New Horizons Sees its Next Target for the First Time: Ultima Thule. Flyby Happens January 1, 2019

Composite image (left) produced by adding 48 different exposures from the News Horizons Long Range Reconnaissance Imager (LORRI) taken on Aug. 16, 2018 and a magnified view (right) of the region in the yellow box taken by LORRI in September 2017. Credits: NASA/JHUAPL/SwRI

In July of 2015, NASA’s New Horizons mission made history when it became the first spacecraft to conduct a flyby of Pluto. Since that time, the spacecraft’s mission was extended so it could make its way farther into the outer Solar System and become the first spacecraft to explore some Kuiper Belt Objects (KBOs). It’s first objective will be the KBO known as 2014 MU69, which was recently given the nickname “Ultima Thule” (“ultima thoo-lee”).

Continue reading “New Horizons Sees its Next Target for the First Time: Ultima Thule. Flyby Happens January 1, 2019”

It Might Not be Planet 9 Causing Disruptions in the Kuiper Belt, Just the Collective Gravity of Everything Out There

Artist's concept of the hypothetical "Planet Nine." Could it have moons? Credit: NASA/JPL-Caltech/Robert Hurt

In January of 2016, astronomers Mike Brown and Konstantin Batygin published the first evidence that there might be another planet in our Solar System. Known as “Planet 9” (or “Planet X”, to those who contest the controversial 2006 Resolution by the IAU), this hypothetical body was believed to orbit at an extreme distance from our Sun, as evidenced by the fact that certain Trans-Neptunian Objects (TNOs) all seem to be pointing in the same direction.

Since that time, other lines of evidence have emerged that have bolstered the existence of Planet 9/Planet X. However, a team of researchers from CU Boulder recently proposed an alternative explanation. According to their research, it could be interactions between Kuiper Belt Objects (KBOs) themselves that might explain the strange dynamics of “detached objects” at the edge of the Solar System.

The researchers presented their findings at the 232nd meeting of the American Astronomical Society, which ran from June 3-7 in Denver, Colorado. The presentation took place on June 4th during a press conference titled “Minor Planets, Dwarf Planets & Exoplanets”. The research was led Jacob Fleisig, an undergraduate studying astrophysics at CU Boulder, and included Ann-Marie Madigan and Alexander Zderic – an assistant professor and a graduate student at CU Boulder, respectively.

Artist’s conception of Sedna, a dwarf planet in the Solar System that only gets within 76 astronomical units (AUs) of our Sun. Credit: NASA/JPL-Caltech

For the sake of their study, the team focused on icy bodies like Sedna, a minor planet that orbits the Sun at a distance ranging from 76 AU at perihelion to 936 AU at aphelion. Along with a handful of other objects at this distance, such as Eris, Sedna appears to be separated from the rest of the Solar System – something which astronomers have struggled to explain ever since it was discovered.

Sedna was also discovered by Michael Brown who, along with Chad Trujillo of the Gemini Observatory and David Rabinowitz of Yale University, spotted it on November 14th, 2003, while conducting a survey of the Kuiper Belt. In addition to orbiting our Sun with a period of over 11,000 years, this minor planet and other detached objects has a huge, elliptical orbit.

What’s more, this orbit does not take them Sedna or these other objects anywhere near to Neptune or any other gas giant. Unlike Pluto and other Trans-Neptunian Objects (TNOs), it is therefore a mystery how they achieved their current orbits. The possible existence of a as-yet-undiscovered planet (Planet 9/Planet X), which would be about 10 times the size of Earth, is one hypothetical explanation.

After years of searching for this planet and attempting to determine where its orbit would take it, astronomers have yet to find Planet 9/Planet X. However, as Prof. Madigan explained in a recent CU Boulder press release, there is another possible explanation for the gravitational weirdness going on out there:

“There are so many of these bodies out there. What does their collective gravity do? We can solve a lot of these problems by just taking into account that question… Once you get further away from Neptune, things don’t make any sense, which is really exciting.”

While Madigan and her team did not originally set out to find another explanation for the orbits of “detached objects”, they ended up pursuing the possibility thanks to Jacob Fleisig’s computer modelling. While developing simulations to explore the dynamics of the detached objects, he noticed something very interesting about the region of space they occupy.

Having calculated the orbits of icy objects beyond Neptune, Fleisig and the rest of the team noticed that different objects behave much like the different hands on a clock. Whereas asteroids move like the minute hand (relatively fast and in tandem), larger objects like Sedna move more slowly like the hour hand. Eventually, the hands intersect.  As Fleisig explained:

“You see a pileup of the orbits of smaller objects to one side of the sun. These orbits crash into the bigger body, and what happens is those interactions will change its orbit from an oval shape to a more circular shape.”

What Fleisig’s computer model showed was that Sedna’s orbit goes from normal to detached as a result of those small-scale interactions. It also showed that the larger the detached object, the farther it gets away from the Sun – something which agrees with previous research and observations. In addition to explaining why Sedna and similar bodies behave the way they do, these findings may provide clues to another major event in Earth’s history.

Artistic rendition of the Chicxulub impactor striking ancient Earth, which is believed to have caused the Cretaceous–Paleogene extinction event. Credit: NASA

This would be what caused the extinction of the dinosaurs. Astronomers have understood for a long time that the dynamics of the outer Solar System often end up sending comets towards the inner Solar System on a predictable timescale. This is the result of icy objects interacting with each other, which causes their orbits to tighten and widen in a repeating cycle.

