "High Performance Fast Computing Challenge" to improve the performance of their Pleiades supercomputer. Credit: NASA/MSFC

Artist concept of NASA’s Space Launch System (SLS) 70-metric-ton configuration launching to space. SLS will be the most powerful rocket ever built for deep space missions, including to an asteroid and ultimately to Mars. Credit: NASA/MSFC
Story updated[/caption]

After a thorough review of cost and engineering issues, NASA managers formally approved the development of the agency’s mammoth heavy lift rocket – the Space Launch System or SLS – which will be the world’s most powerful rocket ever built and is intended to take astronauts farther beyond Earth into deep space than ever before possible – to Asteroids and Mars.

The maiden test launch of the SLS is targeted for November 2018 and will be configured in its initial 70-metric-ton (77-ton) version, top NASA officials announced at a briefing for reporters on Aug. 27.

On its first flight known as EM-1, the SLS will also loft an uncrewed Orion spacecraft on an approximately three week long test flight taking it beyond the Moon to a distant retrograde orbit, said William Gerstenmaier, associate administrator for the Human Explorations and Operations Mission Directorate at NASA Headquarters in Washington, at the briefing.

Previously NASA had been targeting Dec. 2017 for the inaugural launch from the Kennedy Space Center in Florida – a slip of nearly one year.

But the new Nov. 2018 target date is what resulted from the rigorous assessment of the technical, cost and scheduling issues.

This artist concept shows NASA’s Space Launch System, or SLS, rolling to a launch pad at Kennedy Space Center at night. SLS will be the most powerful rocket in history, and the flexible, evolvable design of this advanced, heavy-lift launch vehicle will meet a variety of crew and cargo mission needs.   Credit:  NASA/MSFC
This artist concept shows NASA’s Space Launch System, or SLS, rolling to a launch pad at Kennedy Space Center at night. SLS will be the most powerful rocket in history, and the flexible, evolvable design of this advanced, heavy-lift launch vehicle will meet a variety of crew and cargo mission needs. Credit: NASA/MSFC

The decision to move forward with the SLS comes after a wide ranging review of the technical risks, costs, schedules and timing known as Key Decision Point C (KDP-C), said Associate Administrator Robert Lightfoot, at the briefing. Lightfoot oversaw the review process.

“After rigorous review, we’re committing today to a funding level and readiness date that will keep us on track to sending humans to Mars in the 2030s – and we’re going to stand behind that commitment,” said Lightfoot. “Our nation is embarked on an ambitious space exploration program.”

“We are making excellent progress on SLS designed for missions beyond low Earth orbit,” Lightfoot said. “We owe it to the American taxpayers to get it right.”

He said that the development cost baseline for the 70-metric ton version of the SLS was $7.021 billion starting from February 2014 and continuing through the first launch set for no later than November 2018.

Lightfoot emphasized that NASA is also building an evolvable family of vehicles that will increase the lift to an unprecedented lift capability of 130 metric tons (143 tons), which will eventually enable the deep space human missions farther out than ever before into our solar system, leading one day to Mars.

“It’s also important to remember that we’re building a series of launch vehicles here, not just one,” Lightfoot said.

Blastoff of NASA’s Space Launch System (SLS) rocket and Orion crew vehicle from the Kennedy Space Center, Florida.   Credit: NASA/MSFC
Blastoff of NASA’s Space Launch System (SLS) rocket and Orion crew vehicle from the Kennedy Space Center, Florida. Credit: NASA/MSFC

Lightfoot and Gerstenmaier both indicated that NASA hopes to launch sooner, perhaps by early 2018.

“We will keep the teams working toward a more ambitious readiness date, but will be ready no later than November 2018,” said Lightfoot.

The next step is conduct the same type of formal KDP-C reviews for the Orion crew vehicle and Ground Systems Development and Operations programs.

The first piece of SLS flight hardware already built and to be tested in flight is the stage adapter that will fly on the maiden launch of Orion this December atop a ULA Delta IV Heavy booster during the EFT-1 mission.

The initial 70-metric-ton (77-ton) version of the SLS stands 322 feet tall and provides 8.4 million pounds of thrust. That’s already 10 percent more thrust at launch than the Saturn V rocket that launched NASA’s Apollo moon landing missions, including Apollo 11, and it can carry more than three times the payload of the now retired space shuttle orbiters.

The core stage towers over 212 feet (64.6 meters) tall with a diameter of 27.6 feet (8.4 m) and stores cryogenic liquid hydrogen and liquid oxygen. Boeing is the prime contractor for the SLS core stage.

The first stage propulsion is powered by four RS-25 space shuttle main engines and a pair of enhanced five segment solid rocket boosters (SRBs) also derived from the shuttles four segment boosters.

The pressure vessels for the Orion crew capsule, including EM-1 and EFT-1, are also being manufactured at MAF. And all of the External Tanks for the space shuttles were also fabricated at MAF.

The airframe structure for the first Dream Chaser astronaut taxi to low Earth orbit is likewise under construction at MAF as part of NASA’s commercial crew program.

The first crewed flight of the SLS is set for the second launch on the EM-2 mission around the 2020/2021 time frame, which may visit a captured near Earth asteroid.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Boeing Completes All CST-100 Commercial Crew CCiCAP Milestones on Time and on Budget for NASA – Ahead of Competitors

Boeing unveiled full scale mockup of their commercial CST-100 'Space Taxi' on June 9, 2014 at its intended manufacturing facility at the Kennedy Space Center in Florida. The private vehicle will launch US astronauts to low Earth orbit and the ISS from US soil. Credit: Ken Kremer - kenkremer.com

In the ‘new race to space’ to restore our capability to launch Americans to orbit from American soil with an American-built commercial ‘space taxi’ as rapidly and efficiently as possible, Boeing has moved to the front of the pack with their CST-100 spaceship by completing all their assigned NASA milestones on time and on budget in the current phase of the agency’s Commercial Crew Program (CCP).

Boeing is the first, and thus far only one of the three competitors (including Sierra Nevada Corp. and SpaceX) to complete all their assigned milestone task requirements under NASA’s Commercial Crew Integrated Capability (CCiCap) initiative funded under the auspices of the agency’s Commercial Crew Program.

