First Earth-Sized Exoplanets Found by Kepler

The Kepler-20 planetary system contains five planets that alternate in size: large, small, large, small, large, as shown in this artist's rendering. Credit: David A. Aguilar (CfA)

[/caption]

December 2011 will go down in history as the first time humanity was able to detect an Earth-sized planet around another Sun-like star, said Francois Fressin, an astronomer from Harvard-Smithsonian Center for Astrophysics. Fressin and his team used the Kepler planet-hunting spacecraft to find two rocky worlds – one just a bit bigger than Earth and the other slightly smaller than Venus.

The two planets, named Kepler-20e and 20f, are the smallest planets found to date. They have diameters of 11,000 km (6,900 miles) and 13,190 km (8,200 miles) – equivalent to 0.87 and 1.03 times Earth. Astronomers expect these worlds to have rocky compositions, so their masses should be less than 1.7 and 3 times Earth’s.

The two worlds are part of a multiple-planet system with five planets around the same star, and is located about 1,000 light years away in the constellation of Lyra. “People can point to that area in the sky and say this is where the era of exo-Earth’s began,” said Fressin, adding that the two rocky worlds are too close to their star — and thus too hot — to be habitable.

Artist's Concept of Kepler-20e, one of two Earth-sized planets found by the Kepler spacecraft. Credit: NASA/Ames/JPL-Caltech

Kepler-20e orbits every 6.1 days at a distance of 4.7 million miles. Kepler-20f orbits every 19.6 days at a distance of 10.3 million miles. Due to their tight orbits, they are heated to temperatures of 760 Celcius (1,400 degrees Fahrenheit) and 426 C (800 degrees F.)

The solar system where these planets exists is quite unusual, where rocky and gas planets alternate in their positions instead of being separated into groups like in our own solar system.

The first planet is a Neptune-like world; then the first rocky planet, Kepler 20e; next is another Neptune world; following is the next rocky world 20f, and then another Neptune-like gas planet.

“So, big, little, big, little, big — which is unlike any other system so far,” said David Charbonneau, from Harvard University. “We were surprised to find this system of flip-flopping planets. It’s very different than our solar system.”

Additionally, all the planets are very closely compact, lying within the orbit of Mercury around our Sun.

This unusual system of alternating planets may not be unusual at all, as our sample of solar systems is still relatively small.

“This really is a problem for our community to explain,” said Linda Elkins-Tanton, director of the Carnegie Institution for Science’s Department of Terrestrial Magnetism in Washington, in response to a question posed by Universe Today about the dynamics of such a system. “We are really challenging the community for the reason why this happened, and it may well be that our solar system may be in the minority.”

Artist's Concept of Kepler-20f. Credit: NASA/Ames/JPL-Caltech

The astronomers don’t think the planets of Kepler-20 formed in their current locations. Instead, they must have formed farther from their star and then migrated inward, probably through interactions with the disk of material from which they all formed. This allowed the worlds to maintain their regular spacing despite alternating sizes.

“We think they migrated because we can’t imagine all this stuff so close to the star, where it is warm and only portions of the material is in solid form,” Charbonneau told Universe Today. “We think the birth place of a Neptune-like world is farther from the star and then over time the planets migrate in. Wouldn’t be surprised if we see more systems like this as we keep exploring.”

Asked when the Kepler team might find a “best of both worlds” planet — one that is the right size and in the right place to be habitable, Nick Gautier, Kepler project scientist said they may find one in the next year or two, but the Kepler mission may need an extension to ensure finding the Holy Grail of exoplanets — one that is just like Earth.

Kepler identifies “objects of interest” by looking for stars that dim slightly, which can occur when a planet crosses the star’s face. To confirm a transiting planet, astronomers look for the star to wobble as it is gravitationally tugged by its orbiting companion (a method known as radial velocity).

The radial velocity signal for planets weighing one to a few Earth masses is too small to detect with current technology. Therefore, other techniques must be used to validate that an object of interest is truly a planet.

A variety of situations could mimic the dimming from a transiting planet. For example, an eclipsing binary-star system whose light blends with the star Kepler-20 would create a similar signal. To rule out such imposters, the team simulated millions of possible scenarios with Blender – custom software developed by Fressin and Willie Torres of CfA. They concluded that the odds are strongly in favor of Kepler-20e and 20f being planets.

