Budget Axe to Gore America’s Future Exploration of Mars and Search for Martian Life

NASA Budget Cuts in Fiscal Year 2013 will force NASA to kill participation in the joint ESA/NASA collaboration to send two Astrobiology related missions to orbit and land rovers on Mars in 2016 and 2018 - designed to search for evidence of Life. Russia will likely replace the deleted Americans.

[/caption]

America’s hugely successful Mars Exploration program is apparently about to be gutted by Obama Administration officials wielding a hefty budget axe in Washington, D.C. Consequently, Russia has been invited to join the program to replace American science instruments and rockets being scrapped.

NASA’s Fiscal 2013 Budget is due to be announced on Monday, February 13 and its widely reported that the Mars science mission budget will be cut nearly in half as part of a significant decline in funding for NASA’s Planetary Science Division.

The proposed deep slash to the Mars exploration budget would kill NASA’s participation in two new missions dubbed “ExoMars” set to launch in 2016 and 2018 as a joint collaboration with the European Space Agency (ESA).

The ESA/NASA partnership would have dispatched the Trace Gas Orbiter to the Red Planet in 2016 to search for atmospheric methane, a potential signature for microbial life, and an advanced Astrobiology rover to drill deeper into the surface in 2018. These ambitious missions had the best chance yet to determine if Life ever evolved on Mars.

The 2016 and 2018 ExoMars probes were designed to look for evidence of life on Mars and set the stage for follow on missions to retrieve the first ever soil samples from the Red Planet’s surface and eventually land humans on Mars.

Joint ESA/NASA ExoMars Exploration Missions
- Planned 2016 Orbiter and 2018 Rover. NASA participation will be scrapped due to slashed NASA funding by the Obama Admnistartion. Credit: ESA

The proposed Mars budget cuts will obliterate these top priority science goals for NASA.

The BBC reports that “ a public announcement by NASA of its withdrawal from the ExoMars program will probably come once President Obama’s 2013 Federal Budget Request is submitted.”

A Feb. 9 article in ScienceInsider, a publication of the journal Science, states that “President Barack Obama will propose a $300 million cut in NASA’s planetary science programs as part of his 2013 request for the agency.”

This would amount to a 20% cut from $1.5 Billion in 2012 to $1.2 Billion in 2013. The bulk of that reduction is aimed squarely at purposefully eliminating the ExoMars program. And further deep cuts are planned in coming years !

ExoMars Trace Gas Orbiter would search for atmospheric methane at Mars. NASA instruments to be deleted as a result of budget cuts. Credit: ESA

The Mars budget of about $580 million this year would be radically reduced by over $200 million, thereby necessitating the end of NASA’s participation in ExoMars. These cuts will have a devastating impact on American scientists and engineers working on Mars missions.

The fallout from the looming science funding cuts also caused one longtime and top NASA manager to resign.

According to ScienceInsider, Ed Weiler, NASA’s science mission chief, says he “quit NASA Over Cuts to Mars Program.”

“The Mars program is one of the crown jewels of NASA,” said Ed Weiler to ScienceInsider.

“In what irrational, Homer Simpson world would we single it out for disproportionate cuts?”

“This is not about the science mission directorate, this is not even about NASA. This is about the country. We are the only country in the world that has demonstrated the capability to land anything on Mars. How can we allow that to be undermined?”

Weiler’s resignation from NASA on Sept. 30, 2011 was sudden and quick, virtually from one day to the next. And it came shortly after the successful launch of NASA’s GRAIL lunar probes, when I spoke to Weiler about Mars and NASA’s Planetary Science missions and the gloomy future outlook. Read my earlier Universe Today story about Weiler’s retirement.

Ed Weiler was the Associate Administrator for NASA’s Science Mission Directorate (SMD) and his distinguished career spanned almost 33 years.

The dire wrangling over NASA’s 2013 budget has been ongoing for many months and some of the funding reductions had already leaked out. For example NASA had already notified ESA that the US could not provide funding for the Atlas V launchers in 2016 and 2018. Furthermore, Weiler and other NASA managers told me the 2018 mission was de-scoped from two surface rovers down to just one to try and save the Mars mission program.

ESA is now inviting Russian participation to replace the total American pullout, which will devastate the future of Red Planet science in the US. American scientists and science instruments would be deleted from the 2016 and 2018 ExoMars missions.

The only approved US mission to Mars is the MAVEN orbiter due to blastoff in 2013 – and there are NO cameras aboard MAVEN.

Three Generations of US Mars Rovers - 4th Generation ExoMars rover to be Axed by NASA budget cuts.

NASA is caught in an inescapable squeeze between rising costs for ongoing and ambitious new missions and an extremely tough Federal budget environment with politicians of both political affiliations looking to cut what they can to rein in the deficit, no matter the consequences of “killing the goose that laid the golden egg”.

NASA Watch Editor Keith Cowing wrote; “Details of the FY 2013 NASA budget are starting to trickle out. One of the most prominent changes will be the substantial cut to planetary science at SMD [NASA’s Science Mission Directorate]. At the same time, the agency has to eat $1 billion in Webb telescope overruns – half of which will come out of SMD.”

The cost of the James Webb Space Telescope (JWST) has skyrocketed to $8.7 Billion.

To pay for JWST, NASA is being forced to gut the Mars program and other science missions funded by the same Science Mission Directorate that in the past and present has stirred the public with a mindboggling payoff of astounding science results from many missions that completely reshaped our concept of humankinds place in the Universe.

Meanwhile, China’s space program is rapidly expanding and employing more and more people. China’s scientific and technological prowess and patent applications are increasing and contributing to their fast growing economy as American breakthroughs and capabilities are diminishing.

Under the budget cutting scenario of no vision, the Curiosity Mars Science Laboratory rover will be America’s last Mars rover for a long, long time. Curiosity will thus be the third and last generation of US Mars rovers – 4th generation to be Axed !

Orion Capsule Embarks on Cross Country Public Tour

Orion Test Capsule at Practice for Pad Abort 1 Test. The Orion test capsule is now on a cross country tour from New Mexico to Florida with stops in Oklahoma, Texas and Alabama. Ground teams in White Sands, New Mexico, practice stacking test versions of Orion and its launch abort system. This was being done in advance of Orion’s launch abort system test. Credit: NASA or National Aeronautics and Space Administration

[/caption]

Here’s your chance for a birds-eye view of an Orion capsule, up-close and personal ! Catch it if you can !

A full scale test version of one of NASA’s Orion spacecraft has embarked on a cross country tour from White Sands, New Mexico, across several states in the southern United States that ultimately lands at the Kennedy Space Center in Florida.