The CST-100 is a privately built, man rated capsule being developed with funding from NASA via the commercial crew initiative in a public/private partnership between NASA and private industry.

The overriding goal is restart America’s capability to reliably launch our astronauts from US territory to low-Earth orbit (LEO) and the International Space Station (ISS) by 2017.

Hatch opening to Boeing’s commercial CST-100 crew transporter.  Credit: Ken Kremer - kenkremer.com
Hatch opening to Boeing’s commercial CST-100 crew transporter. Credit: Ken Kremer – kenkremer.com

Private space taxis are the fastest and cheapest way to accomplish that and end the gap in indigenous US human spaceflight launches.

Since the forced shutdown of NASA’s Space Shuttle program following its final flight in 2011, US astronauts have been 100% dependent on the Russians and their cramped but effective Soyuz capsule for rides to the station and back – at a cost exceeding $70 million per seat.

Boeing announced that NASA approved the completion of the final two commercial crew milestones contracted to Boeing for the CST-100 development.

These last two milestones are the Phase Two Spacecraft Safety Review of its Crew Space Transportation (CST)-100 spacecraft and the Critical Design Review (CDR) of its integrated systems.

The CDR milestone was completed in July and comprised 44 individual CDRs including propulsion, software, avionics, landing, power and docking systems.

The Phase Two Spacecraft Safety Review included an overall hazard analysis of the spacecraft, identifying life-threatening situations and ensuring that the current design mitigated any safety risks, according to Boeing.

“The challenge of a CDR is to ensure all the pieces and sub-systems are working together,” said John Mulholland, Boeing Commercial Crew program manager, in a statement.

“Integration of these systems is key. Now we look forward to bringing the CST-100 to life.”

Boeing CST-100 manned space capsule in free flight in low Earth orbit will transport astronaut crews to the International Space Station. Credit: Boeing
Boeing CST-100 manned space capsule in free flight in low Earth orbit will transport astronaut crews to the International Space Station. Credit: Boeing

Passing the CDR and completing all the NASA milestone requirements is a significant step leading to the final integrated design for the CST-100 space taxi, ground systems and Atlas V launcher that will boost it to Earth orbit from Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida.

The Sierra Nevada Dream Chaser and SpaceX Dragon V2 and are also receiving funds from NASA’s commercial crew program.

All three American aerospace firms vying for the multibillion dollar NASA contract to build an American ‘space taxi’ to ferry US astronauts to the International Space Station and back as soon as 2017.

NASA’s Commercial Crew Program office is expected to announce the winner(s) of the high stakes, multibillion dollar contract to build America’s next crew vehicles in the next program phase, known as Commercial Crew Transportation Capability (CCtCap), “sometime around the end of August/September,” NASA News spokesman Allard Beutel confirmed to me.

“We don’t have a scheduled date for the commercial crew award(s).”

There will be 1 or more CCtCAP winners.

Boeing CST-100 capsule interior up close.  Credit: Ken Kremer - kenkremer.com
Boeing CST-100 capsule interior up close. Credit: Ken Kremer – kenkremer.com

On June 9, 2014, Boeing revealed the design of their CST-100 astronaut spaceliner by unveiling a full scale mockup of their commercial ‘space taxi’ at the new home of its future manufacturing site at the Kennedy Space Center (KSC) located inside a refurbished facility that most recently was used to prepare NASA’s space shuttle orbiters for assembly missions to the ISS.

The CST-100 crew transporter was unveiled at the invitation only ceremony and media event held inside the gleaming white and completely renovated NASA processing hangar known as Orbiter Processing Facility-3 (OPF-3) – and attended by Universe Today.

The huge 64,000 square foot facility has sat dormant since the shuttles were retired following their final flight (STS-135) in July 2011 and which was commanded by Chris Ferguson, who now serves as director of Boeing’s Crew and Mission Operations.

Ferguson and the Boeing team are determined to get Americans back into space from American soil with American rockets.

Read my exclusive, in depth one-on-one interviews with Chris Ferguson – America’s last shuttle commander – about the CST-100; here and here.

Chris Ferguson, last Space Shuttle Atlantis commander, tests the Boeing CST-100 capsule which may fly US astronauts to the International Space Station in 2017.  Ferguson is now  Boeing’s director of Crew and Mission Operations for the Commercial Crew Program vying for NASA funding.  Credit: NASA/Boeing
Chris Ferguson, last Space Shuttle Atlantis commander, tests the Boeing CST-100 capsule which may fly US astronauts to the International Space Station in 2017. Ferguson is now Boeing’s director of Crew and Mission Operations for the Commercial Crew Program vying for NASA funding. Credit: NASA/Boeing

Boeing’s philosophy is to make the CST-100 a commercial endeavor, as simple and cost effective as possible in order to quickly kick start US human spaceflight efforts. It’s based on proven technologies drawing on Boeing’s 100 year heritage in aviation and space.

“The CST-100, it’s a simple ride up to and back from space,” Ferguson told me. “So it doesn’t need to be luxurious. It’s an ascent and reentry vehicle – and that’s all!”

So the CST-100 is basically a taxi up and a taxi down from LEO. NASA’s complementary human space flight program involving the Orion crew vehicle is designed for deep space exploration.

The vehicle includes five recliner seats, a hatch and windows, the pilots control console with several attached Samsung tablets for crew interfaces with wireless internet, a docking port to the ISS and ample space for 220 kilograms of cargo storage of an array of equipment, gear and science experiments depending on NASA’s allotment choices.

The interior features Boeing’s LED Sky Lighting with an adjustable blue hue based on its 787 Dreamliner airplanes to enhance the ambience for the crew.

Boeing CST-100 crew capsule will carry five person crews to the ISS.  Credit: Ken Kremer - kenkremer.com
Boeing CST-100 crew capsule will carry five person crews to the ISS. Credit: Ken Kremer – kenkremer.com

The reusable capsule will launch atop a man rated United Launch Alliance (ULA) Atlas V rocket.