Fressin and Torres also used Blender to confirm the existence of Kepler-22b, a planet in the habitable zone of its star that was announced by NASA earlier this month. However, that world was much larger than Earth.

“These new planets are significantly smaller than any planet found up till now orbiting a Sun-like star,” added Fressin.

For further reading:

Paper in Nature

Harvard CfA press release

NASA

Kepler Confirms First Planet in Habitable Zone of Sun-Like Star

This artist's illustration of Kepler 22-b, an Earth-like planet in the habitable zone of a Sun-like star about 640 light years (166 parsecs) away. Credit: NASA/Ames/JPL-Caltech

[/caption]

Scientists from the Kepler mission announced this morning the first confirmed exoplanet orbiting in the habitable zone of a Sun-like star, the region where liquid water could exist on the surface of a rocky planet like Earth. Evidence for others has already been found by Kepler, but this is the first confirmation. The planet, Kepler-22b, is also only about 2.4 times the radius of Earth — the smallest planet found in a habitable zone so far — and orbits its star, Kepler-22, in 290 days. It is about 600 light-years away from Earth, and Kepler-22 is only slightly smaller and cooler than our own Sun. Not only is the planet in the habitable zone, but astronomers have determined its surface temperature averages a comfortable 22 degrees C (72 degrees F). Since the planet’s mass is not yet known, astronomers haven’t determined if it is a rocky or gaseous planet. But this discovery is a major step toward finding Earth-like worlds around other stars. A very exciting discovery, but there’s more…

It was also announced that Kepler has found 1,094 more planetary candidates, increasing the number now to 2,326! That’s an increase of 89% since the last update this past February. Of these, 207 are near Earth size, 680 are super-Earth size, 1,181 are Neptune size, 203 are Jupiter size and 55 are larger than Jupiter. These findings continue the observational trend seen before, where smaller planets are apparently more numerous than larger gas giant planets. The number of Earth size candidates has increased by more than 200 percent and the number of super-Earth size candidates has increased by 140 percent.

According to Natalie Batalha, Kepler deputy science team lead at San Jose State University in San Jose, California, “The tremendous growth in the number of Earth-size candidates tells us that we’re honing in on the planets Kepler was designed to detect: those that are not only Earth-size, but also are potentially habitable. The more data we collect, the keener our eye for finding the smallest planets out at longer orbital periods.”

Regarding Kepler-22b, William Borucki, Kepler principal investigator at NASA Ames Research Center at Moffett Field, California stated: “Fortune smiled upon us with the detection of this planet. The first transit was captured just three days after we declared the spacecraft operationally ready. We witnessed the defining third transit over the 2010 holiday season.”

Comparison of the Kepler-22 system with our own inner solar system. Credit: NASA/Ames/JPL-Caltech

Previously there were 54 planetary candidates in habitable zones, but this was changed to 48, after the Kepler team redefined the definition of what constitutes a habitable zone in order to account for the warming effects of atmospheres which could shift the zone farther out from a star.

The announcements were made at the inaugural Kepler science conference which runs from December 5-9 at Ames Research Center.

See also the press release from the Carnegie Institution for Science here.

New Planet Kepler-21b Confirmed From Both Space And Ground

The Kepler field as seen in the sky over Kitt Peak National Observatory. The approximate position of HD 179070 is indicated by the circle (sky imaged using a diffraction grating to show spectra of brighter stars, credit J. Glaspey; telescopes imaged separately and combined, credit P. Marenfeld)

[/caption]

Are you ready to add another planet to the growing list of discoveries? Thanks to work done by Steve Howell of the NASA Ames Research Center and his research team, the Kepler Mission has scored another. Cataloged as 21-b, this “new” planet measures about one and half times the Earth’s radius and no more than 10 times the mass… but its “year” is only 2.8 days long!

With such a speedy orbit around its parent star, this little planet quickly drew attention to itself. Kepler 21-b’s sun is much like our own and one of the brightest in the Kepler field. Given its unique set of circumstances, it required a team of over 65 astronomers (that included David Silva, Ken Mighell and Mark Everett of NOAO) and cooperation with several ground-based telescopes including the 4 meter Mayall telescope and the WIYN telescope at Kitt Peak National Observatory to confirm its existence.