And while the team is not able to say that this pattern was responsible for the impact that caused the Cretaceous–Paleogene extinction event (which resulted in the extinction of the dinosaurs 66 million years ago), it is a fascinating possibility. In the meantime, the research has shown just how fascinating the outer Solar System is, and how much remains to be learned about it.

“The picture we draw of the outer solar system in textbooks may have to change,” said Madigan. “There’s a lot more stuff out there than we once thought, which is really cool.”

The research was made possible thanks to the support of the NASA Solar System Workings and the Rocky Mountain Advanced Computing Consortium Summit Supercomputer.

Further Reading: University of Colorado Boulder

New Horizons Team Has a New Nickname for the Spacecraft’s Next Target

Artist’s impression of NASA’s New Horizons spacecraft encountering 2014 MU69, a Kuiper Belt object that orbits one billion miles (1.6 billion kilometers) beyond Pluto, on Jan. 1, 2019. With public input, the team has selected the nickname “Ultima Thule” for the object, which will be the most primitive and most distant world ever explored by spacecraft. Credits: NASA/JHUAPL/SwRI/Steve Gribben

In July of 2015, NASA’s New Horizons mission made history when it became the first spacecraft to conduct a flyby of Pluto. Since that time, the spacecraft’s mission was extended so it could make its way farther into the outer Solar System and explore some Kuiper Belt Objects (KBOs). Another historic first, the spacecraft will study these ancient objects in the hopes of learning more about the formation and evolution of the Solar System.

By Jan. 1st, 2019, it will have arrived at its first destination, the KBO known as 2014 MU69. And with the help of the public, this object recently received the nickname “Ultima Thule” (“ultima thoo-lee”). This object, which orbits our Sun at a distance of about 1.6 billion km (1 billion miles) beyond Pluto, will be the most primitive object ever observed by a spacecraft. It will also be the farthest encounter ever achieved in the history of space exploration.

Artist’s concept of Kuiper Belt object 2014 MU69, the next flyby target for NASA’s New Horizons missionCredits: NASA/JHUAPL/SwRI/Alex Parker

In 2015, MU69 was identified as one of two potential destinations for the New Horizons mission and was recommended to NASA by the mission science team. It was selected because of the immense opportunities for research it presented. As Alan Stern, the Principle Investigator (PI) for the New Horizons mission at the Southwest Research Institute (SwRI), indicated at the time:

“2014 MU69 is a great choice because it is just the kind of ancient KBO, formed where it orbits now, that the Decadal Survey desired us to fly by. Moreover, this KBO costs less fuel to reach [than other candidate targets], leaving more fuel for the flyby, for ancillary science, and greater fuel reserves to protect against the unforeseen.”

Originally, the KBO was thought to be a spherical chunk of ice and rock. However, in August of 2017, new occultation observations made by telescopes in Argentina led the team to conclude that MU69 could actually be a large object with a chunk taken out of it (an “extreme prolate spheroid”). Alternately, they suspected that it might be two objects orbiting very closely together or touching – aka. a close or contact binary.

Given the significance of New Horizons‘ impending encounter with this object, its only proper that it receive a an actual name. In medieval literature and cartography, Thule was a mythical, far-northern island. Ultima Thule means “beyond Thule”, which essentially means that which lies beyond the borders of the known world. This name is highly appropriate, since the exploration of a KBO is something that has never been done before.

This artist's impression shows the New Horizons spacecraft encountering a Pluto-like object in the distant Kuiper Belt. (Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Steve Gribben)
This artist’s impression shows the New Horizons spacecraft encountering a Pluto-like object in the distant Kuiper Belt. (Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Steve Gribben)

As Alan Stern, the principal investigator of the New Horizons mission at the Southwest Research Institute, said in a recent NASA press release:

“MU69 is humanity’s next Ultima Thule. Our spacecraft is heading beyond the limits of the known worlds, to what will be this mission’s next achievement. Since this will be the farthest exploration of any object in space in history, I like to call our flyby target Ultima, for short, symbolizing this ultimate exploration by NASA and our team.”

The campaign to name this object was launched by NASA and the New Horizons team in early November, and was hosted by the SETI Institute and led by Mark Showalter – an institute fellow and member of the New Horizons science team. The campaign involved 115,000 participants from around the world who nominated 34,000 names – 37 of which were selected for a final ballot based on their popularity.

These included eight names suggested by the New Horizons team and 29 nominated by the public. The team then narrowed its selection to the 29 publicly-nominated names and gave preference to names near the top of the polls. Along with Ultima Thule, other names that were considered included Abeona, Pharos, Pangu, Rubicon, Olympus, Pinnacle and Tiramisu.

This chart shows the path of NASA’s New Horizons spacecraft toward its next potential target, the Kuiper Belt object 2014 MU69, (aka. Ultima Thule). Credit: Alex Parker/NASA/JHUAPL/SwRI

After a five-day extension was granted to accommodate more voting, the campaign wrapped up on Dec. 6th, 2017. Ultima Thule received about 40 nominations from the public and was among those that got the most votes. “We are grateful to those who proposed such an interesting and inspirational nickname,” Showalter said. “They deserve credit for capturing the true spirit of exploration that New Horizons embodies.”

This name, however, is not a permanent one, but a working one which reflects the fact that MU69 is beyond Pluto – once held to be the most distant planet of the Solar System. Once the flyby is complete, NASA and the New Horizons team will submit a formal name to the International Astronomical Union (IAU). The name will depend on whether or not MU69 is a single body, a binary pair, or multiple objects.

You can check out the he final tallies on all the highest-voted names at http://frontierworlds.seti.org/.

Further Reading: NASA

New Horizons’ Next Flyby Target Just Got Weirder!