“The first unmanned orbital test flight is planned in January 2017… and may go to the station,” Ferguson told me during our exclusive interview about Boeing’s CST-100 plans.

Since 2010, NASA has spent over $1.5 billion on the commercial crew effort.

Boeing has received the largest share of funding in the current CCiCAP phase amounting to about $480 million. SpaceX received $460 million for the Dragon V2 and Sierra Nevada Corp. (SNC) has received a half award of $227.5 million for the Dream Chaser mini-shuttle.

SNC will be the next company to complete all of NASA’s milestones this Fall, SNC VP Mark Sirangelo told me in an exclusive interview. SpaceX will be the final company finishing its milestones sometime in 2015.

Stay tuned here for Ken’s continuing Boeing, Sierra Nevada, SpaceX, Orbital Sciences, commercial space, Orion, Curiosity, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

Boeing's CST-100 project engineer Tony Castilleja describes the capsule during a fascinating interview with Ken Kremer/Universe Today on June 9, 2014 while sitting inside the full scale mockup of the Boeing CST-100 space taxi during unveiling ceremony at NASA's Kennedy Space Center. Credit: Ken Kremer - kenkremer.com
Boeing’s CST-100 project engineer Tony Castilleja describes the capsule during a fascinating interview with Ken Kremer/Universe Today on June 9, 2014 while sitting inside the full scale mockup of the Boeing CST-100 space taxi during unveiling ceremony at NASA’s Kennedy Space Center. Credit: Ken Kremer – kenkremer.com

Airframe Structure for First Commercial Dream Chaser Spacecraft Unveiled

SNC's Dream Chaser® orbital structural airframe at Lockheed Martin in Ft. Worth, Texas. Credit: Lockheed Martin

The orbital airframe structure for the first commercial Dream Chaser mini-shuttle that will launch to Earth orbit just over two years from now has been unveiled by Sierra Nevada Corporation (SNC) and program partner Lockheed Martin.

Sierra Nevada is moving forward with plans for Dream Chaser’s first launch and unmanned orbital test flight in November 2016 atop a United Launch Alliance (ULA) Atlas V rocket from Cape Canaveral, Florida.

The winged Dream Chaser is being developed under NASA’s Commercial Crew Program aimed at restoring America’s indigenous human spaceflight access to low Earth orbit and the International Space Station (ISS).

Dream Chaser commercial crew vehicle built by Sierra Nevada Corp docks at ISS
Dream Chaser commercial crew vehicle built by Sierra Nevada Corp docks at ISS

Lockheed Martin is fabricating the structural components for the Dream Chaser’s orbital spacecraft composite structure at the NASA’s Michoud Assembly Facility (MAF) in New Orleans, Louisiana.

MAF has played a long and illustrious history in human space flight dating back to Apollo and also as the site where all the External Tanks for NASA’s space shuttle program were manufactured. Lockheed Martin also builds the pressure vessels for NASA’s deep space Orion crew vehicle at MAF.

Each piece is thoroughly inspected to insure it meets specification and then shipped to Lockheed Martin’s Aeronautics facility in Fort Worth, Texas for integration into the airframe and co-bonded assembly.

Following helicopter release the private Dream Chaser spaceplane starts glide to runway at Edwards Air Force Base, Ca. during first free flight landing test on Oct. 26, 2013 - in this screenshot.   Credit: Sierra Nevada Corp.
Following helicopter release the private Dream Chaser spaceplane starts glide to runway at Edwards Air Force Base, Ca. during first free flight landing test on Oct. 26, 2013 – in this screenshot. Credit: Sierra Nevada Corp.

Sierra Nevada chose Lockheed Martin for this significant role in building Dream Chaser airframe based on their wealth of aerospace experience and expertise.

The composite airframe structure was recently unveiled at a joint press conference by Sierra Nevada Corporation and Lockheed Martin at the Fort Worth facility.

“As a valued strategic partner on SNC’s Dream Chaser Dream Team, Lockheed Martin is under contract to manufacture Dream Chaser orbital structure airframes,” said Mark N. Sirangelo, corporate vice president of SNC’s Space Systems, in a statement.

“We competitively chose Lockheed Martin because they are a world leader in composite manufacturing, have the infrastructure, resources and quality control needed to support the needs of an orbital vehicle and have a proven track record of leading our nation’s top aviation and aerospace programs. Lockheed Martin’s diverse heritage coupled with their current work on the Orion program adds an extra element of depth and expertise to our program. SNC and Lockheed Martin continue to expand and develop a strong multi-faceted relationship.”

Dream Chaser measures about 29 feet long with a 23 foot wide wing span and is about one third the size of NASA’s space shuttle orbiters.

“We are able to tailor our best manufacturing processes, and our innovative technology from across the corporation to fit the needs of the Dream Chaser program,” said Jim Crocker, vice president of Lockheed Martin’s Space Systems Company Civil Space Line of Business.

Upon completion of the airframe manufacturing at Ft Worth, it will be transported to SNC’s Louisville, Colorado, facility for final integration and assembly.

Lockheed Martin will also process Dream Chaser between orbital flights at the Kennedy Space Center, FL in the recently renamed Neil Armstrong Operations and Checkout Building.

SNC announced in July that they successfully completed and passed a series of risk reduction milestone tests on key flight hardware systems under its Commercial Crew Integrated Capability (CCiCap) agreement with NASA that move the private reusable spacecraft closer to its critical design review (CDR) and first flight.

As a result of completing Milestones 9 and 9a, SNC has now received 92% of its total CCiCAP Phase 1 NASA award of $227.5 million.

“We are on schedule to launch our first orbital flight in November of 2016, which will mark the beginning of the restoration of U.S. crew capability to low-Earth orbit,” says Sirangelo.

The private Dream Chaser is a reusable lifting-body design spaceship that will carry a mix of cargo and up to a seven crewmembers to the ISS. It will also be able to land on commercial runways anywhere in the world, according to SNC.