At this point, observations place this hot little planet at about 6 million kilometers away from the parent star, where it has estimated temperatures of about 1900 K, or 2960 F. While this isn’t even anywhere near a life-supporting type of planet, Kepler 21-b remains of interest because of its size. The parent star, HD 179070, is just slightly larger than the Sun and about half its age. Regardless, it can still be seen with optical aid and it is only about 352 light years away from Earth.

Kepler light curve of HD 179070 showing the eclipse of Kepler-21b. The data cover 15 months. The figure shows the binned, and phase folded-data based on 164 individual transits over-plotted by the model fit (red line).

Why are findings like these exciting? Probably because a large amount of stars show short period brightness oscillations – which means it’s difficult to detect a planetary passage from a normal light curve. In this case, it took 15 long months to build up enough information – including spectroscopic and imaging data from a number of ground based telescopes – to make a confident call on the planet’s presence.

It ain’t easy being a little planet… But they can be found!

Original Story Source: NOAO News Release.

Kepler Space Telescope Mission Extension Proposal

Artist's conception of the Kepler 16 system, where the planet Kepler 16-b orbits two stars, much like Tatooine from Star Wars. Credit: NASA/JPL-Caltech/R. Hurt

[/caption]

Some potentially good news for exoplanet fans, and Kepler fans in particular – Kepler scientists are asking for a mission extension and seem reasonably confident they will get it. Otherwise, funding is due to run out in November of 2012. It is crucial that Kepler receive renewed funding in order to continue its already incredibly successful search for planets orbiting other stars. Its primary goal — and the holy grail of exoplanet research — is finding worlds that are about the size of Earth, orbiting in the “habitable zone” of stars that are similar to our Sun, where temperatures could allow liquid water on their surfaces.

But finding those ideal smaller planets requires several years of observations, in order for Kepler to confirm a repeated orbit as a planet transits its star. The larger the orbit, the longer the observation time needed to view multilple transits. Most of the planetary candidates found already orbit much closer to their stars, hence taking less time to complete an orbit, and can more easily be detected within the first few years of the mission.

Kepler has already obtained very compelling data on a wide variety of planets since it was launched in 2009, with 1,235 candidates found so far (about 25 of which have been confirmed to date), but further refining of the data will take more time; a few more years would do just fine. The exciting trend has been that smaller, rocky planets appear to be much more common than gas giants; good news for those hoping to finds worlds similar to Earth that could be habitable (or, of course, inhabited!).

It is estimated it would cost about $20 million per year to keep Kepler functioning past 2012, which doesn’t sound too bad considering that about $600 million has already been invested in the mission. NASA’s budget, like everyone else’s, is tight though these days, so it isn’t a done deal yet.

The proposal will be submitted in January, with an answer expected by next April or May.

NASA’s Kepler Dishes Up A Triple Planet Treat

The top graphic shows the orbits of the three known planets orbiting Kepler-18 as compared to Mercury's orbit around the Sun. The bottom graphic shows the relative sizes of the Kepler-18 and its known planets to the Sun and Earth. Credit: Tim Jones/McDonald Obs./UT-Austin

[/caption]
What has a super-Earth and two Neptune-like planets? This tempting dessert belongs to the latest Kepler discovery found orbiting Kepler 18. Bill Cochran and a team of researchers have found the resonance they were looking for… and this very Sun-like star may have even more planets dancing around it.

Kepler 18 is a prime candidate for a solar system. The host star is approximately 97% the Sun’s mass and only about 10% physically larger. For now, the transit method has detected three planetary candidates named b, c and d which orbit within a zone smaller than Mercury’s. The “Super Earth” is about twice our size and its year only last three and a half days. At about six times and seven times our size, gaseous planets c and d have rough orbital periods of seven and half and fifteen days respectively.

While the two larger planets have similar transits, their times “are not staying exactly on that orbital period,” Cochran says. “One is slightly early when the other one is slightly late, [then] both are on time at the same time, and then vice-versa.”

Scientifically speaking, c and d are orbiting in a 2:1 resonance. “It means they’re interacting with each other,” Cochran explains. “When they are close to each other … they exchange energy, pull and tug on each other.”