Artist's impression of NASA's New Horizons spacecraft encountering a Pluto-like object in the distant Kuiper Belt. Credits: NASA/JHUAPL/SwRI/Alex Parker

Since it made its historic flyby of Pluto in July of 2015, the New Horizons mission has been venturing farther into the outer Solar System. With the spacecraft still healthy and its system in working order, the mission was extended to include the exploration of additional Kuiper Belt Objects (KBOs). The first target for this part of its mission is the KBO known as 2014 MU69, which New Horizons is currently making its way towards.

In the past, NASA believed this object was a spherical chunk of ice and rock measuring 18–41 km (10–30 mi) in diameter. However, a more recent occultation observation has led the New Horizon‘s team to conclude that MU69 may actually be a large object with a chunk taken out of it (an “extreme prolate spheroid”) or two objects orbiting very closely together or touching – aka. a close or contact binary.

In 2015, MU69 was identified as one of two potential destinations for New Horizons and was recommended to NASA by the mission science team. It was selected because of the immense opportunities for research it presented. As Alan Stern, the Principle Investigator (PI) for the New Horizons mission at the Southwest Research Institute (SwRI), indicated at the time:

“2014 MU69 is a great choice because it is just the kind of ancient KBO, formed where it orbits now, that the Decadal Survey desired us to fly by. Moreover, this KBO costs less fuel to reach [than other candidate targets], leaving more fuel for the flyby, for ancillary science, and greater fuel reserves to protect against the unforeseen.”

Artist’s concept of a binary object, which new data suggests 2014 MU69 (the next flyby target for NASA’s New Horizons mission) could be. Credits: NASA/JHUAPL/SwRI/Alex Parker

The most recent observation of the KBO took place on July 17th, 2017, when the object passed in front of a star. This provided the New Horizon’s team with an opportunity to measure the resulting dip in the star’s luminosity – aka. an occultation – using a series of telescopes that they had deployed to a remote part of Patagonia, Argentina. These sorts of observations are performed regularly in order to obtain estimates of an asteroid’s size and position.

In the case of MU69’s occulation, the New Horizons team was able to obtain vital data that will help the mission planners to plot the trajectory of their flyby. In addition, the data revealed things about MU69’s size, shape, orbit, and the environment that surrounds it. It was because of this that the team began to question earlier estimates on the object’s size and shape.

Based on their new observations, they are confident that the object is no more than 30 km (20 mi) long, if it is an extreme prolate spheroid.  If, however, it is a binary, the two objects that compose it are believed to measure about 15-20 km (9-12 mi) in diameter each. Alan Stern expanded on these new findings in a recent NASA press statement, saying:

“This new finding is simply spectacular. The shape of MU69 is truly provocative, and could mean another first for New Horizons going to a binary object in the Kuiper Belt. I could not be happier with the occultation results, which promise a scientific bonanza for the flyby.”

Artist’s concept of Kuiper Belt object 2014 MU69 as a single body (above) with a large chunk taken out of it. Credits: NASA/JHUAPL/SwRI/Alex Parker

The recent stellar occulation was the third of three observations conducted for the New Horizons mission. To prepare for the event, the New Horizons team traveled to Argentina and South Africa on June 3rd. On July 10th, a week before the occultation, NASA’s airborne Stratospheric Observatory for Infrared Astronomy (SOFIA) provided support by studying the space around MU69.

Using its 2.5 m (100-inch) telescope, SOFIA was looking for debris that might present a hazard to New Horizons spacecraft as it makes its flyby less than 17 months from now. Last, but certainly not least, the team also relied on data provided by NASA’s Hubble Space Telescope and the ESA’s Gaia satellite to calculate and pinpoint where MU69 would cast its shadow on Earth’s surface.

Thanks to their assistance, the New Horizons team knew exactly where the occultation shadow would be and set up their “fence line” of small, mobile telescopes accordingly. Marc Buie – the New Horizons co-investigator – was responsible for leading the observation campaign. As he explained, the data it yielded will be of great help in the planning the flyby, but also indicated that their could be some surprises in the future:

“These exciting and puzzling results have already been key for our mission planning,” he said, “but also add to the mysteries surrounding this target leading into the New Horizons encounter with MU69, now less than 17 months away.”

The flyby with MU69 is scheduled to take place on Jan. 1st, 2019, and will be the most distant flyby in the history of space exploration. In addition to being 1.6 billion km (1 billion mi) from Pluto, the New Horizons spacecraft will be 6.5 billion km (4 billion mi) from Earth! What’s more, the first-ever study of a KBO is expected to yield some fantastic scientific data, and tell us much about the formation and evolution of our Solar System.

 

Further Reading: NASA

New Horizons Team Already Finding Surprises on Next Flyby Target

Observers Kai Getrost and Alex Parker wait to collect 2014 MU69 stellar occultation data in Argentina on June 3, 2017. Several New Horizons team members and collaborators will return to the country on July 17 for this summer's third and final MU69 occultation observation opportunity. (Image credit: Kai Getrost, via NASA)

While the New Horizons spacecraft was heading to Pluto, scientists from the mission used Hubble and other telescopes to try and find out more about the environment their spacecraft would be flying through. No one wanted New Horizons to run into unexpected dust or debris.

And now, as New Horizons prepares to fly past its next target, the Kuiper Belt Object known as 2014 MU69, mission scientists are using every tool at their disposal to examine this object and the surrounding region. The flyby will take place on January 1, 2019.

They’ve already uncovered some surprises.

On June 3, 2017, 2014 MU69 passed in front of a star – in an event called an occultation – providing a two-second glimpse of the object’s shadow.