Dream Chaser is among a trio of US private sector manned spaceships being developed with seed money from NASA’s Commercial Crew Program in a public/private partnership to develop a next-generation crew transportation vehicle to ferry astronauts to and from the International Space Station by 2017 – a capability totally lost following the space shuttle’s forced retirement in 2011.

The SpaceX Dragon and Boeing CST-100 ‘space taxis’ are also vying for funding in the next round of contracts to be awarded by NASA around September 2014, NASA officials have told me.

Stay tuned here for Ken’s continuing Sierra Nevada, Boeing, SpaceX, Orbital Sciences, commercial space, Orion, Rosetta, Curiosity, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

Scale models of NASA’s Commercial Crew program vehicles and launchers; Boeing CST-100, Sierra Nevada Dream Chaser, SpaceX Dragon. Credit: Ken Kremer/kenkremer.com
Scale models of NASA’s Commercial Crew program vehicles and launchers; Boeing CST-100, Sierra Nevada Dream Chaser, SpaceX Dragon. Credit: Ken Kremer/kenkremer.com

Curiosity Celebrates Two Years on Mars Approaching Bedrock of Mountain Climbing Destination

1 Martian Year on Mars! Curiosity treks to Mount Sharp in this photo mosaic view captured on Sol 669, June 24, 2014. Navcam camera raw images stitched and colorized. Credit: NASA/JPL-Caltech/Marco Di Lorenzo/Ken Kremer – kenkremer.com

2 Years on Mars!
Curiosity treks to Mount Sharp, her primary science destination, in this photo mosaic view captured on Sol 669, June 24, 2014. Navcam camera raw images stitched and colorized. Credit: NASA/JPL-Caltech/Marco Di Lorenzo/Ken Kremer – kenkremer.com
Story and mosaics updated[/caption]

NASA’s most scientifically powerful rover ever dispatched to the Red Planet, Curiosity, is celebrating her 2nd anniversary on Mars since the dramatic touchdown inside Gale Crater on Aug. 6, 2012, EDT (Aug. 5, 2012, PDT) while simultaneously approaching a bedrock unit that for the first time is actually part of the humongous mountain she will soon scale and is the primary science destination of the mission.

Mount Sharp is a layered mountain that dominates most of Gale Crater and towers 3.4 miles (5.5 kilometers) into the Martian sky and is taller than Mount Rainier.

Aug. 6, 2014 marks ‘2 Years on Mars’ and Sol 711 for Curiosity in an area called “Hidden Valley.”

“Getting to Mount Sharp is the next big step for Curiosity and we expect that in the Fall of this year,” Dr. Jim Green, NASA’s Director of Planetary Sciences at NASA Headquarters, Washington, DC, told me in an interview making the 2nd anniversary.

The 1 ton rover is equipped with 10 state-of-the-art science instruments and searching for signs of life.

The mysterious mountain is so huge that outcrops of bedrock extend several miles out from its base and Curiosity is now within striking distance of reaching the area the rover team calls “Pahrump Hills.”

2 Earth Years on Mars!  NASA’s Curiosity rover celebrated the 2nd anniversary on Mars at ‘Hidden Valley’ as shown in this photo mosaic view captured on Aug. 6, 2014, Sol 711.  Note the valley walls, rover tracks and distant crater rim. Navcam camera raw images stitched and colorized.  Credit: NASA/JPL-Caltech/Ken Kremer-kenkremer.com/Marco Di Lorenzo
2 Earth Years on Mars!
NASA’s Curiosity rover celebrated the 2nd anniversary on Mars at ‘Hidden Valley’ as shown in this photo mosaic view captured on Aug. 6, 2014, Sol 711. Note the valley walls, rover tracks and distant crater rim. Navcam camera raw images stitched and colorized. Credit: NASA/JPL-Caltech/Ken Kremer-kenkremer.com/Marco Di Lorenzo

Scientists anticipate that the outcrops at “Pahrump Hills” offer a preview of a geological unit that is part of the base of Mount Sharp for the first time since landing rather than still belonging to the floor of Gale Crater.

“We’re coming to our first taste of a geological unit that’s part of the base of the mountain rather than the floor of the crater,” said Curiosity Project Scientist John Grotzinger of the California Institute of Technology, Pasadena, in a statement.

“We will cross a major terrain boundary.”

Since “Pahrump Hills” is less than one-third of a mile (500 meters) from Curiosity she should arrive soon.

In late July 2014, the rover arrived in an area of sandy terrain called “Hidden Valley” which is on the planned route ahead leading to “Pahrump Hills” and easily traversable with few of the sharp edged rocks that have caused significant damage to the rovers six aluminum wheels.

This full-circle panorama of the landscape surrounding NASA's Curiosity Mars rover on July 31, 2014, Sol 705, offers a view into sandy lower terrain called "Hidden Valley," which is on the planned route ahead. It combines several images from Curiosity's Navigation Camera. South is at the center. Credit: NASA/JPL-Caltech
This full-circle panorama of the landscape surrounding NASA’s Curiosity Mars rover on July 31, 2014, Sol 705, offers a view into sandy lower terrain called “Hidden Valley,” which is on the planned route ahead. It combines several images from Curiosity’s Navigation Camera. South is at the center. Credit: NASA/JPL-Caltech

The sedimentary layers in the lower slopes of Mount Sharp have been Curiosity’s long-term science destination.

They are the principal reason why the science team specifically chose Gale Crater as the primary landing site based on high resolution spectral observations collected by NASA’s powerful Mars Reconnaissance Orbiter (MRO) indicating the presence of deposits of clay-bearing sedimentary rocks.

Curiosity’s goal all along has been to determine whether Mars ever offered environmental conditions favorable for microbial life. Finding clay bearing minerals. or phyllosilicates, in Martian rocks is the key to fulfilling its major objective.

The team expected to find the clay bearing minerals only in the sedimentary layers at the lower reaches of Mount Sharp.

Curiosity rover panorama of Mount Sharp captured on June 6, 2014 (Sol 651) during traverse inside Gale Crater.  Note rover wheel tracks at left.  She will eventually ascend the mountain at the ‘Murray Buttes’ at right later this year. Assembled from Mastcam color camera raw images and stitched by Marco Di Lorenzo and Ken Kremer.   Credit:   NASA/JPL/MSSS/Marco Di Lorenzo/Ken Kremer-kenkremer.com
Curiosity rover panorama of Mount Sharp captured on June 6, 2014 (Sol 651) during traverse inside Gale Crater. Note rover wheel tracks at left. She will eventually ascend the mountain at the ‘Murray Buttes’ at right later this year. Assembled from Mastcam color camera raw images and stitched by Marco Di Lorenzo and Ken Kremer. Credit: NASA/JPL/MSSS/Marco Di Lorenzo/Ken Kremer-kenkremer.com

Soon after landing, the team spotted some rather interesting looking outcrops barely a half mile away from the touchdown zone at a spot dubbed ‘Yellowknife Bay” and decided to take a detour towards it to investigate.

Well the scientists won the bet and struck scientific gold barely six months after landing when they drilled into a rock outcrop named “John Klein” at “Yellowknife Bay” and unexpectedly discovered the clay bearing minerals on the crater floor.

Yellowknife Bay was found to be an ancient lakebed where liquid water flowed on Mars surface billions of years ago.

The discovery of phyllosilicates in the 1st drill sample during the spring of 2013 meant that Curiosity had rather remarkably already fulfilled its primary goal of finding a habitable zone during its first year of operations!

The rock analysis “yielded evidence of a lakebed environment billions of years ago that offered fresh water, all of the key elemental ingredients for life, and a chemical source of energy for microbes, if any existed there,” according to NASA.

Curiosity accomplished Historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182) and discovered a habitable zone, shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169). The robotic arm is pressing down on the surface at John Klein outcrop of veined hydrated minerals – dramatically back dropped with her ultimate destination; Mount Sharp. Credit: NASA/JPL-Caltech/Ken Kremer-kenkremer.com/Marco Di Lorenzo
Curiosity accomplished Historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182) and discovered a habitable zone, shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169). The robotic arm is pressing down on the surface at John Klein outcrop of veined hydrated minerals – dramatically back dropped with her ultimate destination; Mount Sharp. Credit: NASA/JPL-Caltech/Ken Kremer-kenkremer.com/Marco Di Lorenzo

“Before landing, we expected that we would need to drive much farther before answering that habitability question,” said Curiosity Project Scientist John Grotzinger of the California Institute of Technology, Pasadena. “We were able to take advantage of landing very close to an ancient streambed and lake. Now we want to learn more about how environmental conditions on Mars evolved, and we know where to go to do that.”

During the rovers second Earth year on the Red Planet, Curiosity has been driving as fast as possible towards a safe entry point to the slopes of Mount Sharp. The desired destination for the car sized rover is now about 2 miles (3 kilometers) southwest of its current location.

‘Driving, Driving, Driving’
is indeed the rover teams mantra.

The main map here shows the assortment of landforms near the location of NASA's Curiosity Mars rover as the rover's second anniversary of landing on Mars nears. The gold traverse line entering from upper right ends at Curiosity's position as of Sol 705 on Mars (July 31, 2014). The inset map shows the mission's entire traverse from the landing on Aug. 5, 2012, PDT (Aug. 6, EDT) to Sol 705, and the remaining distance to long-term science destinations near Murray Buttes, at the base of Mount Sharp. The label "Aug. 5, 2013" indicates where Curiosity was one year after landing.    Credit: NASA/JPL-Caltech/Univ. of Arizona
The main map here shows the assortment of landforms near the location of NASA’s Curiosity Mars rover as the rover’s second anniversary of landing on Mars nears. The gold traverse line entering from upper right ends at Curiosity’s position as of Sol 705 on Mars (July 31, 2014). The inset map shows the mission’s entire traverse from the landing on Aug. 5, 2012, PDT (Aug. 6, EDT) to Sol 705, and the remaining distance to long-term science destinations near Murray Buttes, at the base of Mount Sharp. The label “Aug. 5, 2013” indicates where Curiosity was one year after landing. Credit: NASA/JPL-Caltech/Univ. of Arizona

To date, Curiosity’s odometer totals over 5.5 miles (9.0 kilometers) since landing inside Gale Crater on Mars in August 2012. She has taken over 174,000 images.

Curiosity still has about another 2 miles (3 kilometers) to go to reach the entry way at a gap in the treacherous sand dunes at the foothills of Mount Sharp sometime later this year.

And NASA is moving forward with future Red Planet missions when it recently announced the selection of 7 instruments chosen to fly aboard the Mars 2020 rover, the agency’s next rover going to Mars that will search for signs of ancient life as well as carry a technology demonstration that will help pave the way for ‘Humans to Mars’ in the 2030s. Read my story – here.

Coincidentally, ESA’s Rosetta comet hunting spacecraft arrived in orbit at its destination Comet 67P after a 10 year voyage on the same day as Curiosity’s 2 Earth year anniversary.

Stay tuned here for Ken’s continuing Rosetta, Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, commercial space, MAVEN, MOM, Mars and more planetary and human spaceflight news.

Ken Kremer

Up close view of hole in one of rover Curiosity’s six wheels caused by recent driving over rough Martian rocks. Mosaic assembled from Mastcam raw images taken on Dec. 22, 2013 (Sol 490).  Credit: NASA/JPL/MSSS/Ken Kremer - kenkremer.com/Marco Di Lorenzo
Up close view of hole in one of rover Curiosity’s six wheels caused by recent driving over rough Martian rocks. Mosaic assembled from Mastcam raw images taken on Dec. 22, 2013 (Sol 490). Credit: NASA/JPL/MSSS/Ken Kremer – kenkremer.com/Marco Di Lorenzo

Ranger 7 Takes 1st Image of the Moon by a US Spacecraft 50 Years Ago – July 31, 1964

Ranger 7 took this image, the first picture of the Moon by a U.S. spacecraft, on 31 July 1964 at 13:09 UT (9:09 AM EDT) about 17 minutes before impacting the lunar surface. Credit: NASA/JPL-Caltech

As we remember the 45th anniversary of Earth’s historic 1st manned lunar landing last week by America’s Apollo 11 crew of Neil Armstrong and Buzz Aldrin on July 20, 1969, it’s likewise well worth recalling NASA’s pioneering and historic unmanned robotic mission Ranger 7 – that led the way to the Moon almost exactly 5 years earlier and that paved the path for the eventual 1st human footsteps on another celestial body.