By using the transit method, the Kepler mission is able to watch for periodic brightness changes that signal orbiting bodies. Imagine a bright flashlight moving steadily behind a picket fence in the dark and you’ll get the picture. If each board were a slightly different size, the times the flashlight would be seen would vary. Resonance occurs – very simply put – when there’s a pattern like two wide boards and then a small one. But there’s more that can pass in front of our flashlight than just boards. There could be a line-of-sight star with a binary companion… and it’s just variables like these that makes confirming Kepler’s findings crucial.

In a process called “validation”, Cochran and his team utilized the Palomar 5-meter (200-inch) Hale Telescope and its adaptive optics to take another look at Kepler 18 and its system. “We successively went through every possible type of object that could be there,” Cochran says. “There are limits on the sort of objects that can be there at different distances from the star.” The findings were negative. The planetary trio survived the next stage of identification.

“There’s a small possibility that [planet b] is due to a background object, but we’re very confident that it’s probably a planet,” Cochran says. With a seven hundred times probability factor that the Kepler findings signify a planetary signature, chances are good this trio is going down on the records as a validated system – with perhaps more yet to be discovered.

“We’re trying to prepare the astronomical community and the public for the concept of validation,” he says. “The goal of Kepler is to find an Earth-sized planet in the habitable zone, with a one-year orbit. Proving that such an object really is a planet is very difficult. When we find what looks to be a habitable Earth, we’ll have to use a validation process, rather than a confirmation process. We’re going to have to make statistical arguments.”

Original Story Source: McDonald Observatory News Release.

United Launch Alliance’s Delta II Approved for Potentially Five More Launches

United Launch Alliance's Delta II rocket has been added to the National Launch Services II contract by NASA. Photo Credit: Alan Walters/awaltersphoto.com

[/caption]
NASA announced that it has added the Delta II rocket, a launch vehicle that appeared to be slipping into history, to the NASA Launch Services (NLS) II contract. The Delta II, produced by United Launch Alliance, is one of the most successful expendable launch vehicles that has ever been produced.

This modification of the contract will allow ULA to add the Delta II rocket as part of the contract’s on-ramp provision. The modification allows United Launch Services to offer as much as five Delta II rockets.

The Delta II was most recently utilized to launch the GRAIL mission to study the Moon's composition. Photo Credit: Mike Killian/ARES Institute

“We are extremely pleased NASA has added the reliable Delta II to the NLS II contract and look forward to continuing the legacy of the program,” said Michael Gass, ULA’s president and CEO. “ULA has demonstrated its ability to fully integrate Atlas V, Delta IV and Delta II product lines allowing us to continue offering medium launch capability at the best value for our customers.”

The Delta II rocket, in its various configurations has been launched 150 times and has a success rate of 98.7 percent. The one notable failure was the 1997 launch of a U.S. Air Force Global Positioning IIR-1 satellite (GPS IIR-1). Within 13 seconds of launch the Delta II exploded causing severe destruction to the surrounding area. The cause of this mishap was determined to be a crack within one of the GEM-40 solid rocket boosters that are affixed to the base of the Delta II.

The Delta II rocket has a very extensive history of success and has been used to launch many famous missions. Image Credit: NASA/JPL

“While we count success one mission at a time, we have been able to count on the Delta II’s success 96 times in a row over the last decade,” Gass said. “This is a tribute to our dedicated ULA employees, our supplier teammates and our NASA Launch Services Program customer who ensures mission success is the focus of each and every launch.”

The planetary science missions that the rocket has sent into space reads like a “Who’s Who” of space exploration missions. The Mars Exploration Rovers Spirit and Opportunity, Mars Phoenix Lander, Genesis, Stardust, Mars Pathfinder, Mars Global Surveyor, Messenger, Deep Impact, Dawn, Kepler, Wise and the recent GRAIL mission to the Moon – all thundered to orbit atop a Delta II.

The Delta II rocket is launched from either Vandenberg Air Force Base in California or Cape Canaveral Air Force Station located in Florida. Photo Credit: NASA.gov

ULA’s next planned launch of a Delta II will carry the NPOESS Preparatory Project (NPP) mission for NASA. It is currently slated to launch Oct. 25, 2011 from Space Launch Complex-2 at Vandenberg Air Force Base, located in California. ULA launches from both Vandenberg as well as Cape Canaveral Air Force Station, located in Florida.