A diagram of an occultation event, via the International Occultation Timing Association.

More than 50 mission team members and collaborators traveled to South Africa and Argentina to catch the occultation, setting up telescopes to capture the event. They are now looking through more than 100,000 images of the occultation star that can be used to assess the environment around this Kuiper Belt object (KBO). In addition, the Hubble Space Telescope and Gaia, a space observatory of the European Space Agency (ESA) also observed the event.

The team said that while MU69 itself eluded direct detection, the June 3 data provided valuable and unexpected insights that have already helped New Horizons.

“These results are telling us something really interesting,” said New Horizons Principal Investigator Alan Stern, of the Southwest Research Institute. “The fact that we accomplished the occultation observations from every planned observing site but didn’t detect the object itself likely means that either MU69 is highly reflective and smaller than some expected, or it may be a binary or even a swarm of smaller bodies left from the time when the planets in our solar system formed.”

Mission scientist Simon Porter said on Twitter, “The upshot is that MU69 is probably not as big and dark as it could have been, and (more importantly) doesn’t seem to have rings or a dust cloud,” adding later that the “lack of dust was reassuring.”

Again, no one wants to New Horizons to run into any surprising dust or debris.

The team will be observing two more occultation events on July 10 and July 17, and Porter said they should get even better constraints from these next two events.

Projected path of the 2014 MU69 occultation shadow, on July 10 (left) and July 17, 2017. Credit: Larry Wasserman/Lowell Observatory, via NASA.

On July 10, NASA’s airborne Stratospheric Observatory for Infrared Astronomy (SOFIA) will use its 100-inch (2.5-meter) telescope to probe the space around MU69 for debris that might present a hazard to New Horizons as it flies by in 18 months.

On July 17, the Hubble Space Telescope also will check for debris around MU69, while team members set up another ground-based “fence line” of small mobile telescopes along the predicted ground track of the occultation shadow in southern Argentina to try to better constrain, or even determine, the size of MU69.

Initial estimates of MU69’s diameter, based primarily on data taken by the Hubble Space Telescope since the KBO’s discovery in 2014, fall in the 12-25-mile (20-40-kilometer) range. However, the latest data from the June occultation seem to imply it’s at or even below the smallest estimated sizes.

“2014 MU69 is a great choice because it is just the kind of ancient KBO, formed where it orbits now, that the Decadal Survey desired us to fly by,” Stern said back in August 2015 when the target was announced. “Moreover, this KBO costs less fuel to reach [than other candidate targets], leaving more fuel for the flyby, for ancillary science, and greater fuel reserves to protect against the unforeseen.”

You can see the star brightness, predicted shadow path and other tech specs for the July 10 and July 17 occultation events at the embedded links.

Source: New Horizons

An Astronomical Detective Tale and the Moon of 2007 OR10

2007 OR10 Moon
These two images reveal a moon orbiting the dwarf planet 2007 OR10. NASA/Hubble/ESA/STScI
2007 OR10 Moon
These two images reveal a moon orbiting the dwarf planet
2007 OR10. NASA/Hubble/ESA/STScI

It isn’t every day we get a new moon added to the list of solar system satellites. The combined observational power of three observatories — Kepler, Herschel and Hubble — led an astronomical detective tale to its climatic conclusion: distant Kuiper Belt Object 2007 OR10 has a tiny moon.

The dwarf planet itself is an enigma wrapped in a mystery: with a long orbit taking it out to a distant aphelion 101 astronomical units (AU) from the Sun, back into the environs of Neptune and Pluto for a perihelion 33 AU from the Sun once every 549 years, 2007 OR10 was discovered by Caltech astronomers Megan Schwamb and Mike Brown in 2007. Nicknamed “Snow White” by Mike Brown for its presumed high albedo, 2007 OR10 was 85 AU distant in the constellation Aquarius at the time of discovery and outbound towards aphelion in 2135. 2007 OR10 is about 1,500 kilometers in diameter, the third largest body known beyond Neptune in our solar system next to Pluto and Eris (nee Xena).

2007 OR10 moon
See the moon (circled?) at +21st magnitude, it’s a tough catch! NASA/Hubble/STScI

Enter the Kepler Space Telescope, which imaged 2007 OR10 crossing the constellation Aquarius as part of its extended K2 exoplanet survey along the ecliptic plane. Though Kepler looks for transiting exoplanets — worlds around other stars that betray their presence by tiny dips in the brightness of their host as they pass along our line of sight — it also picks up lots of other things that flicker, including variable stars and distant Kuiper Belt Objects. But the slow 45 hour rotational period of 2007 OR10 noted by Kepler immediately grabbed astronomers interest: could an unseen moon be lurking nearby, dragging on the KBO like a car brake?

“Typical rotation periods for Kuiper Belt Objects are under 24 hours,” says Csaba Kiss (Konkoly Observatory) in a recent press release. “We looked in the Hubble archive because the slower rotation period could have been caused by the gravitational tug of a moon.”

And sure enough, digging back through archival data from the Hubble Space Telescope taken during a survey of KBOs, astronomers turned up two images of the faint moon from 2009 and 2010. Infrared observations of 2007 OR10 and its moon by the European Space Agency’s Herschel Space Telescope cinched the discovery, and noted an albedo of 19% (similar to wet sand) for 2007 OR10, much darker than expected. The moon is about 200 miles (320 kilometers) in diameter, in a roughly 9,300 mile (15,000 kilometer) orbit.