Starting today, Jan. 27, an Orion spacecraft is open for viewing by the public in Texas at Victory Park and the American Airlines Center in Dallas.

Orion fans in Texas
The Coopers from Southlake meet NASA astronaut Nick Patrick by the Orion crew module now on display at the American Airlines Center in Dallas, TX.

The display continues throughout this weekend after a well received visit to Oklahoma at the Science Museum Oklahoma in Oklahoma City.

Roller Derby team visits Orion test capsule now on public display in Texas

The next stop on the cross country journey is the U.S. Space and Rocket Center in Huntsville, Ala on Feb 1-2.

Orion is NASA’s next generation human spaceflight vehicle that will eventually replace the space shuttle and loft astronauts to low Earth orbit and beyond to deep space destinations such as the Moon, Asteroids and Mars. It can also dock at the International Space Station (ISS).

The Orion crew module journey is a wonderful and fun opportunity for individuals and families to see real space exploration hardware with your own eyes and learn all about the goals and plans of the US Space Program and your investment in it as a taxpayer.

Knowledgeable Orion experts will be on hand to speak with visitors in easy to understand ways. This includes astronauts, engineers, program officials and press spokespeople from NASA, Lockheed-Martin (Orion prime contractor) and other companies involved in building the Orion capsule and other components that will rocket the vehicle to orbit.

Veteran NASA Astronauts Nick Patrick and Clay Anderson will be on hand at the Dallas stop. NASA Astronauts Doug Hurley and Jim Dutton will attend the Alabama display.

Hurley was the pilot for the final shuttle mission by Space Shuttle Atlantis for the STS-135 mission to the International Space Station.

Orion fans in Oklahoma. Credit: NASA

The Orion tour also includes colorful and informative display panels and fun kids activities that I’ve personally witnessed on several occasions. In past years the Orion Launch Abort System (LAS) engaged in similar trips.

This Orion test vehicle was used by ground crews preparing for the PA-1 launch abort system flight test that took place in New Mexico in 2010.

The first orbital flight test of an unmanned Orion is scheduled for 2014 atop a Delta 4 Heavy booster..

Orion fans in Dallas, Texas - Mike, Darnell and Akeem
Orion Test capsule with test facility workers at White Sands Facility, New Mexico. Credit: NASA

Look here for more information on the Orion stops in Texas and Alabama

American Airlines Center: http://www.americanairlinescenter.com/

U.S. Space and Rocket Center: http://www.ussrc.com/

NASA’s future has suddenly become a hot topic in the GOP Presidential Debates. Orion is at the center of that debate on whether Americans will ever return to the Moon.

This is your opportunity to see history in the making

NASA’s Resilient Rover Opportunity Begins Year 9 On Mars with Audacious Science Ahead

Martian Vista from Opportunity at Endeavour Crater - 8 Years on Mars. NASA’s Opportunity rover celebrated 8 Years on Mars on January 24, 2012. This mosaic shows portions of the segmented rim of Endeavour crater (14 miles, 22 km wide) after the robot arriving at the craters foothills in August 2011. Large ejecta blocks from a smaller nearby crater are visible in the middle. At Endeavour, Opportunity will investigate the oldest minerals deposits she has ever visited from billions of years ago and which may hold clues to environments that were potentially habitable for microbial life. The rover will eventually drive to Cape Tribulation at right after surviving her 5th winter on Mars. Mosaic Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Kenneth Kremer

[/caption]

Today, the resilient Opportunity robot begins her 9th year roving around beautifully Earth-like Martian terrain where potentially life sustaining liquid water once flowed billions of years ago.

Opportunity celebrates her 8th anniversary on the Red Planet gazing at the foothills of the vast crater named Endeavour, promising a “mother lode” of “watery” science – an unimaginable circumstance since the nail biting landing on the hematite rich plains of Meridiani Planum on 24 January 2004.

“Opportunity is 97 months into the 3 month mission,” team members are proud and universally surprised to say.

“Milestones like 8 years on Mars always make me look forward rather than looking back,” Rover Principal Investigator Prof. Steve Squyres of Cornell University told Universe Today for this article commemorating Opportunity’s landing.

“We’ve still got a lot of exploring to do, but we’re doing it with a vehicle that was designed for a 90-sol mission. That means that every sol is a gift at this point.”

Opportunity has driven more than 21 miles (34 kilometers) across the Red Planet’s surface during what is truly humankind’s first overland expedition on another Planet. See our route map below.

Opportunity Rover Traverse Map at Meridiani Planum on Mars - 2004 to 2012
Traverse map shows the 8 Year Journey of Opportunity from Eagle Crater landing site on Sol 1- Jan. 24, 2004 - to 5th Winter Haven worksite at Greeley Haven at Endeavour Crater rim in January 2012. Opportunity embarked on a crater tour and discovered bountiful evidence for the flow of liquid water on Mars billions of years ago. The robot has shown that ancient ephemeral shallow lakes existed on Mars when the cratered terrain was cut by fluvial channels. Endeavour Crater is 14 miles (22 kilometers) in diameter. Opportunity has so far driven more than 21 miles (34 km) over 8 Years but was only expected to live for 90 Martian days. Credit: NASA/JPL/Cornell/UA/Marco Di Lorenzo/Kenneth Kremer

NASA’s twin rovers Spirit and Opportunity blasted off for Mars atop a pair of Delta II rockets in the summer of 2003 with a mission “warranty” of just 90 Martian days, or Sols.

Today is Sol 2846 of working operations for Opportunity, compared to an anticipated lifetime of only 90 Sols – that amounts to more than 31 times beyond the designer’s expectations.

Indeed, the long lived robot is now enduring her 5th Winter on Mars. And to glimpse the next Martian sunrise, the robo girls manmade components must survive the harsh extremes of frigid Antarctic-like temperatures each and every sol.

“I never thought that we would still be planning sequences for Opportunity today,” Ray Arvidson told Universe Today. Arvidson, of Washington University in St. Louis, is the deputy rover principal investigator.

“I seriously thought both Spirit and Opportunity would be finished by the summer of 2004.”

Opportunity's Eighth Anniversary View From 'Greeley Haven' (False Color). This mosaic of images taken in mid-January 2012 shows the windswept vista northward (left) to northeastward (right) from the location where Opportunity is spending its fifth Martian winter, an outcrop informally named "Greeley Haven. Credit: NASA/JPL-Caltech/Cornell/Arizona State Univ.

But, Opportunity is the gift to science that keeps on giving.

“I am feeling pretty good as the MER rover anniversaries approach,” Arvidson told me.

“Opportunity has shown that ancient ephemeral shallow lakes existed as Mars moved climatically from an early period when the cratered terrain was cut by fluvial channels to the current dry and cold conditions that dominate.”