While this change does allow for at least five more launches of the Delta II, after those launches, the rocket will no longer be utilized and will be phased out of service.

The NLS II contracts are designed to provide for payloads weighing about 550 pounds or more to be sent to a minimum 124-mile-high circular orbit. The launch service providers signed into these contracts also may offer different launch vehicles to NASA to meet other requirements. NASA can also provide launch services to other agencies, such as the National Oceanic and Atmospheric Administration or NOAA.

Spirit and Opportunity, Pathfinder, Deep Impact, Dawn, Kepler, Stardust, Genesis and Wise - were all launched on the Delta II rocket. Photo Credit: NASA/George Shelton

How Common are Terrestrial, Habitable Planets Around Sun-Like Stars?

Artst concept of the Kepler telescope in orbit. Credit: NASA

[/caption]

Once again news from the Kepler mission is making the rounds, this time with a research paper outlining a theory that Earth-like planets may be more common around class F, G and K stars than originally expected.

In the standard stellar classification scheme, these type of stars are similar or somewhat similar to our own Sun (which is a Class G star); Class F stars are hotter and brighter and Class K stars are cooler and dimmer. Given this range of stars, the habitable zones vary with different stars. Some habitable planets could orbit their host star at twice the distance Earth orbits our Sun or in the case of a dim star, less than Mercury’s orbit.

How does this recent research show that small, rocky, worlds may be more common that originally thought?

Dr. Wesley Traub, Chief Scientist with NASA’s Exoplanet Exploration Program outlines his theory in a recent paper submitted to the Astrophysical Journal.

A possible habitable world? Credit: NASA/JPL

Based on Traub’s calculations in his paper, he formulates that roughly one-third of class F, G, and K stars should have at least one terrestrial, habitable-zone planet. Traub bases his assertions on data from the first 136 days of Kepler’s mission.

Initially starting with 1,235 exoplanet candidates, Traub narrowed the list down to 159 exoplanets orbiting F class stars, 475 orbiting G class stars, and 325 orbiting K class stars – giving a total of 959 exoplanets in his model. For the purposes of Traub’s model, he defines terrestrial planets as those with a radius of between half and twice that of Earth. The mass ranges specified in the model work out to between one-tenth Earth’s mass and ten times Earth’s mass – basically objects ranging from Mars-sized to the theoretical super-Earth class.

The paper specifies three different ranges for the habitable zone: A “wide” habitable zone (HZ) from 0.72 to 2.00 AU, a more restrictive HZ from 0.80 to 1.80 AU, and a narrow/conservative HZ of 0.95 to 1.67 AU.

After working through the necessary math of his model, and coming up with a “power law” that gives a habitable zone to a star depending on its class and then working out how many planets ought to be at those distances, Traub estimated the frequency of terrestrial, habitable-zone planets around Sun-like (Classes F, G and K) stars at (34 ± 14)%.

He added that mid-size terrestrial planets are just as likely to be found around faint stars and bright ones, even though fewer small planets show up around faint stars. But that is likely because of the limits of our currently technology, where small planets are more difficult for Kepler to see, and it’s easier for Kepler to see planets that orbit closer to their stars.

Traub discussed how the quoted uncertainty is the formal error in projecting the numbers of short-period planets, and that the true uncertainty will remain unknown until Kepler observations of orbital periods in the 1,000-day range become available.

Check out our previous coverage of exoplanet detections using the Kepler data at: http://www.universetoday.com/89120/big-find-citizen-scientists-discover-two-extrasolar-planets/

If you’d like to read Traub’s paper and follow the math involved in his analysis, you can do so at: http://arxiv.org/PS_cache/arxiv/pdf/1109/1109.4682v1.pdf

Learn more about the Kepler mission at: http://kepler.nasa.gov/

Source: arXiv:1109.4682v1 [astro-ph.EP]

Kepler Mission Discovers “Tatooine-like” Planet

Artist's rendering of Kepler-16b Image Credit: NASA/JPL-Caltech/R. Hurt

[/caption]

In a news conference today, Kepler mission scientists announced the first confirmed circumbinary planet ( a planet that orbits a binary star system). The planet in question, designated Kepler-16b has been compared to the planet Tatooine from the Star Wars saga.