The discovery was announced at an AAS meeting just last year, and even now, we’re still puzzling out what little we know about these distant worlds. Just what 2007 OR10 and its moon looks like is any guess. New Horizons gave us our first look at Pluto and Charon two short summers ago in 2015, and will give us a fleeting glimpse of 2014 MU69 on New Year’s Day 2019. All of these objects beg for proper names, especially pre-2019 New Horizons flyby.

This also comes on the heels of two new moons for Jupiter, recently announced last month S/2017 J1 and J2.

What would the skies from the tiny moon look like? Well, ancient 2007 OR10 must loom large in its sky, though Sol would only shine as a bright -15th magnitude star, (a little brighter than a Full Moon) its illumination dimmed down to 1/7,000th the brightness enjoyed here on sunny Earth, which would be lost in its glare.

2007 Or10 in the sky
The current position of 2007 OR10 in the night sky. Stellarium

And looking at the strange elliptical orbits of these outer worldlets, we can only surmise that something else must be out there. Will the discovery of Planet 9 be made before the close of the decade?

One thing’s for sure: this isn’t your parent’s tidy solar system with “Excellent Mothers” serving “Nine Pizzas.”

A New Dwarf Planet Joins The Solar System Family

Based on data obtained by the Dark Energy Survey (DES), a team of scientists have obtained evidence of another TNO beyond Pluto. Credit: ESO/L. Calçada/Nick Risinger

The Kuiper Belt has been an endless source of discoveries over the course of the past decade. Starting with the dwarf planet Eris, which was first observed by a Palomar Observatory survey led by Mike Brown in 2003, many interesting Kuiper Belt Objects (KBOs) have been discovered, some of which are comparable in size to Pluto.

And according to a new report from the IAU Minor Planet Center, yet another body has been discovered beyond the orbit of Pluto. Officially designated as 2014 UZ224, this body is located about 14 billion km (90 AUs, or 8.5 billion miles) from the Sun. This dwarf planet is not only the latest member of the our Solar family, it is also the second-farthest body from our Sun with a stable orbit.

The discovery was made by David Gerdes, a professor of astrophysics at the University of Michigan, and various colleagues associated with at the Dark Energy Survey (DES) – a project which relies on the Cerro Tololo Inter-American Observatory in Chile. In the past, Gerdes’ research has focused on the detection of dark energy and the expansion of the Universe.

The DECam instrument, . Credit: noao.edu
The DECam instrument, shown before it was inserted into the Blanco telescope at the Cerro Tololo Observatory. Credit: noao.edu

Towards this end, DES has spent the past five years surveying roughly one-eighth of the sky using the Dark Energy Camera (DECam), a 570-Megapixel camera mounted on the Victor M. Blanco telescope at Cerro Tololo. This instrument was commissioned by the US. Dept of Energy to conduct surveys of distant galaxies, and Dr. Gerdes had a hand in creating.

Not surprisingly, this same technology has also allowed for discoveries to be made at the edge of the Solar System. Two years ago, this is precisely what Gerdes challenged a group of undergraduate students to do (as part of a summer project). These students examined images taken by DES between 2013-2016 for indications of moving objects. Since that time, the analysis team has grown to include senior scientists, postdocs, graduate and undergraduate students.

Whereas distant stars and galaxies would appear stationary in these images, distant TNOs showed up in different places over time – hence why are called “transients”. As Dr. Gerdes explains in his 2014 UZ224 Fact Sheet, which is available through his University of Michigan homepage:

“To identify transients, we used a technique known as “difference imaging”. When we take a new image, we subtract from it an image of the same area of the sky taken on a different night. Objects that don’t change disappear in this subtraction, and we’re left with only the transients… This process yields millions of transients, but only about 0.1% of them turn out to be distant minor planets. To find them, we must “connect the dots” and determine which transients are actually the same thing in different positions on different nights. There are many dots and MANY more possible ways to connect them.”

Images of 2014 UZ224, shown on three slides obtained by the DECam. Credit: David Gerdes/DES/University of Michigan
Images of 2014 UZ224, shown on three slides obtained by the DECam. Credit: David Gerdes/DES/University of Michigan

This was a difficult process. In addition to needing thousands of computers at Fermilab to process the hundreds of terabytes of data, the team had to write special programs to do it. Gerdes and his colleagues also relied on help from Professors Masao Sako and Gary Bernstein of the University of Pennsylvania, who contributed the key breakthroughs that allowed them to perform difference imaging over the entire survey area.

In the end, dozens of new Trans-Neptunian Objects (TNOs) were discovered, one of which was 2014 UZ224. According to their observations, its diameter could be anywhere from 350 to 1200 km, and it takes 1,136 years to complete a single orbit of our Sun. For the sake of perspective, Pluto is 2370 km in diameter, and has an orbital period of 248 years.

Stephanie Hamilton, a graduate student at the University of Michigan, was personally involved with the project. Her role was to determine the size of 2014 UZ224, which was difficult from initial observations alone. As she told Universe Today via email:

“The object’s brightness in visible light alone depends both on its size and how reflective it is, so you can’t uniquely determine one of those properties without assuming a value for the other. Fortunately there’s a solution to that problem – the heat the object emits is also proportional to its size, so obtaining a thermal measurement in addition to the optical measurements means we would then be able to calculate the object’s size and albedo (reflectance) without having to assume one or the other.

“We were able to obtain an image of our object at a thermal wavelength using the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile. I am working on combining all of our data together to determine the size and albedo, and we expect to submit a paper on our results around mid-November or so.”