“Both rovers have conclusively shown the need for lateral mobility to get to relevant outcrops and back out the secrets associated with past conditions,” Arvidson explained.

Barely a month ago the bountiful harvest from mobility was once again demonstrated when the science team lead by Squyres and Arvidson announced that Opportunity had discovered the most scientifically compelling evidence yet for the flow of liquid water on ancient Mars.

Squyres and Arvidson announced that Opportunity had found a bright vein – named “Homestake” – composed of the mineral gypsum located at the Cape York segment of Endeavour Crater where the intrepid robot is currently spending her 5th Martian Winter.

“This gypsum vein is the single most powerful piece of evidence for liquid water at Mars that has been discovered by the Opportunity rover,” Squyres explained.

Veins are a geologic indication of the past flow of liquid water.

See our mosaic below illustrating the exact location of the “Homestake” vein at Endeavour Crater – also published at Astronomy Picture of the Day; 12 Dec 2011.

Opportunity discovers Water related Mineral Vein at Endeavour Crater - November 2011
Opportunity rover discovered Gypsum at the Homestake mineral vein, while exploring around the base of Cape York ridge at the rim of Endeavour Crater. The vein is composed of calcium sulfate and indicates the ancient flow of liquid water at this spot on Mars. This panoramic mosaic of images was taken on Sol 2761, November 2011, and illustrates the exact spot of the mineral vein discovery.
Credit: NASA/JPL/Cornell/Kenneth Kremer/Marco Di Lorenzo
Published on Astronomy Picture of the Day (APOD): 12 Dec 2011

Opportunity just arrived at the rim of the 14 mile (22 kilometer) wide Endeavour Crater in mid-August 2011 following an epic three year trek across treacherous dune fields from her prior investigative target at the ½ mile wide Victoria Crater.

“It’s like a whole new mission since we arrived at Cape York,” says Squyres.

For the next few months of the bitterly cold Martian winter, Opportunity will conduct a vigorous science campaign while remaining mostly stationary at a spot dubbed “Greeley Haven” in honor of Prof. Ronald Greeley, a team member from Arizona State University who recently passed away.

Opportunity Mars Rover at 5th Winter Worksite at Endeavour Crater
This mosaic shows the view of NASA’s Opportunity rover parked at “Greeley Haven” worksite where the robot will spend her 5th Martian Winter. This mosaic of images shows the Winter Haven view from the Cape York Ridge at the western rim of Endeavour Crater looking south along the crater rim. Tire tracks at right. Credit: NASA/JPL/Cornell/ Marco Di Lorenzo/Kenneth Kremer

At this moment Opportunity is snapping a 360 degree panorama, deploying her robotic arm onto nearby outcrops, collecting microscopic images, making measurements of mineral compositions with the Alpha Particle X-Ray Spectrometer and conducting radio science observations to elucidate the unknown structure of the Martian interior and core.

The rover is covered with a significant coating of dust which limits her ability to generate power from the life sustaining solar arrays. Since Opportunity is traversing just south of the equator, engineers have temporarily parked her on a northerly facing slope to maximize the electric power generation.

“Opportunity is currently sitting on an outcrop of impact breccias at Greeley Haven on Cape York,” said Arvidson.

Opportunity will remain at Greeley Haven until some time after the Winter Solstice of southern Martian winter occurs at the end of March.

'Greeley Haven' Site for Opportunity's Fifth Martian Winter. This mosaic of Greeley Haven was acquired by Opportunity on Sol 2793, Dec. 2, 2011. Credit: NASA/JPL-Caltech/Cornell/Arizona State Univ.

Then she’ll head south to further explore the veins and eventually drive to deposits of the clay mineral located a few miles (km) away along the craters rim.

“We’ll do good science while we’re at Greeley Haven. But as soon as we catch a wind gust or the seasons change, we’ll be on our way again,” Squyres told me.

The legendary twins Spirit and Opportunity surely rank as one of the greatest triumphs in space exploration.

3 Generations of NASA’s Mars Rovers

Three Generations of Mars Rovers in the Mars Yard. This grouping shows 3 generations of NASA’s Mars rovers from 1997 to 2012 set inside the Mars Yard at the Jet Propulsion Lab in Pasadena, Calif. The Mars Pathfinder Project (front) landed the first Mars rover - Sojourner - in 1997. The Mars Exploration Rover Project (left) landed Spirit and Opportunity on Mars in 2004. The Mars Science Laboratory Project (right) is on course to land Curiosity on Mars in August 2012. Credit: NASA/JPL-Caltech

[/caption]

NASA Mars rovers have come a long way in terms of size and capability since the rebirth of Red Planet surface exploration just 15 years ago – spanning from 1997 to 2012.

To get a really excellent sense of just how far America’s scientists and engineers have pushed the state of the art in such a short time – when the willpower and funding existed and coincided to explore another world – take a good look at the new pictures here showing 3 generations of NASA’s Mars rovers; namely Mars Pathfinder (MPF), the 1st generation Mars rover, Mars Exploration Rover (MER), the 2nd generation, and Mars Science Laboratory (MSL), the 3rd and newest generation Mars rover.

The newly released pictures graphically display a side by side comparison of the flight spare for Mars Pathfinder (1997 landing) and full scale test rovers of the Mars Exploration Rover (2004 landing) and Mars Science Laboratory (in transit for a 2012 planned landing). The setting is inside the “Mars Yard” at NASA’s Jet Propulsion Laboratory, Pasadena, Calif. where the teams conduct mission simulations.

It’s been nothing less than a quantum leap in advancement of the scientific and technological capability from one generation to the next.

Sojourner - NASA’s 1st Mars Rover
Sojourner takes an Alpha Proton X-ray Spectrometer (APXS) measurement of Yogi rock after Red Planet landing on July 4, 1997 landing. Sojourner was only 2 feet long, the size of a microwave oven.
Credit: NASA

Just consider the big increase in size – growing from a microwave oven to a car !

The “Marie Curie” flight spare and the actual “Sojourner” rover on Mars are 2 feet (65 centimeters) long – about the size of a microwave oven. The MER rovers “Spirit and Opportunity” and the “Surface System Test Bed” rover are 5.2 feet (1.6 meters) long – about the size of a golf cart. The MSL “Curiosity” and the “Vehicle System Test Bed” rover are 10 feet (3 meters) long – about the size of a car.

Side view of Three Generations of Mars Rovers
Front; flight spare for the first Mars rover, Sojourner. Left; Mars Exploration Rover Project test rover. Right; Mars Science Laboratory test rover Credit: NASA/JPL-Caltech

With your own eyes you can see the rapid and huge generational change in Mars rovers if you have the opportunity to visit the Kennedy Space Center Visitor Complex and stroll by the Mars exhibit with full scale models of all three of NASA’s Red Planet rovers.