Would it be possible for someone like Luke Skywalker to stand on the surface of Kepler-16b and see the famous “binary sunset” as depicted in Star Wars?

Despite the initial comparison between Kepler-16b and Tatooine, the planets really only have their orbit around a binary star system in common. Kepler-16b is estimated to weigh about a third the mass of Jupiter, with a radius of around three-quarters that of Jupiter.

Given the mass and radius estimates, this makes Kepler-16b closer to Saturn than the rocky, desert-like world of Tatooine. Kepler-16b’s orbit around its two parent stars takes about 229 days, which is similar to Venus’ 225-day orbit. At a distance of about 65 million miles from its parent stars, which are both cooler than our sun, temperatures on Kepler-16b are estimated in the range of around -100 C.

The team did mention that Kepler-16b is just outside of the habitable zone of the Kepler-16 system. Despite being just outside the habitable zone, the team did mention that it could be possible for Kepler-16b to have a habitable moon, if said moon had a thick, greenhouse gas atmosphere.

Binary Sunset as seen on Tatooine
Tatooine appears to have twin stars like our sun, versus the orange (type K) and red (type M) stars of Kepler-16
During the press conference John Knoll, visual effects supervisor at ILM, mentioned: “When I was a kid, I didn’t think it was going to be possible to make discoveries like this.” Knoll also added, “The science is stranger and cooler than fiction!”

The Kepler mission detects exoplanet candidates by using the transit method which detects the dimming of the light emitted from a star as a planet crosses in front of it. In the case of Kepler-16b, the detection was complicated by the two stars in the system eclipsing each other.

The system’s brightness showed variations even when the stars were not eclipsing each other, which hinted at a third body. What further complicated matters was that the variations in brightness appeared at irregular time intervals. The irregular time intervals hinted that the stars were in different positions in their orbit each time the third body passed. After studying the data, the team came to the conclusion that the third body was orbiting, not just one, but both stars.

“Much of what we know about the sizes of stars comes from such eclipsing binary systems, and most of what we know about the size of planets comes from transits,” added Kepler scientist Laurance Doyle of the SETI Institute. “Kepler-16 combines the best of both worlds, with stellar eclipses and planetary transits in one system.” Doyle’s findings will be published in the Sept. 15th issue of the journal Science.

The Kepler mission is NASA’s first mission capable of finding Earth-size planets in or near the habitable zone – the region around a star where liquid water can exist on the surface of an orbiting planet. A considerable number of planets and planet candidates have been detected by the mission so far. If you’d like to learn more about the Kepler mission, visit: http://kepler.nasa.gov/

You can also read more about the Kepler-16b discovery at: http://kepler.nasa.gov/Mission/discoveries/kepler16b/

Source: NASA news conference / NASA TV

Ray Sanders is a Sci-Fi geek, astronomer and space/science blogger. Visit his website Dear Astronomer and follow on Twitter (@DearAstronomer) or Google+ for more space musings.

‘Invisible’ World Discovered Around a Distant Star

The "invisible" world Kepler-19c, seen in the foreground of this artist's conception, was discovered solely through its gravitational influence on the companion world Kepler-19b - the dot crossing the star's face. Kepler-19b is slightly more than twice the diameter of Earth, and is probably a "mini-Neptune." Nothing is known about Kepler-19c, other than that it exists. Credit: David A. Aguilar (CfA)

[/caption]

There’s a planet out there playing a game of ‘doorbell ditch’ with astronomers. Scientists can’t see this distant world, but they know it’s there because its gravity is having a noticeable effect on the orbit of a neighboring planet.

“It’s like having someone play a prank on you by ringing your doorbell and running away,” said astronomer Sarah Ballard of the Harvard-Smithsonian Center for Astrophysics (CfA), lead author on a new paper published in the The Astrophysical Journal. “This invisible planet makes itself known by its influence on the planet we can see.”

The planetary system of the visible and stealthy planets was discovered by the Kepler spacecraft, and the two worlds orbit a Sun-like star named Kepler-19. The system is located 650 light-years from Earth in the constellation Lyra. The 12th-magnitude star is well placed for viewing by backyard telescopes on September evenings in the northern hemisphere.

Launched in 2009, NASA’s Kepler spacecraft hunts for extra-solar planets around stars other than our Sun by watching for planets orbiting in front of their stars. These “transiting” planets block some of the starlight, and that’s how astronomers “see” that a planet is there.

However, the planet and star must line up exactly for us to see a transit.

That was the case for the first planet, Kepler-19b. It transits its star every 9 days and 7 hours, at a distance of 8.4 million miles from the star, where it is heated to a temperature of about 900 degrees Fahrenheit. The great thing about transits is that astronomers can deduce the planet’s physical size: the greater the dip in light, the larger the planet relative to its star. Kepler-19b has a diameter of 18,000 miles, making it slightly more than twice the size of Earth. It may resemble a “mini-Neptune,” however its mass and composition remain unknown.

If Kepler-19b were alone, each transit would follow the next like clockwork. Instead, the transits come up to five minutes early or five minutes late. Such transit timing variations show that another world’s gravity is pulling on Kepler-19b, alternately speeding it up or slowing it down.

If this sounds somewhat familiar, the planet Neptune in our own solar system was discovered similarly. Astronomers tracking Uranus noticed that its orbit didn’t match predictions. They realized that a more distant planet might be nudging or pulling on Uranus and calculated the expected location of the unseen world. Telescopes soon observed Neptune near its predicted position.

But this is the first time this method has been used to find a previously unknown planet in another solar system. Astronomers say no other current technique we have could have found the unseen companion.

“This method holds great promise for finding planets that can’t be found otherwise,” stated Harvard astronomer and co-author David Charbonneau.

So far, astronomers don’t know anything about the invisible world Kepler-19c, other than that it exists. It weighs too little to gravitationally tug the star enough for them to measure its mass. And Kepler hasn’t detected it transiting the star, suggesting that its orbit is tilted relative to Kepler-19b.

“Kepler-19c has multiple personalities consistent with our data. For instance, it could be a rocky planet on a circular 5-day orbit, or a gas-giant planet on an oblong 100-day orbit,” said co-author Daniel Fabrycky of the University of California, Santa Cruz (UCSC).

The Kepler spacecraft will continue to monitor Kepler-19 throughout its mission. Those additional data will help nail down the orbit of Kepler-19c. Future ground-based instruments like HARPS-North will attempt to measure the mass of Kepler-19c. Only then will we have a clue to the nature of this invisible world.

Source: Harvard Smithsonian CfA

Shedding Some Light on a Dark Discovery

Artist's rendering of TrES-2b, an extremely dark gas giant. Credit: David Aguilar (CfA)

[/caption]

Earlier this month astronomers released news of the darkest exoplanet ever seen: discovered in 2006, the gas giant TrES-2b reflects less than 1% of the visible light from its parent star… it’s literally darker than coal! Universe Today posted an article about this intriguing announcement on August 11, and now Dr. David Kipping of the Harvard-Smithsonian Center for Astrophysics is featuring a podcast on 365 Days of Astronomy in which he gives more detail about the dark nature of this discovery.

Listen to the podcast here.

The 365 Days of Astronomy Podcast is a project that will publish one podcast per day, for all 365 days of 2011. The podcast episodes are written, recorded and produced by people around the world.

“TrES-2b is similar in mass and radius to Jupiter but Jupiter reflects some 50% of the incident light. TrES-2b has a reflectivity less than that of any other planet or moon in the Solar System or beyond. The reflectivity is significantly less than even black acrylic paint, which makes the mind boggle as to what a clump of this planet would look like in your hand. Perhaps an appropriate nickname for the world would be Erebus, the Greek God of Darkness and Shadow. But what really is causing this planet to be so dark?”

– Dr. David Kipping

David Kipping obtained a PhD in Astrophysics from University College London earlier this year. His thesis was entitled ‘The Transits of Extrasolar Planets with Moons’ and David’s main research interest revolves around exomoons. He is just starting a Carl Sagan Fellowship at the Harvard-Smithsonian Center for Astrophysics.

The paper on which the the podcast is based can be found here.

_________________________

Jason Major is a graphic designer, photo enthusiast and space blogger. Visit his website Lights in the Dark and follow him on Twitter @JPMajor and on Facebook for more astronomy news and images!