Indeed the first critical robotic step to the manned landings was successfully taken when NASA’s unmanned Ranger 7 probe captured the first image of the Moon by a U.S. spacecraft 50 Years ago on July 31, 1964.

Ranger 7 took the milestone maiden picture of the Moon by an American spacecraft, on 31 July 1964, shown above, at 13:09 GMT (9:09 AM EDT) about 17 minutes before impacting the lunar surface on a suicide dive.

The history making image was taken at an altitude of 2110 kilometers and is centered at 13 S, 10 W and covers about 360 kilometers from top to bottom. The large Alphonsus crater is at center right and 108 km in diameter. Ptolemaeus crater is above and Arzachel is below.

Ranger 7 impacted out of view of the lead image, off to the left of the upper left corner.

“It looks as though this particular shot has been indeed a textbook operation,” William H. Pickering, the director of JPL during the mission, said at the time.

Guericke Crater as seen by Ranger 7. Ranger 7 B-camera image of Guericke crater (11.5 S, 14.1 W, diameter 63 km) taken from a distance of 1335 km. The dark flat floor of Mare Nubium dominates most of the image, which was taken 8.5 minutes before Ranger 7 impacted the Moon on 31 July 1964. The frame is about 230 km across and north is at 12:30. The impact site is off the frame to the left. Credit:  NASA/JPL-Caltech
Guericke Crater as seen by Ranger 7
Ranger 7 B-camera image of Guericke crater (11.5 S, 14.1 W, diameter 63 km) taken from a distance of 1335 km. The dark flat floor of Mare Nubium dominates most of the image, which was taken 8.5 minutes before Ranger 7 impacted the Moon on 31 July 1964. The frame is about 230 km across and north is at 12:30. The impact site is off the frame to the left. Credit: NASA/JPL-Caltech

The purpose of NASA’s robotic Ranger program was to take high-quality pictures of the Moon and transmit them back to Earth in real time before being decimated on impact.

NASA Ranger 7 spacecraft. Credit:  NASA/JPL-Caltech
NASA Ranger 7 spacecraft. Credit: NASA/JPL-Caltech

The priceless pictures would be used for science investigations as well as to search for suitable landing sites for NASA’s then planned Apollo manned Moon landers.

It’s hard to conceive now, but 5 decades ago at the dawn of the Space Age no one knew what the surface of the Moon was really like. There were vigorous debates back then on whether it was even hard or soft. Was it firm? Would a landed spacecraft or human astronaut sink?

Last Ranger 7 images taken before impact on the Moon.  They were taken by the number 1 and 3 P-channel cameras at 0.39 and 0.19 s before impact from an altitude of 1070 and 519 meters, respectively. The pictures are cut off because the spacecraft impacted the surface before completing the transmission. The top image was taken by the P3 camera and the bottom image by P1. The P3 image is about 25 m across. North is at 12:30 for both images. The impact occurred on 31 July 1964 at 13:25:48.82 UT. Credit: Credit:  NASA/JPL-Caltech
Last Ranger 7 images taken before impact on the Moon. They were taken by the number 1 and 3 P-channel cameras at 0.39 and 0.19 s before impact from an altitude of 1070 and 519 meters, respectively. The pictures are cut off because the spacecraft impacted the surface before completing the transmission. The top image was taken by the P3 camera and the bottom image by P1. The P3 image is about 25 m across. North is at 12:30 for both images. The impact occurred on 31 July 1964 at 13:25:48.82 UT. Credit: NASA/JPL-Caltech

Altogether the probe took 4,308 excellent quality pictures during its final 17 minutes before crashing into the Moon at 13:26 GMT (9:26 p.m. EDT) in an area between Mare Nubium and Oceanus Procellarum at a spot subsequently named Mare Cognitum at 10.63 S latitude, 20.60 W longitude.

The final image from Ranger 7 shown herein had a resolution of 0.5 meter/pixel.

Ranger 7 was launched atop an Atlas Agena B rocket on 28 July 1964 from what was then known as Cape Kennedy and smashed into our nearest neighbor after 68.6 hours of flight at a velocity of 2.62 km/s (1.62 miles per second).

The 365.7 kilogram (806 lb) vehicle was 4.5 m wide and stood 3.6 m (11 ft) tall and was the Block 3 version of the Ranger spacecraft. It was powered by a pair of 1.5 m long solar panels and was equipped with a science payload of six television vidicon cameras transmitting data via the pointable high gain antennae mounted at the base.

Ranger 7 was the first successful mission in the Ranger series. The flight was entirely successful and was followed by Ranger’s 8 and 9. They were built by NASA’s Jet Propulsion Laboratory, Pasadena, California.

Here’s a short 1964 documentary chronicling Ranger 7 titled “Lunar Bridgehead” that truly harkens back to the 1950s and 1960s and sci fi movies of the time. No wonder since that’s when it was produced.

Video Caption. This 1964 documentary titled “Lunar Bridgehead produced by NASA’s Jet Propulsion Laboratory, Pasadena, California, chronicles the moments leading up to and following the Ranger 7 mission’s lunar impact 50 years ago. Credit: NASA/JPL-Caltech

During the 1960’s NASA implemented an ambitions three pronged strategy of robotic missions – including Ranger, Lunar Orbiter and Surveyor – that imaged the Moon and studied it’s physical and chemical properties and supported and enabled the Apollo program and led directly to Neil Armstrong stepping onto the alien lunar landscape.

Three members of the Ranger 7 television experiment team stand near a scale model and lunar globe at NASA’s Jet Propulsion Laboratory (JPL). From left: Ewen Whitaker, Dr. Gerard Kuiper, and Ray Heacock. Kuiper was the director of the Lunar and Planetary Laboratory (LPL) at the University of Arizona. Whitaker was a research associate at LPL. Heacock was the Lunar and Planetary Instruments section chief at JPL.  Credit:  NASA/JPL-Caltech
Three members of the Ranger 7 television experiment team stand near a scale model and lunar globe at NASA’s Jet Propulsion Laboratory (JPL). From left: Ewen Whitaker, Dr. Gerard Kuiper, and Ray Heacock. Kuiper was the director of the Lunar and Planetary Laboratory (LPL) at the University of Arizona. Whitaker was a research associate at LPL. Heacock was the Lunar and Planetary Instruments section chief at JPL. Credit: NASA/JPL-Caltech

Read more about pathfinding space missions in my earlier space history story about Mariner 10 – the first space probe to ever carry out a planetary gravity assist maneuver used to alter its speed and trajectory – in order to reach another celestial body – here.

Read my 45th Apollo 11 anniversary articles here:

Apollo 11 Splashdown 45 Years Ago on July 24, 1969 Concludes 1st Moon Landing Mission – Gallery

Historic Human Spaceflight Facility at Kennedy Renamed in Honor of Neil Armstrong – 1st Man on the Moon

Apollo 11 Moon Landing 45 Years Ago on July 20, 1969: Relive the Moment! – With an Image Gallery and Watch the Restored EVA Here

Book Review: Neil Armstrong – A Life of Flight by Jay Barbree

Stay tuned here for Ken’s Earth & Planetary science and human spaceflight news.

Ken Kremer

Liftoff of Ranger 7 on July 28, 1964 from Cape Kennedy at Launch Complex 12.  Credit: NASA
Liftoff of Ranger 7 on July 28, 1964 from Cape Kennedy at Launch Complex 12. Credit: NASA
Neil Armstrong and Buzz Aldrin plant the US flag on the Lunar Surface during 1st human moonwalk in history 45 years ago on July 20, 1969 during Apollo 1l mission. Credit: NASA
Neil Armstrong and Buzz Aldrin plant the US flag on the Lunar Surface during 1st human moonwalk in history 45 years ago on July 20, 1969 during Apollo 11 mission. Credit: NASA

Book Review: Neil Armstrong – A Life of Flight by Jay Barbree

Neil Armstrong - A Life of Flight; by Jay Barbree

“Neil Armstrong – A Life of Flight” is a thoroughly enjoyable new biography about the first human to set foot on the Moon on NASA’s Apollo 11 mission written with gusto by Emmy winning NBC News space correspondent Jay Barbree.

Jay Barbee is a veteran NBC News reporter who has covered America’s manned space program from the start. And he has the distinction of being the only reporter to cover every single American manned space launch – all 166 from Alan Shepard in 1961 to STS-135 in 2011 – from his home base at the Kennedy Space Center in Florida allowing him to draw on a wealth of eyewitness experiences and inside contacts.

The book’s publication coincides with the 45th anniversary of the Flight of Apollo 11 on America’s first manned moon landing mission in July 1969 by the three man crew comprising Commander Neil Armstrong, fellow moonwalker and Lunar Module Pilot Buzz Aldrin and Command Module pilot Michael Collins.

It’s a meticulously researched book over five decades in the making and based on personal interviews, notes, meetings, remembrances, behind the scenes visits, launches and more between Neil Armstrong and his trusted friend Jay Barbree as well as hordes more officials and astronauts key to achieving NASA’s spaceflight goals.

He won that trust because the astronauts and others trusted that he would get the story right and never betray confidences, Jay told me in an interview about the book.

“This is really Neil’s book. And it’s as accurate as possible. I will never reveal something Neil told me in confidence. But there is far more in this book about Neil than he would have liked.”

Jay Barbree and Neil Armstrong enjoy dinner with America’s first in orbit, John Glenn, who is performing standup comedy out of the picture. Courtesy:  Jay Barbee. See  Jay Barbree and Neil Armstrong enjoy dinner with America’s first in orbit, John Glenn, who is performing standup comedy out of the picture. Courtesy:  Jay Barbree. See  p. XIX
Jay Barbree and Neil Armstrong enjoy dinner with America’s first in orbit, John Glenn, who is performing standup comedy out of the picture. Courtesy: Jay Barbree. See p. XIX

There is a six page list of acknowledgments and the forward is written by no less than John Glenn – the first American to orbit the Earth in 1962.

Barbree is a master story teller who amply illustrates why NASA felt Armstrong was the best candidate to be 1st Man on the Moon based on his extraordinary intellect, piloting skills, and collected coolness and clear thinking under extraordinary pressure.

Armstrong also always shied away from publicity and bringing attention to himself, Barbree told me.

“Neil did not think he was any more important than anyone else. Neil wanted to do a book about a life of flight. But he wanted everyone else included.” And that’s exactly the format for the book – including Armstrong’s colleagues in words and pictures.

On July 21, NASA officially renamed a historic human spaceflight facility at the Kennedy Space Center in honor of Mission Commander Neil Armstrong – read my story here.

At the Kennedy Space Center in Florida on July 21, 2014, NASA officials and Apollo astronauts have a group portrait taken in front of the refurbished Operations and Checkout Building, newly named for Apollo 11 astronaut Neil Armstrong, the first person to set foot on the moon. From left are NASA Administrator Charles Bolden, Apollo astronauts Mike Collins, Buzz Aldrin and Jim Lovell, and Center Director Robert Cabana. The visit of the former astronauts was part of NASA's 45th anniversary celebration of the Apollo 11 moon landing. The building's high bay is being used to support the agency's new Orion spacecraft, which will lift off atop the Space Launch System rocket. Photo credit: NASA/Kevin O'Connell
At the Kennedy Space Center in Florida on July 21, 2014, NASA officials and Apollo astronauts have a group portrait taken in front of the refurbished Operations and Checkout Building, newly named for Apollo 11 astronaut Neil Armstrong, the first person to set foot on the moon. From left are NASA Administrator Charles Bolden, Apollo astronauts Mike Collins, Buzz Aldrin and Jim Lovell, and Center Director Robert Cabana. The visit of the former astronauts was part of NASA’s 45th anniversary celebration of the Apollo 11 moon landing. The building’s high bay is being used to support the agency’s new Orion spacecraft, which will lift off atop the Space Launch System rocket. Photo credit: NASA/Kevin O’Connell

Barbree details Armstrong’s lifetime of flight experiences that led to the ultimate Moon landing moment; starting with his early experiences as a Korean war combat pilot and bailing out of a crippled Panther F9F fighter plane, flying the X-15 to an altitude of 39 miles and the edge of space as a NASA test pilot, his selection as a member of the second group of astronauts on September 17, 1962, his maiden space mission on Gemini 8 which suddenly went out of control and threatened the crews lives, and finally the landing on the Sea of Tranquility with only 30 seconds of fuel remaining.

“Neil Armstrong – A Life of Flight” is a book for anyone interested in learning the nitty gritty inside details starting from the founding of America’s space effort, the trials, tribulations and triumphs of the earlier Mercury and Gemini manned programs, the terrible tragedy of the Apollo 1 fire and death of three brave Americans – Gus Grissom, Ed White and Roger Chaffee – and how all this swirl lead up to America’s determined and miraculous effort recounting how we got to the Moon. Go elsewhere for gossip.

This hefty 350 page volume is absolutely chock full of details including copious quotes on virtually every page. So much so that Barbree brings the along reader for what seems like a firsthand account. It’s as though he were a fly in the room listening in on history being made and transcribing it second by second or as an actual crew member riding along himself and reporting ultimately from aboard Apollo 11 and the Moon’s desolate surface.

On the Lunar Surface – Apollo 11 astronauts trained on Earth to take individual photographs in succession in order to create a series of frames that could be assembled into panoramic images. This frame from fellow astronaut Buzz Aldrin’s panorama of the Apollo 11 landing site is the only good picture of mission commander Neil Armstrong on the lunar surface. Credit: NASA
On the Lunar Surface – Apollo 11 astronauts trained on Earth to take individual photographs in succession in order to create a series of frames that could be assembled into panoramic images. This frame from fellow astronaut Buzz Aldrin’s panorama of the Apollo 11 landing site is the only good picture of mission commander Neil Armstrong on the lunar surface. Credit: NASA

Barbree does this by putting into context the full meaning and breadth of what’s happening on a moment by moment basis. Giving you the reader a complete understanding of what, why and how these history making events transpired as they did.

I found his background information endlessly illuminating and informative ! – precisely because it’s not merely a transcription of dialogue.

Concerning the mild controversy regarding Armstrong’s actual first words spoken from the lunar surface, here’s excerpts from how Jay tells the story on p. 263:

“He had thought about one statement he judged had meaning and fit the historic occasion …. Neil had not made up his mind … he was undecided until he was faced with the moment.

Armstrong then lifted his left boot .. and set it down in moon dust.

“That’s one small step for man,” Neil said with a momentary pause. “One giant leap for mankind.”

What most didn’t know was that Neil had meant to say, “That’s one small step for a man,” and that set off an argument for years to come. Had a beep in transmission wiped it from our ears or had Neil nervously skipped the word?

Knowing Neil’s struggles with public speaking, I believe the latter, and with all the excitement … I’ve never been convinced Neil knew himself for sure,” Barbree wrote.

Neil Armstrong and Buzz Aldrin plant the US flag on the Lunar Surface during 1st human moonwalk in history 45 years ago on July 20, 1969 during Apollo 1l mission. Credit: NASA
Neil Armstrong and Buzz Aldrin plant the US flag on the Lunar Surface during 1st human moonwalk in history 45 years ago on July 20, 1969 during Apollo 1l mission. Credit: NASA

Towards the books conclusion, he writes of Armstrong; “No greater man walked among us. No better man left us informed answers. Neil taught us how to take care of our Earth-Moon system.”

I also enjoyed towards the end of the book where Jay includes Neil’s disappointment that we haven’t ventured beyond Earth orbit in over 4 decades and includes Neil’s personal testimony to Congress so we learn the detail of Armstrong thoughts – in his own words.

“I am persuaded that a return to the moon would be the most productive path to expanding the human presence in the solar system.”

Jay also pinpoints why we haven’t returned to the Moon; “lack of vision for the future” by Congress and Presidents “have kept astronauts locked in Earth orbit.”

It’s been my privilege to get to know Jay during my own space reporting from the press site at the Kennedy Space Center and interview him about his magnificent new book.

Read Jay Barbree’s new 8 part series of 45th anniversary Apollo 11 stories at NBC News here:

Morning on the Moon: Apollo 11 Showed How Far We Could Go

Armstrong passed away unexpectedly at age 82 on August 25, 2012 due to complications from heart bypass surgery. Read my prior tribute articles: here and here

Despite Armstrong’s premature passing, Barbree told me he had completed all the interviews.

“There isn’t anything that comes to mind about Neil Armstrong that I didn’t get to ask him,” Barbree told me.

Read my 45th Apollo 11 anniversary articles here:

Apollo 11 Splashdown 45 Years Ago on July 24, 1969 Concludes 1st Moon Landing Mission – Gallery

Historic Human Spaceflight Facility at Kennedy Renamed in Honor of Neil Armstrong – 1st Man on the Moon


Apollo 11 Moon Landing 45 Years Ago on July 20, 1969: Relive the Moment! – With an Image Gallery and Watch the Restored EVA Here

Cygnus Commercial Resupply Ship ‘Janice Voss’ Berths to Space Station on 45th Apollo 11 Anniversary

Read my story about the deep sea recovery of the Apollo 11 first stage F-1 engines in 2013 – here.

Jay Barbree is on a book signing tour and you might be lucky to catch him at an event like a colleague of mine did at the Smithsonian National Air & Space Museum recently. See photo below.

Stay tuned here for Ken’s Earth & Planetary science and human spaceflight news.

Ken Kremer

Jay Barbree at “Neil Armstrong” book signing tour at the Smithsonian National Air & Space Museum. Credit: Mark Usciak
Jay Barbree at “Neil Armstrong” book signing tour at the Smithsonian National Air & Space Museum. Credit: Mark Usciak