At the KSC Visitor Complex in Florida you can get within touching distance of the Martian Family of Rovers and the generational differences in size and complexity becomes personally obvious and impressive.

NASA’s Family of Mars rovers at the Kennedy Space Center
Full scale models on display at the Kennedy Space Center Visitor Complex. Curiosity and Spirit/Opportunity are pictured here. Sojourner out of view. Credit: Ken Kremer

All of the Mars rovers blasted off from launch pads on Cape Canaveral Air Force Station, Florida.

Sojourner, Spirit and Opportunity launched atop Delta II rockets at Space Launch Complex 17 in 1996 and 2003. Curiosity launched atop an Atlas V at Space Launch Complex 41 in 2011.

Three Generations of Mars Rovers with Standing Mars Engineers
The rovers are pictured here with real Mars Engineers to get a sense of size and perspective. Front rover is the flight spare for the first Mars rover, Sojourner. At left is a Mars Exploration Rover Project test rover, working sibling to Spirit and Opportunity. At right is a Mars Science Laboratory test rover the size of Curiosity which is targeting a August 2012 Mars landing. The Mars engineers are JPL's Matt Robinson, left, and Wesley Kuykendall. Credit: NASA/JPL-Caltech

Opportunity is still exploring Mars to this day – 8 years after landing on the Red Planet, with a warranty of merely 90 Martian days.

Curiosity is scheduled to touch down inside Gale crater on 6 August 2012.

So, what comes next ? Will there be a 4th Generation Mars rover ?

Stay tuned – only time and budgets will tell.

America’s Youth Christen NASA’s Twin New Lunar Craft – Ebb & Flow

Ebb and Flow - New Names for the GRAIL Twins in Lunar Orbit. 4th Grade Students from Montana win NASA’s contest to rename the GRAIL A and GRAIL B spacecraft. Artist concept of twin GRAIL spacecraft flying in tandem orbits around the Moon to measure its gravity field in unprecedented detail and unravel the hidden mysteries of the lunar interior’s composition. Credit: NASA/JPL Montage:Ken Kremer

[/caption]

A classroom of America’s Youth from an elementary school in Bozeman, Montana submitted the stellar winning entry in NASA’s nationwide student essay contest to rename the twin GRAIL lunar probes that just achieved orbit around our Moon on New Year’s Eve and New Year’s Day 2012

“Ebb” & “Flow” – are the dynamic duo’s official new names and were selected because they clearly illuminate the science goals of the gravity mapping spacecraft and how the Moon’s influence mightily affects Earth every day in a manner that’s easy for everyone to understand.

“The 28 students of Nina DiMauro’s class at the Emily Dickinson Elementary School have really hit the nail on the head,” said GRAIL principal investigator Prof. Maria Zuber of the Massachusetts Institute of Technology in Cambridge, Mass.

“We asked the youth of America to assist us in getting better names.”

“We chose Ebb and Flow because it’s the daily example of how the Moon’s gravity is working on the Earth,” said Zuber during a media briefing held today (Jan. 17) at NASA Headquarters in Washington, D.C. The terms ebb and flow refer to the movement of the tides on Earth due to the gravitational pull from the Moon.

“We were really impressed that the students drew their inspiration by researching GRAIL and its goal of measuring gravity. Ebb and Flow truly capture the spirit and excitement of our mission.”

Leland Melvin, NASA Associate Administrator for Education, left, Maria Zuber, GRAIL Prinicipal Investigator at the Massachusetts Institute of Technology, and James Green, Director of the Planetary Science Division in the Science Mission Directorate at NASA Headquarters, right, applaud students from Emily Dickinson Elementary School in Bozeman, Mont. during a news conference, Tuesday, Jan. 17, 2012, at NASA Headquarters in Washington. Nine hundred classrooms and more than 11,000 students from 45 states, as well as Puerto Rico and the District of Columbia, participated in a contest that began in October 2011 to name the twin lunar probes. Credit: NASA/Paul E. Alers

Ebb and Flow are flying in tandem around Earth’s only natural satellite, the first time such a feat has ever been attempted.

As they fly over mountains, craters and basins on the Moon, the spaceships will move back and forth in orbit in an “ebb and flow” like response to the changing lunar gravity field and transmit radio signals to precisely measure the variations to within 1 micron, the width of a red blood cell.

The breakthrough science expected from the mirror image twins will provide unprecedented insight into what lurks mysteriously hidden beneath the surface of our nearest neighbor and deep into the interior.

The winning names from the 4th Graders of Emily Dickinson Elementary School were chosen from essays submitted by nearly 900 classrooms across America with over 11,000 students from 45 states, Puerto Rico and the District of Columbia, Zuber explained.

The students themselves announced “Ebb” and “Flow” in a dramaric live broadcast televised on NASA TV via Skype.

“We are so thrilled that our names were chosen and excited to share this with you. We can’t believe we won! We are so honored. Thank you!” said Ms. DiMauro as the very enthusiastic students spelled out the names by holding up the individual letters one-by-one on big placards from their classroom desks in Montana.

Watch the 4th Grade Kids spell the names in this video!

Until now the pair of probes went by the rather uninspiring monikers of GRAIL “A” and “B”. GRAIL stands for Gravity Recovery And Interior Laboratory.

The twin crafts’ new names were selected jointly by Prof. Zuber and Dr. Sally Ride, America’s first woman astronaut, and announced during today’s NASA briefing.


NASA’s naming competition was open to K-12 students who submitted pairs of names and a short essay to justified their suggestions.

“Ebb” and “Flow” (GRAIL A and GRAIL B) are the size of washing machines and were launched side by side atop a Delta II booster rocket on September 10, 2011 from Cape Canaveral, Florida.

They followed a circuitous 3.5 month low energy path to the Moon to minimize the fuel requirements and overall costs.

So far the probes have completed three burns of their main engines aimed at lowering and circularizing their initial highly elliptical orbits. The orbital period has also been reduced from 11.5 hours to just under 4 hours as of today.

“The science phase begins in early March,” said Zuber. At that time the twins will be flying in tandem at 55 kilometers (34 miles) altitude.

The GRAIL twins are also equipped with a very special camera dubbed MoonKAM (Moon Knowledge Acquired by Middle school students) whose purpose is to inspire kids to study science.

“GRAIL is NASA’s first planetary spacecraft mission carrying instruments entirely dedicated to education and public outreach,” explained Sally Ride. “Over 2100 classrooms have signed up so far to participate.”