Artistic rendering shows the distant view from theoretical Planet Nine back towards the sun. The planet is thought to be gaseous, similar to Uranus and Neptune. Hypothetical lightning lights up the night side. Credit: Caltech/R. Hurt (IPAC)
Artistic rendering shows the distant view from theoretical Planet Nine back towards the sun. The planet is thought to be gaseous, similar to Uranus and Neptune. Hypothetical lightning lights up the night side. Credit: Caltech/R. Hurt (IPAC)

But as with all things related to “dwarf planets”, there has been some disagreement over this discovery. Given the dimensions of the object, there are some who question whether or not the label applies. But as Gerdes indicates on the Fact Sheet, this body fits most of the prerequisites:

“According to the official IAU guidelines, a dwarf planet must satisfy four criteria. It must a) orbit the sun (check!), b) not be a satellite (check!) c) not have cleared the neighborhood around its orbit (check!) and d) have enough mass to be round. It’s this last item that’s uncertain, and the only way for sure is to get a picture that’s detailed enough to actually see its shape. Nevertheless, an object over 400 km in diameter is likely to be round.”

Gerdes and his team expect to be busy, authoring the paper that will detail their findings, using the ALMA array to get more assessments of 2014 UZ224 size, and sifting through the data to look for more objects in the Kuiper Belt. This includes the fabled Planet 9, which astronomers have been seeking out for years.

Given its distance from the Sun, 2014 UZ224’s orbit would not be influenced by the presence of Planet 9, and is therefore of no help. However, Gerdes is optimistic that the evidence of this massive body is there in the data. Given time, and a lot of data-processing, they just might find it! In the meantime, this newly discovered object is likely to be the focal point of a lot of fascinating research.

“It’s an interesting object in its own right – distant objects like this are ‘cosmic leftovers’ from the primordial disk that gave birth to the solar system,” writes Gerdes. “By studying them and learning more about their distribution, orbital characteristics, sizes, and surface properties, we can learn more about the processes that gave birth to the solar system and ultimately to us.”

Further Reading: 2014 UZ224 Fact Sheet (University of Michigan)

Hubble Images Three Debris Disks Around G-type Stars

An image of the circum-stellar disk around HD 207129. The three circled objects are background objects and part of the disk. Image: Hubble Space Telescope, Glenn Schneider et al 2016.
An image of the circum-stellar disk around HD 207129. The three circled objects are background objects and are not part of the disk. Image: Hubble Space Telescope, Glenn Schneider et al 2016.

A team using the Hubble Space Telescope has imaged circumstellar disk structures (CDSs) around three stars similar to our Sun. The stars are all G-type solar analogs, and the disks themselves share similarities with our Solar System’s own Kuiper Belt. Studying these CDSs will help us better understand their ring-like structure, and the formation of solar systems.

The team behind the study was led by Glenn Schneider of the Seward Observatory at the University of Arizona. They used the Hubble’s Space Telescope Imaging Spectrograph to capture the images. The stars in the study are HD 207917, HD 207129, and HD 202628.

Theoretical models of circumstellar disk dynamics suggest the presence of CDSs. Direct observation confirms their presence, though not many of these disks are within observational range. These new deep images of three solar analog CDSs are important. Studying the structure of these rings should lead to a better understanding of the formation of solar systems themselves.

A is the observed image of HD 207917. B is the best-fit debris ring model of the same star. Image: Hubble, G. Schneider et. al. 2016.
A is the observed image of HD 207917. B is the best-fit debris ring model of the same star. Image: Hubble, G. Schneider et. al. 2016.

Debris disks like these are separate from protoplanetary disks. Protoplanetary disks are a mixture of both gas and dust which exist around younger stars. They are the source material out of which planetesimals form. Those planetesimals then become planets.

Protoplanetary disks are much shorter-lived than CDSs. Whatever material is left over after planet formation is typically expelled from the host solar system by the star’s radiation pressure.

In circumstellar debris disks like the ones imaged in this study, the solar system is older, and the planets have already formed. CDSs like these have lasted this long by replenishing themselves. Collisions between larger bodies in the solar system create more debris. The resulting debris is continually ground down to smaller sizes by repeated collisions.

This process requires gravitational perturbation, either from planets in the system, or by binary stars. In fact, the presence of a CDSs is a strong hint that the solar system contains terrestrial planets.

A circumstellar disk of debris around a mature stellar system could indicate the presence of Earth-like planets. Credit: NASA/JPL
A circumstellar disk of debris around a mature stellar system could indicate the presence of Earth-like planets. Credit: NASA/JPL

The three disks in this study were viewed at intermediate inclinations. They scatter starlight, and are more easily observed than edge-on disks. Each of the three circumstellar disk structures possess “ring-like components that are more massive analogs of our solar system’s Edgeworth–Kuiper Belt,” according to the study.

The study authors expect that the images of these three disk structures will be studied in more detail, both by themselves and by others in future research. They also say that the James Webb Space Telescope will be a powerful tool for examining CDSs.

Read more: It’s Complicated: Hubble Survey Finds Unexpected Diversity in Dusty Discs Around Nearby Stars

New Horizons Spies Pluto’s Neighbor Quaoar

Artist view of New Horizons passing Pluto and three of its moons.. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

Now more than a year after its historic flyby of Pluto, the New Horizons spacecraft continues to speed through the Kuiper Belt. It’s currently on a beeline towards its next target of exploration, a KBO called 2014 MU69. But during its travels, New Horizons spotted another KBO, one of Pluto’s pals, Quaoar.