Thousands of middle school students in grades five through eight will select target areas on the lunar surface and send requests for study to the GRAIL MoonKAM Mission Operations Center in San Diego which is managed by Dr. Ride in collaboration with undergraduate students at the University of California in San Diego.

By having their names selected, the 4th graders from Emily Dickinson Elementary have also won the prize to choose the first target on the Moon to photograph with the MoonKam cameras, said Ride.

Zuber notes that the first MoonKAM images will be snapped shortly after the 82 day science phase begins on March 8.

Ebb & Flow Achieve Lunar Orbit on New Year’s Weekend 2012
NASA’s twin GRAIL-A & GRAIL-B spacecraft are orbiting the Moon in this astrophoto taken on Jan. 2, 2012 shortly after successful Lunar Orbit Insertions on New Year’s Eve and New Year’s Day 2012.
Credit: Ken Kremer

Read continuing features about GRAIL and the Moon by Ken Kremer here:
Dazzling Photos of the International Space Station Crossing the Moon!
Two new Moons join the Moon – GRAIL Twins Achieve New Year’s Orbits
First GRAIL Twin Enters Lunar Orbit – NASA’s New Year’s Gift to Science
2011: Top Stories from the Best Year Ever for NASA Planetary Science!
NASA’s Unprecedented Science Twins are GO to Orbit our Moon on New Year’s Eve
Student Alert: GRAIL Naming Contest – Essay Deadline November 11
GRAIL Lunar Blastoff Gallery
GRAIL Twins Awesome Launch Videos – A Journey to the Center of the Moon
NASA launches Twin Lunar Probes to Unravel Moons Core
GRAIL Unveiled for Lunar Science Trek — Launch Reset to Sept. 10
Last Delta II Rocket to Launch Extraordinary Journey to the Center of the Moon on Sept. 8
NASAs Lunar Mapping Duo Encapsulated and Ready for Sept. 8 Liftoff
GRAIL Lunar Twins Mated to Delta Rocket at Launch Pad
GRAIL Twins ready for NASA Science Expedition to the Moon: Photo Gallery

SpaceX Delays Upcoming 1st Dragon Launch to ISS

SpaceX Dragon approaches the ISS, so astronauts can grapple it with the robotic arm and berth it at the Earth facing port of the Harmony node. Illustration: NASA /SpaceX

[/caption]

The first test launch of a commercially built spacecraft to the International Space Station has been delayed by its builder, Space Exploration Technologies or SpaceX, in order to carry out additional testing to ensure that the vehicle is fully ready for the high stakes Earth orbital mission.

SpaceX and NASA had been working towards a Feb. 7 launch date of the company’s Dragon spacecraft and announced the postponement in a statement today (Jan. 16).

A new target launch date has not been set and it is not known whether the delay amounts to a few days, weeks or more. The critical test flight has already been rescheduled several times and was originally planned for 2011.

The unmanned Dragon is a privately developed cargo vessel constructed by SpaceX under a $1.6 Billion contract with NASA to deliver supplies to the ISS and partially replace the transport to orbit capabilities that were fully lost following the retirement of the Space Shuttle in 2011.

“In preparation for the upcoming launch, SpaceX continues to conduct extensive testing and analysis, said SpaceX spokeswoman Kirstin Grantham in the statement.

“We [SpaceX] believe that there are a few areas that will benefit from additional work and will optimize the safety and success of this mission.”

“We are now working with NASA to establish a new target launch date, but note that we will continue to test and review data. We will launch when the vehicle is ready,” said Grantham.

This SpaceX Dragon will launch to the ISS sometime in 2012 on COTS2/3 mission. Protective fairings are installed over folded solar arrays, at the SpaceX Cape Canaveral launch site.

Dragon’s purpose is to ship food, water, provisions, equipment and science experiments to the ISS.

The demonstration flight – dubbed COTS 2/3 – will be the premiere test flight in NASA’s new strategy to resupply the ISS with privately developed rockets and cargo carriers under the Commercial Orbital Transportation Services (COTS) initiative.

The Dragon will blast off atop a Falcon 9 booster rocket also built by SpaceX and, if all goes well, conduct the first ever rendezvous and docking of a privately built spacecraft with the 1 million pound orbiting outpost.

After closely approaching the ISS, the crew will grapple Dragon with the station’s robotic arm and berth it to the Earth-facing port of the Harmony node.

“We’re very excited about it,” said ISS Commander Dan Burbank in a recent televised interview from space.

An astronaut operating the ISS robotic arm will grab Dragon and position it at a berthing port at the Harmony node. Illustration: NASA /SpaceX

Since the demonstration mission also involves many other first time milestones for the Dragon such as the first flight with integrated solar arrays and the first ISS rendezvous, extra special care and extensive preparatory activities are prudent and absolutely mandatory.

NASA’s international partners, including Russia, must be consulted and agree that all engineering and safety requirements, issues and questions related to the docking by new space vehicles such as Dragon have been fully addressed and answered.

William Gerstenmaier, NASA’s associate administrator for the Human Exploration and Operations Mission Directorate recently stated that the launch date depends on completing all the work necessary to ensure safety and success, “There is still a significant amount of critical work to be completed before launch, but the teams have a sound plan to complete it.”

“As with all launches, we will adjust the launch date as needed to gain sufficient understanding of test and analysis results to ensure safety and mission success.”

“A successful mission will open up a new era in commercial cargo delivery to the international orbiting laboratory,” said Gerstenmaier.

SpaceX is also working on a modified version of the spacecraft, dubbed DragonRider, that could launch astronaut crews to the ISS in perhaps 3 to 5 years depending on the amount of NASA funding available, says SpaceX CEO and founder Elon Musk

Read Ken’s recent features about the ISS and SpaceX/Dragon here:
Dazzling Photos of the International Space Station Crossing the Moon!
Solar Powered Dragon gets Wings for Station Soar
Absolutely Spectacular Photos of Comet Lovejoy from the Space Station
NASA announces Feb. 7 launch for 1st SpaceX Docking to ISS

Crucial Rocket Firing Puts Curiosity on Course for Martian Crater Touchdown

[/caption]

NASA’s car-sized Curiosity Mars Science Lab (MSL) rover is now on course to touch down inside a crater on Mars in August following the completion of the biggest and most crucial firing of her 8.5 month interplanetary journey from Earth to the Red Planet.

Engineers successfully commanded an array of thrusters on MSL’s solar powered cruise stage to carry out a 3 hour long series of more than 200 bursts last night (Jan. 11) that changed the spacecraft’s trajectory by about 25,000 miles (40,000 kilometers) – an absolute necessity that actually put the $2.5 Billion probe on a path to Mars to “Search for Signatures of Life !”

“We’ve completed a big step toward our encounter with Mars,” said Brian Portock of NASA’s Jet Propulsion Laboratory (JPL), Pasadena, Calif., deputy mission manager for the cruise phase of the mission. “The telemetry from the spacecraft and the Doppler data show that the maneuver was completed as planned.”

Mars Science Lab and cruise stage separate from Centaur upper stage just minutes after Nov. 26, 2011 launch. Thrusters on cruise stage performed course correction on Jan. 11, 2012. Up to 6 firings total will put the NASA robot on precision course to Mars.
Credit: NASA TV

This was the first of six possible TCM’s or trajectory correction maneuvers that may be required to fine-tune the voyage to Mars.

Until now, Curiosity was actually on a path to intentionally miss Mars. Since the Nov. 26, 2011 blastoff from Florida, the spacecraft’s trajectory was tracking a course diverted slightly away from the planet in order to prevent the upper stage – trailing behind – from crashing into the Red Planet.

The upper stage was not decontaminated to prevent it from infecting Mars with Earthly microbes. So, it will now sail harmlessly past the planet as Curiosity dives into the Martian atmosphere on August 6, 2012.

The thruster maneuver also served a second purpose, which was to advance the time of the Mars encounter by about 14 hours. The TCM burn increased the velocity by about 12.3 MPH (5.5 meters per second) as the vehicle was spinning at 2 rpm.

“The timing of the encounter is important for arriving at Mars just when the planet’s rotation puts Gale Crater in the right place,” said JPL’s Tomas Martin-Mur, chief navigator for the mission.


Video caption: Rob Manning, Curiosity Mars Science Lab Chief Engineer at NASA JPL describes the Jan. 11, 2012 thruster firing that put the robot on a precise trajectory to Gale Crater on Mars. Credit: NASA/JPL

As of today, Jan. 12, the spacecraft has traveled 81 million miles (131 million kilometers) of its 352-million-mile (567-million-kilometer) flight to Mars. It is moving at about 10,300 mph (16,600 kilometers per hour) relative to Earth, and at about 68,700 mph (110,500 kilometers per hour) relative to the Sun.

The next trajectory correction maneuver is tentatively scheduled for March 26, 2012.

Curiosity rover launches to Mars atop Atlas V rocket on Nov. 26, 2011 from Cape Canaveral, Florida. Credit: Ken Kremer

The goal of the 1 ton Curiosity rover is to investigate whether the layered terrain inside Gale Crater ever offered environmental conditions favorable for supporting Martian microbial life in the past or present and if it preserved clues about whether life ever existed.

Curiosity will search for the ingredients of life, most notably organic molecules – the carbon based molecules which are the building blocks of life as we know it. The robot is packed to the gills with 10 state of the art science instruments including a 7 foot long robotic arm, scoop, drill and laser rock zapper.

Curiosity’s Roadmap through the Solar System-From Earth to Mars
Schematic shows 8.5 month interplanetary trajectory of Curiosity. Credit: NASA/JPL-Caltech

Curiosity Countdown – 205 days to go until Curiosity lands at Gale Crater on Mars !

January 2012 marks the 8th anniversary of the landings of NASA’s Spirit and Opportunity Mars rovers back in January 2004.

Opportunity continues to operate to this day. Read my salute to Spirit here

Read continuing features about Curiosity and Mars rovers by Ken Kremer starting here:
8 Years of Spirit on Mars – Pushing as Hard as We Can and Beyond !
2011: Top Stories from the Best Year Ever for NASA Planetary Science!
Opportunity Discovers Most Powerful Evidence Yet for Martian Liquid Water
Flawlessly On Course Curiosity Cruising to Mars – No Burn Needed Now
NASA Planetary Science Trio Honored as ‘Best of What’s New’ in 2011- Curiosity/Dawn/MESSENGER
Curiosity Mars Rover Launch Gallery – Photos and Videos
Curiosity Majestically Blasts off on ‘Mars Trek’ to ascertain ‘Are We Alone?
Mars Trek – Curiosity Poised to Search for Signs of Life

8 Years of Spirit on Mars – Pushing as Hard as We Can and Beyond !

Spirit Mars rover - view from Husband Hill summit. Spirit snapped this view self portrait from the summit of Husband Hill inside Gusev crater on Sol 618 on 28 September 2005. The rovers were never designed or intended to climb mountains. It took more than 1 year for Spirit to scale the Martian mountain. This image was created by an international team of astronomy enthusiasts and appeared on the cover of the 14 November 2005 issue of Aviation Week & Space Technology magazine and the April 2006 issue of Spaceflight magazine. Also selected by Astronomy Picture of the Day (APOD) on 28 November 2005. Credit: Marco Di Lorenzo, Douglas Ellison, Bernhard Braun and Kenneth Kremer. NASA/JPL/Cornell/Aviation Week & Space Technology

[/caption]

January 2012 marks the 8th anniversary since of the daring landing’s of “Spirit” and “Opportunity”NASA’s now legendary twin Mars Exploration Rovers (MER), on opposite sides of the Red Planet in January 2004. They proved that early Mars was warm and wet – a key finding in the search for habitats conducive to life beyond Earth.

I asked the leaders of the MER team to share some thoughts celebrating this mind-boggling milestone of “8 Years on Mars” and the legacy of the rovers for the readers of Universe Today. This story focuses on Spirit, first of the trailblazing twin robots, which touched down inside Gusev Crater on Jan. 3, 2004. Opportunity set down three weeks later on the smooth hematite plains of Meridiani Planum.

“Every Sol is a gift. We push the rovers as hard as we can,” Prof. Steve Squyres informed Universe Today for this article commemorating Spirit’s landing. Squyres, of Cornell University, is the Scientific Principal Investigator for the MER mission.

“I seriously thought both Spirit and Opportunity would be finished by the summer of 2004,” Ray Arvidson told Universe Today. Arvidson, of Washington University in St. Louis, is the deputy principal investigator for the MER rovers.

'Calypso' Panorama of Spirit's View from 'Troy'
This full-circle view from the panoramic camera (Pancam) on NASA's Mars Exploration Rover Spirit shows the terrain surrounding the location called "Troy," where Spirit became embedded in soft soil during the spring of 2009. The hundreds of images combined into this view were taken beginning on the 1,906th Martian day (or sol) of Spirit's mission on Mars (May 14, 2009) and ending on Sol 1943 (June 20, 2009). Credit: NASA/JPL-Caltech/Cornell University
click to enlarge

Spirit endured for more than six years and Opportunity is still roving Mars today !

The dynamic robo duo were expected to last a mere three months, or 90 Martian days (sols). In reality, both robots enormously exceeded expectations and accumulated a vast bonus time of exploration and discovery in numerous extended mission phases.

Spirit survived three harsh Martian winters and only succumbed to the Antarctic-like temperatures when she unexpectedly became mired in an unseen sand trap driving beside an ancient volcanic feature named ‘Home Plate’ that prevented the solar arrays from generating life giving power to safeguard critical electronic and computor components.

Spirit was heading towards another pair of volcanic objects named von Braun and Goddard and came within just a few hundred feet when she died.

Everest Panorama from Husband Hill summit
It took Spirit three days, sols 620 to 622 (Oct. 1 to Oct. 3, 2005), to acquire all the images combined into this mosaic, called the "Everest Panorama". Credit: NASA/JPL-Caltech/Cornell University
Click to enlarge

“I never thought that we would still be planning sequences for Opportunity today and that we only lost Spirit because of her limited mobility and bad luck of breaking through crusty soil to get bogged down in loose sands,” said Arvidson

By the time of her last dispatch from Mars in March 2010, Spirit had triumphantly traversed the red planets terrain for more than six years of elapsed mission time – some 25 times beyond the three month “warranty” proclaimed by NASA as the mission began back in January 2004.

The "Columbia Hills" in Gusev Crater on Mars
Husband Hill is 3.1 kilometers distant. Spirit took this mosaic of images with the panoramic camera at the beginning of February, 2004, less than a month after landing on Mars. Image credit: NASA/JPL-Caltech/Cornell

“I am feeling pretty good as the MER rover anniversaries approach in that Spirit had an excellent run, helping us understand without a doubt that early Mars had magmatic and volcanic activity that was “wet”, Arvidson explained.

“Magmas interacted with ground water to produce explosive eruptions – at Home Plate, Goddard, von Braun – with volcanic constructs replete with steam vents and perhaps hydrothermal pools.”

Altogether, the six wheeled Spirit drove over 4.8 miles (7.7 kilometers) and the cameras snapped over 128,000 images. NASA hoped the rovers would drive about a quarter mile during the planned 90 Sol mission.

“Milestones like 8 years on Mars always make me look forward rather than looking back,” Squyres told me.

Carbonate-Containing Martian Rocks discovered by Spirit Mars Rover
Spirit collected data in late 2005 which confirmed that the Comanche outcrop contains magnesium iron carbonate, a mineral indicating the past environment was wet and non-acidic, possibly favorable to life. This view was captured during Sol 689 on Mars (Dec. 11, 2005). The find at Comanche is the first unambiguous evidence from either Spirit or Opportunity for a past Martian environment that may have been more favorable to life than the wet but acidic conditions indicated by the rovers' earlier finds. Credit: NASA/JPL-Caltech/Cornell University

Spirit became the first robotic emissary from humanity to climb a mountain beyond Earth, namely Husband Hill, a task for which she was not designed.

“No one expected the rovers to last so long,” said Rob Manning to Universe Today. Manning, of NASA’s Jet Propulsion laboratory, Pasadena, CA. was the Mars Rover Spacecraft System Engineering team lead for Entry, Descent and Landing (EDL)

“Spirit surmounted many obstacles, including summiting a formidable hill her designers never intended her to attempt.”

“Spirit, her designers, her builders, her testers, her handlers and I have a lot to be thankful for,” Manning told me.

After departing the Gusev crater landing pad, Spirit traversed over 2 miles to reach Husband Hill. In order to scale the hill, the team had to create a driving plan from scratch with no playbook because no one ever figured that such a mouthwatering opportunity to be offered.

Spirit Rover traverse map from Gusev Crater landing site to Home Plate: 2004 to 2011

It took over a year to ascend to the hill’s summit. But the team was richly rewarded with a science bonanza of evidence for flowing liquid water on ancient Mars.

Spirit then descended down the other side of the hill to reach the feature dubbed Home Plate where she now rests and where she found extensive evidence of deposits of nearly pure silica, explosive volcanism and hot springs all indicative of water on Mars billions of years ago.

“Spirit’s big scientific accomplishments are the silica deposits at Home Plate, the carbonates at Comanche, and all the evidence for hydrothermal systems and explosive volcanism, Squyres explained. “ What we’ve learned is that early Mars at Spirit’s site was a hot, violent place, with hot springs, steam vents, and volcanic explosions. It was extraordinarily different from the Mars of today.”

“We’ve still got a lot of exploring to do [with Opportunity], but we’re doing it with a vehicle that was designed for a 90-sol mission,” Squyres concluded. “That means that ever sol is a gift at this point, and we have to push the rover and ourselves as hard as we can.”

NASA concluded the last attempt to communicate with Spirit in a transmission on May 25, 2011.

Spirit Rover traverse map from Husband Hill to resting place at Home Plate: 2004 to 2011
The Last View Ever from Spirit rover on Mars
Spirit’s last panorama from Gusev Crater was taken during February 2010 before her death from extremely low temperatures during her 4th Martian winter. Spirit was just 500 feet from her next science target - dubbed Von Braun – at center, with Columbia Hills as backdrop.
Mosaic Credit: Marco De Lorenzo/ Kenneth Kremer/ NASA/JPL/Cornell University
Mosaic featured on Astronomy Picture of the Day (APOD) on 30 May 2011 - http://apod.nasa.gov/apod/ap110530.html

Meanwhile, the Curiosity Mars Science Lab rover, NASA’s next Red Planet explorer, continues her interplanetary journey on course for a 6 August 2012 landing at Gale Crater.

Read continuing features about the Mars Rovers, Curiosity and GRAIL by Ken Kremer here:
Two new Moons join the Moon – GRAIL Twins Achieve New Year’s Orbits
2011: Top Stories from the Best Year Ever for NASA Planetary Science!
Opportunity Discovers Most Powerful Evidence Yet for Martian Liquid Water
Curiosity Starts First Science on Mars Sojurn – How Lethal is Space Radiation to Life’s Survival

Jan 11: Free Lecture by Ken Kremer at the Franklin Institute, Philadelphia, PA at 8 PM for the Rittenhouse Astronomical Society. Topic: Mars & Vesta in 3 D – Plus Search for Life & GRAIL

Solar Powered Dragon gets Wings for Station Soar

SpaceX Dragon set to dock at International Space Station on COTS 2/3 mission. Falcon 9 launch of Dragon on COTS 2/3 mission is slated for Feb.7, 2012 from pad 40 at Cape Canaveral, Florida. Artist’s rendition of Dragon spacecraft with solar panels fully deployed on orbit. ISS crew will grapple Dragon and berth to ISS docking port. Credit: NASA

[/caption]

The Dragon has grown its mighty wings

SpaceX’s Dragon spacecraft has gotten its wings and is set to soar to the International Space Station (ISS) in about a month. NASA and SpaceX are currently targeting a liftoff on Feb. 7 from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.

Dragon is a commercially developed unmanned cargo vessel constructed by SpaceX under a $1.6 Billion contract with NASA. The Dragon spacecraft will launch atop a Falcon 9 booster rocket also built by SpaceX, or Space Exploration Technologies.

Dragon’s solar array panels being installed on Dragon’s trunk at the SpaceX hangar in Cape Canaveral,FL.

The Feb. 7 demonstration flight – dubbed COTS 2/3 – represents the first test of NASA’s new strategy to resupply the ISS with privately developed rockets and cargo carriers under the Commercial Orbital Transportation Services (COTS) initiative.

Following the forced retirement of the Space Shuttle after Atlantis final flight in July 2011, NASA has no choice but to rely on private companies to loft virtually all of the US share of supplies and equipment to the ISS.

The Feb. 7 flight will be the first Dragon mission actually tasked to dock to the ISS and is also the first time that the Dragon will fly with deployable solar arrays. The twin arrays are the primary power source for the Dragon. They will be deployed a few minutes after launch, following Dragon separation from the Falcon 9 second stage.

The solar arrays can generate up to 5000 watts of power on a long term basis to run the sensors and communications systems, drive the heating and cooling systems and recharge the battery pack.

SpaceX designed, developed and manufactured the solar arrays in house with their own team of engineers. As with all space hardware, the arrays have been rigorously tested for hundreds of hours under the utterly harsh conditions that simulate the unforgiving environment of outer space, including thermal, vacuum, vibration, structural and electrical testing.

SpaceX engineers conducting an early solar panel test. Hundreds of flood lamps simulate the unfiltered light of the sun. Photo: Roger Gilbertson/ SpaceX

The two arrays were then shipped to Florida and have been attached to the side of the Dragon’s bottom trunk at SpaceX’s Cape Canaveral launch processing facilities. They are housed behind protective shielding until commanded to deploy in flight.


Video Caption: SpaceX testing of the Dragon solar arrays. Credit: SpaceX

I’ve toured the SpaceX facilities several times and seen the Falcon 9 and Dragon capsule launching on Feb. 7. The young age and enthusiasm of the employees is impressive and quite evident.

NASA recently granted SpaceX the permission to combine the next two COTS demonstration flights into one mission and dock the Dragon at the ISS if all the rendezvous practice activities in the vicinity of the ISS are completed flawlessly.

Dragon with the protective fairings installed over the folded solar arrays, at the SpaceX

The ISS crew is eagerly anticipating the arrival of Dragon, for whch they have long trained.

“We’re very excited about it,” said ISS Commander Dan Burbank in a televised interview from on board the ISS earlier this week.

The ISS crew will grapple the Dragon with the station’s robotic arm when it comes within reach and berth it to the Earth-facing port of the Harmony node.

“From the standpoint of a pilot it is a fun, interesting, very dynamic activity and we are very much looking forward to it,” Burbank said. “It is the start of a new era, having commercial vehicles that come to Station.”

Burbank is a US astronaut and captured stunning images of Comet Lovejoy from the ISS just before Christmas, collected here.

Read recent features about the ISS and commercial spaceflight by Ken Kremer here:
Dazzling Photos of the International Space Station Crossing the Moon!
Absolutely Spectacular Photos of Comet Lovejoy from the Space Station
NASA announces Feb. 7 launch for 1st SpaceX Docking to ISS

Jan 11: Free Lecture by Ken at the Franklin Institute, Philadelphia, PA at 8 PM for the Rittenhouse Astronomical Society. Topic: Mars & Vesta in 3 D – Plus Search for Life & GRAIL

Dazzling Photos of the International Space Station Crossing the Moon!

Moon and International Space Station from NASA Johnson Space Center, Houston, Texas. This photo was taken in the early evening of Jan. 4. Equipment: Nikon D3S, 600mm lens and 2x converter, Heavy Duty Bogen Tripod with sandbag and a trigger cable to minimize camera shake. Camera settings: 1/1600 @ f/8, ISO 2500 on High Continuous Burst. Credit: NASA

[/caption]

Has the International Space Station (ISS) secretly joined NASA’s newly arrived GRAIL lunar twins orbiting the Moon?

No – but you might think so gazing at these dazzling new images of the Moon and the ISS snapped by a NASA photographer yesterday (Jan. 4) operating from the Johnson Space Center in Houston, Texas.

Check out this remarkable series of NASA photos above and below showing the ISS and her crew of six humans crossing the face of Earth’s Moon above the skies over Houston, Texas. And see my shot below of the Moon near Jupiter – in conjunction- taken just after the two GRAIL spacecraft achieved lunar orbit on New Year’s weekend.

In the photo above, the ISS is visible at the upper left during the early evening of Jan. 4, and almost looks like it’s in orbit around the Moon. In fact the ISS is still circling about 248 miles (391 kilometers) above Earth with the multinational Expedition 30 crew of astronauts and cosmonauts hailing from the US, Russia and Holland.

Space Station Crossing Face of Moon
This composite of images of the International Space Station flying over the Houston area show the progress of the station as it crossed the face of the moon in the early evening of Jan. 4, 2012 over NASA’s Johnson Space Center, Houston, Texas. Credit: NASA
click to enlarge

The amazing photo here is a composite image showing the ISS transiting the Moon’s near side above Houston in the evening hours of Jan 4.

The ISS is the brightest object in the night sky and easily visible to the naked eye if it’s in sight.

With a pair of binoculars, it’s even possible to see some of the stations structure like the solar panels, truss segments and modules.

Check this NASA Website for ISS viewing in your area.

How many of you have witnessed a sighting of the ISS?

It’s a very cool experience !

NASA says that some especially good and long views of the ISS lasting up to 6 minutes may be possible in the central time zone on Friday, Jan 6 – depending on the weather and your location.

And don’t forget to check out the spectacular photos of Comet Lovejoy recently shot by Expedition 30 Commander Dan Burbank aboard the ISS – through the Darth Vader like Cupola dome, and collected here

Moon and International Space Station (at lower right) on Jan 4, 2012 from NASA Johnson Space Center, Houston, Texas. Credit: NASA click to emlarge
Moon, Jupiter and 2 GRAILs on Jan. 2, 2012
Taken near Princeton, NJ after both GRAIL spacecraft achieved lunar orbit after LOI - Lunar Orbit Insertion- burns on New Year’s weekend 2012. Credit: Ken Kremer