This animated sequence shows composite images of the Kuiper Belt object Quaoar, taken by New Horizons’ Long Range Reconnaissance Imager (LORRI). Click on the image to animate. Credit: NASA/JHUAPL/SwRI.
This animated sequence shows composite images of the Kuiper Belt object Quaoar, taken by New Horizons’ Long Range Reconnaissance Imager (LORRI). Click on the image to animate. Credit: NASA/JHUAPL/SwRI.

When these images were taken (in July 2016), Quaoar was approximately 4 billion miles (6.4 billion kilometers) from the Sun and 1.3 billion miles (2.1 billion kilometers) from New Horizons.

The animated sequence, above, (click the image if it isn’t animating in your browser) shows composite images taken by New Horizons’ Long Range Reconnaissance Imager (LORRI) at four different times over July 13-14: “A” on July 13 at 02:00 Universal Time; “B” on July 13 at 04:08 UT; “C” on July 14 at 00:06 UT; and “D” on July 14 at 02:18 UT. The New Horizons team explained that each composite includes 24 individual LORRI images, providing a total exposure time of 239 seconds and making the faint object easier to see.

Quaoar ( pronounced like “Kwa-war”) is about 690 miles or 1,100 kilometers in diameter, about half the size of Pluto. It was discovered on June 4, 2002 by astronomers Mike Brown and Chad Trujillo from Caltech, and at the time of its discovery, it was the largest object found in the Solar System since the discovery of Pluto. Quaoar’s discovery was one of the things that spurred the discussion of whether Pluto should continue to be classified as a planet or not.

But Quaoar is an interesting object in its own right and the New Horizons team said the oblique views of it that New Horizons can see – where LORRI sees only a portion of Quaoar’s illuminated surface — is very different from the nearly fully illuminated view of it that is visible from Earth. Comparing Quaoar from the two very different perspectives gives mission scientists a valuable opportunity to study the light-scattering properties of Quaoar’s surface.

If you’re thinking, “Why don’t we send a mission to Quaoar, or Sedna or Eris?” you aren’t alone. New Horizons team member Alex Parker has obviously been thinking about it. Parker tweeted that for a New Horizons-like mission it would take about 13 and a half years to reach Quaoar if it could be launched in December 2016. “Otherwise, we have to wait another 11 years for the next Jupiter assist window,” he said.

Um, NASA, can we put this on the schedule for 2027?

In the meantime, the images and data that New Horizons gathered during the Pluto flyby in July 2015 are still trickling back to Earth. The image below is a stunning view of Pluto’s methane snowcaps, visible at the terminator, showing the region north of Pluto’s dark equatorial band informally named Cthulhu Regio, and southwest of the vast nitrogen ice plains informally named Sputnik Planitia. This image was taken about 45 minutes before New Horizons’ closest approach to Pluto on July 14, 2015.

This area is south of Pluto's dark equatorial band informally named Cthulhu Regio, and southwest of the vast nitrogen ice plains informally named Sputnik Planitia. North is at the top; in the western portion of the image, a chain of bright mountains extends north into Cthulhu Regio. New Horizons compositional data indicate the bright snowcap material covering these mountains isn't water, but atmospheric methane that has condensed as frost onto these surfaces at high elevation. Between some mountains are sharply cut valleys – indicated by the white arrows. These valleys are each a few miles across and tens of miles long. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute.
This area is south of Pluto’s dark equatorial band informally named Cthulhu Regio, and southwest of the vast nitrogen ice plains informally named Sputnik Planitia. North is at the top; in the western portion of the image, a chain of bright mountains extends north into Cthulhu Regio. New Horizons compositional data indicate the bright snowcap material covering these mountains isn’t water, but atmospheric methane that has condensed as frost onto these surfaces at high elevation. Between some mountains are sharply cut valleys – indicated by the white arrows. These valleys are each a few miles across and tens of miles long. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute.

See all of the latest photos sent back from our robot in the outer reaches of our Solar System at the New Horizons website.

NASA Approves New Horizons Extended KBO Mission, Keeps Dawn at Ceres

New Horizons trajectory and the orbits of Pluto and 2014 MU69.
New Horizons trajectory and the orbits of Pluto and 2014 MU69.
New Horizons trajectory and the orbits of Pluto and 2014 MU69.

In an ‘Independence Day’ gift to a slew of US planetary research scientists, NASA has granted approval to nine ongoing missions to continue for another two years this holiday weekend.

The biggest news is that NASA green lighted a mission extension for the New Horizons probe to fly deeper into the Kuiper Belt and decided to keep the Dawn probe at Ceres forever, rather than dispatching it to a record breaking third main belt asteroid.

And the exciting extension news comes just as the agency’s Juno probe is about to ignite a do or die July 4 fireworks display to achieve orbit at Jupiter – detailed here.

“Mission approved!” the researchers gleefully reported on the probes Facebook and Twitter social media pages.

“Our extended mission into the #KuiperBelt has been approved. Thanks to everyone for following along & hopefully the best is yet to come.

Dwarf planet Ceres is shown in this false-color renderings, which highlight differences in surface materials.  The image is centered on Ceres brightest spots at Occator crater. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
Dwarf planet Ceres is shown in this false-color renderings, which highlight differences in surface materials. The image is centered on Ceres brightest spots at Occator crater. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

The New Horizons spacecraft will now continue on course in the Kuiper Belt towards an small object known as 2014 MU69, to carry out the most distant close encounter with a celestial object in human history.

“Here’s to continued success!”

The spacecraft will rendezvous with the ancient rock on New Year’s Day 2019.

Researchers say that 2014 MU69 is considered as one of the early building blocks of the solar system and as such will be invaluable to scientists studying the origin of our solar system how it evolved.

It was almost exactly one year ago on July 14, 2015 that New Horizons conducted Earth’s first ever up close flyby and science reconnaissance of Pluto – the most distant planet in our solar system and the last of the nine planets to be explored.

Pluto Explored at Last. The New Horizons mission team celebrates successful flyby of Pluto in the moments after closest approach at 7:49 a.m. EDT on July 14, 2015.   New Horizons Principal Investigator Alan Stern of Southwest Research Institute (SwRI), Boulder, CO., left, Johns Hopkins University Applied Physics Laboratory (APL) Director Ralph Semmel, center, and New Horizons Co-Investigator Will Grundy Lowell Observatory hold an enlarged print of an U.S. stamp with their suggested update after Pluto became the final planet in our solar system to be explored by an American space probe (crossing out the words ‘not yet’) - at the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland.  Credit: Ken Kremer/kenkremer.com
Pluto Explored at Last. The New Horizons mission team celebrates successful flyby of Pluto in the moments after closest approach at 7:49 a.m. EDT on July 14, 2015. New Horizons Principal Investigator Alan Stern of Southwest Research Institute (SwRI), Boulder, CO., left, Johns Hopkins University Applied Physics Laboratory (APL) Director Ralph Semmel, center, and New Horizons Co-Investigator Will Grundy Lowell Observatory hold an enlarged print of an U.S. stamp with their suggested update after Pluto became the final planet in our solar system to be explored by an American space probe (crossing out the words ‘not yet’) – at the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland. Credit: Ken Kremer/kenkremer.com

The immense volume of data gathered continues to stream back to Earth every day.

“The New Horizons mission to Pluto exceeded our expectations and even today the data from the spacecraft continue to surprise,” said NASA’s Director of Planetary Science Jim Green at NASA HQ in Washington, D.C.

“We’re excited to continue onward into the dark depths of the outer solar system to a science target that wasn’t even discovered when the spacecraft launched.”

This new global mosaic view of Pluto was created from the latest high-resolution images to be downlinked from NASA’s New Horizons spacecraft and released on Sept. 11, 2015. The images were taken as New Horizons flew past Pluto on July 14, 2015, from a distance of 50,000 miles (80,000 kilometers). This new mosaic was stitched from over two dozen raw images captured by the LORRI imager and colorized. Annotated with informal place names. Credits: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Marco Di Lorenzo/Ken Kremer/kenkremer.com
This new global mosaic view of Pluto was created from the latest high-resolution images to be downlinked from NASA’s New Horizons spacecraft and released on Sept. 11, 2015. The images were taken as New Horizons flew past Pluto on July 14, 2015, from a distance of 50,000 miles (80,000 kilometers). This new mosaic was stitched from over two dozen raw images captured by the LORRI imager and colorized. Annotated with informal place names. Credits: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Marco Di Lorenzo/Ken Kremer/kenkremer.com

While waiting for news on whether NASA would approve an extended mission, the New Horizons engineering and science team already ignited the main engine four times to carry out four course changes in October and November 2015, in order to preserve the option of the flyby past 2014 MU69 on Jan 1, 2019.

Green noted that mission extensions into fiscal years 2017 and 2018 are not final until Congress actually passes sufficient appropriation to fund NASA’s Planetary Science Division.

“Final decisions on mission extensions are contingent on the outcome of the annual budget process.”

Tough choices were made even tougher because the Obama Administration has cut funding for the Planetary Sciences Division – some of which was restored by a bipartisan majority in Congress for what many consider NASA’s ‘crown jewels.’

NASA’s Dawn asteroid orbiter just completed its primary mission at dwarf planet Ceres on June 30, just in time for the global celebration known as Asteroid Day.

“The mission exceeded all expectations originally set for its exploration of protoplanet Vesta and dwarf planet Ceres,” said NASA officials.

The Dawn science team had recently submitted a proposal to break out of orbit around the middle of this month in order to this conduct a flyby of the main belt asteroid Adeona.

Green declined to approve the Dawn proposal, citing additional valuable science to be gathered at Ceres.

The long-term monitoring of Ceres, particularly as it gets closer to perihelion – the part of its orbit with the shortest distance to the sun — has the potential to provide more significant science discoveries than a flyby of Adeona,” he said.

The funding required for a multi-year mission to Adeona would be difficult in these cost constrained times.

However the spacecraft is in excellent shape and the trio of science instruments are in excellent health.

Dawn arrived at Ceres on March 6, 2015 and has been conducting unprecedented investigation ever since.

Dawn is Earth’s first probe in human history to explore any dwarf planet, the first to explore Ceres up close and the first to orbit two celestial bodies.

The asteroid Vesta was Dawn’s first orbital target where it conducted extensive observations of the bizarre world for over a year in 2011 and 2012.

The mission is expected to last until at least later into 2016, and possibly longer, depending upon fuel reserves.

Due to expert engineering and handling by the Dawn mission team, the probe unexpectedly has hydrazine maneuvering fuel leftover.

Dawn will remain at its current altitude at the Low Altitude Mapping Orbit (LAMO) for the rest of its mission, and indefinitely afterward, even when no further communications are possible.

Green based his decision on the mission extensions on the biannual peer review scientific assessment by the Senior Review Panel.

Dawn was launched in September 2007.

The other mission extensions – contingent on available resources – are: the Mars Reconnaissance Orbiter (MRO), Mars Atmosphere and Volatile EvolutioN (MAVEN), the Opportunity and Curiosity Mars rovers, the Mars Odyssey orbiter, the Lunar Reconnaissance Orbiter (LRO), and NASA’s support for the European Space Agency’s Mars Express mission.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer