CAPE CANAVERAL AIR FORCE STATION, FL – The most powerful US Air Force military communications satellite ever built was propelled to orbit by a ULA Delta IV rocket that provided a dinnertime launch delight Wednesday evening for the crowds of spectators gathered around America’s premier gateway to space.
Check out this expanding gallery of launch photos and videos from several space journalist colleagues and friends and myself- spread throughout the Florida Space Coast region – giving a comprehensive look as the Wideband Global SATCOM (WGS-8) mission streaked to orbit atop a United Launch Alliance Delta IV rocket from Space Launch Complex 37 (SLC-37) on Cape Canaveral Air Force Station at 6:53 p.m. EST on Dec. 7, 2016.
The United Launch Alliance Delta IV Medium+ rocket successfully streaked to the heavens through nearly crystal clear skies to deliver WGS-8 to a supersynchronous transfer orbit.
Spectators were rewarded with a picture perfect view of the rocket as it ascended quickly and arced over to the African continent.
WGS-8 is the first in a newly upgraded series of a trio of WGS satellites built by Boeing that will nearly double the communications bandwidth of prior WGS models.
Watch this video compilation showing the launch from several different vantage points.
Video Caption: A collage of up-close video cameras ringed around Space launch Complex 37 capture Delta 4 launch of the WGS-8 satellite on 12/7/2016 from Pad 37 of the CCAFS, FL. Credit: Jeff Seibert
WGS-8 is the first of three launches from the Cape this December. A Pegasus XL rocket will launch on Dec. 12 carrying NASA’s CGYNSS hurricane monitoring satellites. And an Atlas V will launch on Dec. 18 with the EchoStar 19 comsat.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
CAPE CANAVERAL AIR FORCE STATION, FL – Less than 24 hours from now the evening skies along the Florida Space Coast will light up with a spectacular burst of fire and fury as a Delta rocket roars to space with a super advanced tactical satcom for the U.S. Air Force that will provide a huge increase in communications bandwidth for American forces around the globe.
Blastoff of the Wideband Global SATCOM (WGS-8) mission for the U.S. Air Force is slated for 6:53 p.m. EST on Wednesday, Dec. 7, 2016 from Space Launch Complex-37 at Cape Canaveral Air Force Station, Florida.
WGS-8 will be delivered to a supersynchronous transfer orbit atop a United Launch Alliance Delta IV Medium+ rocket. The launch window runs for 49 minutes from 6:53-7:42 p.m. EST.
You can watch the Delta launch live on a ULA webcast. The live launch broadcast will begin at 6:33 p.m. EST here:
http://www.ulalaunch.com/webcast.aspx
The weather forecast for Wednesday Dec. 6, calls for an 80 percent chance of acceptable weather conditions at launch time.
In case of a scrub for any reason the chances for a favorable launch drop slightly to 60% GO.
WGS-8 is the first in a newly upgraded series of a trio of WGS satellites built by Boeing.
The major upgrade is inclusion of the Wideband Digital Channelizer, awarded to Boeing in June 2012.
The Wideband Digital Channelizer will provide a 90 percent improvement in satellite bandwidth for US forces.
It is also the only military satellite communications system that can support simultaneous X and Ka band communications.
WGS-8 can instantaneously filter and downlink up to 8.088 GHz of bandwidth compared to 4.410 GHz for the earlier Block I and II satellite series.
The prior Wideband Global SATCOM-7 (WGS-7) communications satellite was launched on July 23, 2015 from Space Launch Complex-37.
The Wideband Global SATCOM system provides “anytime, anywhere communication” for allied military forces “through broadcast, multicast and point to point connections,” according to ULA.
The $426 million WGS 8 satellite is part of a significant upgraded constellation of high capacity communications satellites providing enhanced communications capabilities to American and allied troops in the field for the coming two decades.
“WGS provides essential communications services, allowing Combatant Commanders to exert command and control of their tactical forces, from peace time to military operations.”
WGS-8 is the eighth in a series of high capacity communication satellites that will broaden tactical communications for U.S. and allied forces at both a significantly higher capacity and lower cost.
“WGS satellites are important elements of a high-capacity satellite communications system providing enhanced communications capabilities to America’s troops in the field for the next decade and beyond,” according to a ULA factsheet.
“WGS enables more robust and flexible execution of Command and Control, Communications Computers, Intelligence, Surveillance, and Reconnaissance (C4ISR), as well as battle management and combat support information functions. The WGS constellation augments the existing service available through the UHF Follow-on satellite by providing enhanced information broadcast capabilities.”
The 217 foot tall Delta IV Medium+ rocket will launch in the 5,4 configuration with a 5 meter diameter payload fairing and 4 solid rocket boosters to augment the first stage.
The is the sixth flight in the Medium+ (5,4) configuration; all of which were for prior WGS missions.
WGS-8 also counts as the first of three launches from the Cape this December. A Pegasus XL rocket will launch on Dec. 12 carrying NASA’s CGYNSS hurricane monitoring satellites. And an Atlas V will launch on Dec. 12 with the EchoStar 23 comsat.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
Iridium Communications announced on Thursday that the first launch of a slew of its next-generation global satellite constellation, dubbed Iridium NEXT, will launch atop a SpaceX Falcon 9 rocket on December 16, 2016 at 12:36 p.m. PST from SpaceX’s west coast launch pad on Vandenberg Air Force Base in California.
However the launch is dependent on achieving FAA approval for the Falcon 9 launch.
All SpaceX Falcon 9 launches immediately ground to a halt following the colossal eruption of a fireball from the Falcon 9 at the launch pad that suddenly destroyed the rocket and completely consumed its $200 million Israeli Amos-6 commercial payload on Sept. 1 during a routine fueling and planned static fire engine test at Cape Canaveral Air Force Station in Florida.
The explosive anomaly resulted from a “large breach” in the cryogenic helium system of the second stage liquid oxygen tank and subsequent ignition of the highly flammable oxygen propellant.
“This launch is contingent upon the FAA’s approval of SpaceX’s return to flight following the anomaly that occurred on September 1, 2016 at Cape Canaveral Air Force Station, Florida,” Iridium said in a statement.
SpaceX quickly started an investigation to determine the cause of the anomaly that destroyed the rocket and its payload and significantly damaged the infrastructure at launch pad 40.
“The investigation has been conducted with FAA oversight. Iridium expects to be SpaceX’s first return to flight launch customer.”
The goal of the privately contracted mission is to deliver the first 10 Iridium NEXT satellites into low-earth orbit to inaugurate what will be a new constellation of satellites dedicated to mobile voice and data communications.
Iridium eventually plans to launch a constellation of 81 Iridium NEXT satellites into low-earth orbit.
“At least 70 of which will be launched by SpaceX,” per Iridium’s contract with SpaceX.
“We’re excited to launch the first batch of our new satellite constellation. We have remained confident in SpaceX’s ability as a launch partner throughout the Falcon 9 investigation,” said Matt Desch, chief executive officer at Iridium, in a statement.
“We are grateful for their transparency and hard work to plan for their return to flight. We are looking forward to the inaugural launch of Iridium NEXT, and what will begin a new chapter in our history.”
Altogether seven Falcon 9 launches will be required to deploy the constellation of 70 Iridium NEXT satellites by early 2018, if all goes well.
The initial batch of Iridium NEXT satellites for this launch began arriving at SpaceX’s Vandenberg AFB satellite processing facility in early August 2016. They were built by Orbital ATK.
Following up on earlier statements by SpaceX President Gwynne Shotwell, SpaceX founder and CEO Elon Musk had said in a televised CNBC interview on Nov. 4 that the firm was aiming to resume launches of the booster in mid-December.
“We are looking forward to return to flight with the first Iridium NEXT launch,” said Gwynne Shotwell, president and chief operating officer of SpaceX.
“Iridium has been a great partner for nearly a decade, and we appreciate their working with us to put their first 10 Iridium NEXT satellites into orbit.”
Musk said the Sept 1 explosion at pad 40 was related to some type of interaction between the liquid helium bottles , carbon composites and solidification of the liquid oxygen propellant in the SpaceX Falcon 9 second stage.
“It basically involves a combination of liquid helium, advanced carbon fiber composites, and solid oxygen, Musk elaborated to CNBC.
“Oxygen so cold that it enters the solid phase.”
The explosion took place without warning as liquid oxygen and RP-1 propellants were being loaded into the second stage of the 229-foot-tall (70-meter) Falcon 9 during a routine fueling test and engine firing test at SpaceX’s Space Launch Complex-40 launch facility at approximately 9:07 a.m. EDT on Sept. 1 on Cape Canaveral Air Force Station, Fl.
But the rocket blew up during the fueling operations and the SpaceX launch team never even got to the point of igniting the first stage engines for the static fire test.
Pad 40 is out of action until extensive repairs and testing are completed.
The Sept. 1 calamity was the second Falcon 9 failure within 15 months time and called into question the rockets overall reliability.
The first Falcon 9 failure involved a catastrophic mid air explosion about two and a half minutes after liftoff, during the Dragon CRS-9 cargo resupply launch for NASA to the International Space Station on June 28, 2015 – and witnessed by this author.
SpaceX maintains launch pads on both the US East and West coasts.
On the Florida Space Coast, SpaceX plans to initially resume launches at the Kennedy Space Center (KSC) from pad 39A, the former shuttle pad that SpaceX has leased from NASA, while pad 40 is repaired and refurbished.
KSC launches could start as soon as early January 2017 with the EchoStar 23 communications satellite.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
Learn more about ULA Delta 4 launch on Dec 7, GOES-R weather satellite, Heroes and Legends at KSCVC, OSIRIS-REx, InSight Mars lander, ULA, SpaceX and Orbital ATK missions, Juno at Jupiter, SpaceX AMOS-6 & CRS-9 rocket launch, ISS, ULA Atlas and Delta rockets, Orbital ATK Cygnus, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:
Dec 5-7: “ULA Delta 4 Dec 7 launch, GOES-R weather satellite launch, OSIRIS-Rex, SpaceX and Orbital ATK missions to the ISS, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings
KENNEDY SPACE CENTER, FL – An unmanned Russian Progress resupply ship bound for the International Space Station (ISS) was lost shortly after launch from the Baikonur Cosmodrome in Kazakhstan on Thursday when its Soyuz booster suffered a catastrophic anomaly in the third stage, and the craft and its contents were totally destroyed.
The Russian launch failure deals somewhat of a setback to the ever ongoing efforts by all the space station partners to keep the orbiting outpost well stocked with critical supplies of food and provisions for the multinational six person crew and science experiments to carry out the research activities for which the station was assembled.
The three stage Soyuz-U rocket failed in flight around six and a half minutes after what had been an otherwise flawless nighttime liftoff from the Baikonur Cosmodrome at 9:51 a.m. EST (8:51 p.m. Baikonur time), Thursday, Dec. 1.
Telemetry from the Progress 65 vehicle, also known as Progress MS-04, stopped after 382 seconds of flight while soaring about 190 km over the southern Russian Republic of Tyva.
“The Russian space agency Roscosmos has confirmed a Progress cargo resupply spacecraft bound for the International Space Station and her six person crew has lost shortly after launch,” said NASA.
“According to preliminary information, the contingency took place at an altitude of about 190 km over remote and unpopulated mountainous area of the Republic of Tyva,” said Roscosmos in a statement.
The Progress vehicle burned up during the resulting and unplanned fiery plummet through the Earth’s atmosphere.
Per protocol, the Russian space agency Roscosmos has formed a state commission to investigate the accident, seek out the root cause and implement measures to prevent such failures in the future.
“The first few minutes of flight were normal, but Russian flight controllers reported telemetry data indicating a problem during third stage operation. The Russians have formed a State Commission and are the source for details on the specific failure cause,” NASA said.
Crew launches on a different version of the Soyuz rocket were delayed and put on hold several months following last year’s Progress 59 failure and accident investigation.
Despite the failure there was no immediate impact on the current Expedition 50 crew and life goes on.
“The loss of the cargo ship will not affect the normal operations of the ISS and the life of the station crew,” said Roscosmos.
“The spacecraft was not carrying any supplies critical for the United States Operating Segment (USOS) of the station,” NASA reported.
Currently there is a satisfactory level of supplies.
“Six crew members living aboard the space station are safe and have been informed of the mission’s status. Both the Russian and U.S. segments of the station continue to operate normally with onboard supplies at good levels.”
However the continued useful utilization of the million pound station is totally dependent on receiving a steady train of supplies from Earth – comprising Russian, US and Japanese cargo freighters launching multiple times per year.
The Progress 65 cargo freighter was jam packed with 2.6 tons of food, fuel, and supplies for the space station crew, including approximately 1,400 pounds of propellant, 112 pounds of oxygen, 925 pounds of water, and 2,750 pounds of spare parts, supplies and scientific experiment hardware.
The Progress was carrying a few items from NASA but they are all replaceable, says NASA. The US items packed on board included spare parts for the station’s environmental control and life support system, research hardware, crew supplies and crew clothing.
Had all gone well, Progress 65 would have docked to the rear port of the space station’s Russian Zvezda Service Module at 11:43 a.m. Saturday, Dec. 3.
Japan is all set to launch the next cargo flight to the ISS on Friday, Dec. 9 when the Japan Aerospace Exploration Agency (JAXA) HTV-6 resupply ship will blast off atop the H-II rocket.
The next US cargo launch could be either an Orbital ATK Cygnus launch atop a ULA Atlas V in March 2017 or a SpaceX Dragon launch perhaps in Jan 2017.
The US has also suffered ISS cargo launch failures from both of the commercial resupply providers; SpaceX on the Dragon CRS-7 mission in Jun 2015 and Orbital ATK on the Cygnus Orb-3 mission in October 2014.
The cargo ships function as a railroad to space and function as the lifeline to keep the station continuously crewed and functioning. Without periodic resupply by visiting vehicles from the partner nations the ISS cannot continue to operate.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
KENNEDY SPACE CENTER, FL – The fire and fury of the mighty ULA Atlas V got the gorgeous NASA/NOAA GOES-R weather observatory to geostationary orbit just days ago – as a ‘Thanksgiving’ present to all the people of Earth through the combined efforts of the government/industry/university science and engineering teams of hard working folks who made it possible.
Check out this dazzling photo and video gallery from myself and several space journalist colleagues showing how GOES got going – from prelaunch to launch atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 (SLC-41) Cape Canaveral Air Force Station at 6:42 p.m. EST in the evening on Saturday, Nov. 19, 2016.
Three and a half hours after liftoff, the bus sized spacecraft successfully separated from the Atlas Centaur upper stage and deployed its life giving solar arrays.
GOES-R is the most advanced and powerful weather observatory ever built and will bring about a ‘quantum leap’ in weather forecasting.
It’s dramatic new imagery will show the weather in real time enabling critical life and property forecasting, help pinpoint evacuation zones and also save people’s lives in impacted areas of severe weather including hurricanes and tornadoes.
Here’s a pair of beautiful launch videos from space colleague Jeff Seibert and myself:
Video Caption: 5 views from the launch of the NOAA/NASA GOES-R weather satellite on 11/19/2016 from Pad 41 CCAFS on a ULA Atlas. Credit: Jeff Seibert
Video Caption: Launch of the NOAA/NASA GOES-R weather observatory satellite on Nov. 19, 2016 from pad 41 on Cape Canaveral Air Force Station on a ULA Atlas V rocket – as seen in this remote video taken at the pad. Credit: Ken Kremer/kenkremer.com
GOES-R is the first in a new series of revolutionary NASA/NOAA geostationary weather satellites that will soon lead to more accurate and timely forecasts, watches and warnings for the Earth’s Western Hemisphere when it becomes fully operational in about a year.
GOES-R, which stands for Geostationary Operational Environmental Satellite – R Series – is a new and advanced transformational weather satellite that will vastly enhance the quality, speed and accuracy of weather forecasting available to forecasters for Earth’s Western Hemisphere.
The 11,000 pound satellite was built by prime contractor Lockheed Martin and is the first of a quartet of four identical satellites – comprising GOES-R, S, T, and U – at an overall cost of about $11 Billion. This will keep the GOES satellite system operational through 2036.
The science suite includes the Advanced Baseline Imager (ABI) built by Harris Corporation, the Geostationary Lightning Mapper (GLM) built by Lockheed Martin, Solar Ultraviolet Imager (SUVI), Extreme Ultraviolet and X-Ray Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS), and the Magnetometer (MAG).
ABI is the primary instrument and will collect 3 times more spectral data with 4 times greater resolution and scans 5 times faster than ever before – via the primary Advanced Baseline Imager (ABI) instrument – compared to the current GOES satellites.
GOES-R launched on the massively powerful Atlas V 541 configuration vehicle, augmented by four solid rocket boosters on the first stage.
The payload fairing is 5 meters (16.4 feet) in diameter. The first stage is powered by the Russian built duel nozzle RD AMROSS RD-180 engine. And the Centaur upper stage is powered by a single-engine Aerojet Rocketdyne RL10C engine.
This was only the fourth Atlas V launch employing the 541 configuration.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
KENNEDY SPACE CENTER, FL – After an ironic detour due to Hurricane Matthew, liftoff of the game changing NASA/NOAA next generation GOES-R geostationary weather observation satellite offering a “dramatic leap in capability” is finally on track for this weekend on Nov. 19 from the Florida Space Coast.
And Universe Today recently got an up close look and briefing about the massive probe inside the cleanroom processing facility at Astrotech Space Operations in Titusville, Fl.
“We are bringing the nation a new capability .. that’s a dramatic leap .. to scan the entire hemisphere in about 5 minutes,” said Greg Mandt, NOAA GOES-R program manager during a briefing in the Astrotech cleanroom.
“GOES-R has both weather and space weather detection capabilities!” Tim Gasparrini, GOES-R program manager for Lockheed Martin, told Universe Today during a cleanroom interview.
Astrotech is located just a few miles down the road from NASA’s Kennedy Space Center and the KSC Visitor Complex housing the finest exhibits of numerous spaceships, hardware items and space artifacts.
GOES-R, which stands for Geostationary Operational Environmental Satellite – R Series – is a new and advanced transformational weather satellite that will vastly enhance the quality, speed and accuracy of weather forecasting available to forecasters for Earth’s Western Hemisphere.
Liftoff of the NASA/NOAA GOES-R weather satellite atop a United Launch Alliance (ULA) Atlas V rocket is now scheduled for Saturday, Nov. 19 at 5:42 p.m. from Space Launch Complex 41 (SLC-41) on Cape Canaveral Air Force Station, shortly after sunset.
The launch window extends for an hour from 5:42-6:42 p.m. EST.
GOES-R is the first in a new series of American’s most powerful and most advanced next generation weather observation satellites. It is designed to last for a 15 year orbital lifetime.
Once in orbit it will be known as GOES-16. TV viewers are presently accustomed to seeing daily streams of imagery from the GOES-East and GOES-West weather observation satellites currently in orbit.
What’s the big deal about GOES-R?
Audiences will notice big changes from GOES-R once it becomes operational because it will provide images of weather patterns and severe storms as regularly as every five minutes or as frequently as every 30 seconds.
“These images can be used to aid in weather forecasts, severe weather outlooks, watches and warnings, lightning conditions, maritime forecasts and aviation forecasts.
“It also will assist in longer term forecasting, such as in seasonal predictions and drought outlooks. In addition, space weather conditions will be monitored constantly, including the effects of solar flares to provide advance notice of potential communication and navigation disruptions. It also will assist researchers in understanding the interactions between land, oceans, the atmosphere and climate.”
GOES-R was built by prime contractor Lockheed Martin and is the first of a four satellite series – comprising GOES-R, S, T, and U that will be keep the GOES satellite system operational through 2036.
All four of the revolutionary 11,000 pound satellites are identical. The overall cost is about $11 Billion.
“This is a very exciting time,” explained Greg Mandt, the NOAA GOES-R program manager during the Astrotech cleanroom briefing.
“This is the culmination of about 15 years of intense work for the great team of NOAA and NASA and our contractors Lockheed Martin and Harris.”
“We are bringing the nation a new capability. The GOES program has been around for about 40 years and most every American sees it every night on the weather broadcasts when they see go to the satellite imagery. And what’s really exciting is that for the first time in that 40 years we are really end to end replacing the entire GOES system. The weather community is really excited about what we are bringing.”
“It’s a dramatic leap in capability – like moving from black and white TV to HDTV.”
“We will be able to scan the entire hemisphere in about 5 minutes and do things so much faster with double the resolution.”
It was built in facilities in Bucks County, Pennsylvania and Denver, Colorado. It arrived at Astrotech in August for final processing and checkouts of the spacecraft and instruments.
The gigantic school bus sized satellite is equipped with a suite of six instruments or sensors that are the most advanced of their kind. They will be used for three types of observations: Earth sensing, solar imaging, and space environment measuring. They will point to the Earth, the Sun and the in-situ environment of the spacecraft.
The suite includes the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), Extreme Ultraviolet and X-Ray Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS), and the Magnetometer (MAG).
The two Earth-pointing instruments are on the top of the spacecraft – namely ABI and GLM.
“ABI is the premier instrument on the spacecraft. When you turn on the news and see a severe storm picture, that’s the one it comes from. It takes pictures in the visible as well as the infrared (IR), near infrared (IR),” Tim Gasparrini, GOES-R program manager for Lockheed Martin, told Universe Today during a cleanroom interview.
“It is looking for things like moisture, vegetation, aerosols and fire. So it looks across a broad spectrum to determine the environmental conditions on Earth.”
ABI offers 3 times more spectral channels with 4 times greater resolution and scans 5 times faster than ever before, compared to the current GOES satellites.
The GOES-R ABI will view the Earth with 16 different spectral bands (compared to five on current GOES), including two visible channels, four near-infrared channels, and ten infrared channels, according to the mission fact sheet.
It will also carry the first operational lightning mapper ever flown in space – GLM – built by Lockheed Martin. It has a single-channel, near-infrared optical transient detector.
“This is the first lightning mapper in space and at geostationary orbit.”
“GLM takes a picture of a scene on the Earth 500 times per second. And it compares those images for a change in the scene that can detect lightning, using an algorithm,” Gasparrini told me.
“The importance of that is lightning is a precursor to severe weather. So they are hoping that GLM will up to double the tornado warning time. So instead of 10 minutes warning you get 20 minutes warning, for example.”
GLM will measure total lightning (in-cloud, cloud-to-cloud and cloud-to-ground) activity continuously over the Americas and adjacent ocean regions with near-uniform spatial resolution of approximately 10 km.
“The two solar pointing instruments are located on a platform that constantly points them at the sun – SUVI (built by Lockheed Martin and EXIS. SUVI looks at the sun in the ultraviolet and EXIS looks at the x-ray wavelengths.”
The instruments work in concert.
“SUVI detects a solar flare on he sun and EXIS measures the intensity of the flare. As it comes towards the Earth, NOAA then uses the DSCOVR satellite [launched last year] as sort of a warning buoy about 30 minutes before the Earth. This gives a warning that a geomagnetic storm is heading toward the Earth.”
“When the storm reaches the Earth, the magnetometer instrument (MAG) on GOES-R then measures the influence of the magnetic storm on the magnetic field of the Earth.”
“Then the SEISS instrument, a charged particle detector, measures the charged particle effect of the storm on the Earth at geostationary orbit.”
“So GOES-R has both weather and space weather detection capabilities!” Gasparini elaborated.
The huge bus sized satellite measures 6.1 m x 5.6 m x 3.9 m (20.0 ft x 18.4 ft x 12.8 ft) with a three-axis stabilized spacecraft bus.
It has a dry mass of 2,857 kg (6,299 lbs) and a fueled mass of 5,192 kg (11,446 lbs) at launch.
The instruments are very sensitive to contamination and the team is taking great care to limit particulate and molecular contaminants in the cleanroom. Some of the instruments have contamination budget limits of less than 10 angstroms – smaller than the diameter of a typical molecule. So there can’t even be a single layer of molecules on the instruments surface after 15 years on orbit.
GOES-R can also multitask according to a NASA/NOAA factsheet.
“It can scan the Western Hemisphere every 15 minutes, the Continental U.S. every 5 minutes and areas of severe weather every 30-60 seconds. All at the same time!”
GOES-R will blastoff on a ULA Atlas V in the very powerful 541 configuration, augmented by four solid rocket boosters on the first stage. The payload fairing is 5 meters (16.4 feet) in diameter and the upper stage is powered by a single-engine Centaur.
It will be launched to a Geostationary orbit some 22,300 miles above Earth.
The Atlas V booster has been assembled inside the Vertical Integration Facility (VIF) at SLC-41 and will be rolled out to the launch pad Friday morning, Nov. 18 with the GOES-R weather satellite encapsulated inside the nose cone.
The weather forecast shows a 80 percent chance of favorable weather conditions for Saturday’s sunset blastoff.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
Learn more about GOES-R weather satellite, Heroes and Legends at KSCVC, OSIRIS-REx, InSight Mars lander, ULA, SpaceX and Orbital ATK missions, Juno at Jupiter, SpaceX AMOS-6 & CRS-9 rocket launch, ISS, ULA Atlas and Delta rockets, Orbital ATK Cygnus, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:
Nov 17-20: “GOES-R weather satellite launch, OSIRIS-Rex, SpaceX and Orbital ATK missions to the ISS, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings
China’s newest and biggest heavy-lift rocket was successfully launched today, Nov 3, 2016, testing out China’s latest rocket along with bringing an experimental satellite designed to test electric-propulsion technology.
The Long March 5 rocket blasted off from the Wenchang launch center on Hainan Island, off China’s southern coast, at 8:43 a.m. EDT (12:43:14 UTC; 8:43 p.m. Beijing time).
Although Chinese space officials have not released many details about the mission or the new rocket, reportedly the Long March-5, (or the Chang Zheng-5, CZ-5) gives China a launch vehicle with similar launch capability to the Delta 4 Heavy or ESA’s Ariane 5, which is twice the capability of China’s Long March-3 (CZ-3).
The 187-foot-tall (57-meter) Long March-5 is powered by 10 liquid-fueled engines, which reportedly generate about 2.4 million pounds of thrust.
The increase in capability is seen as essential for China’s long-range space goals for a bigger and permanently-staffed space station, missions to the Moon, a robotic mission to Mars and the launch of commercial satellites.
The @ChinaSpaceflight Twitter account tweeted this image the launch control center when the YZ-2 upper stage fired:
The Long March-5 is a large, two-stage rocket with a payload capacity of 25 tons to low-Earth orbit. According to the China Aerospace Science and Technology Corporation (CASC), the developer of the Long March-5, the rocket uses kerosene, liquid oxygen and liquid hydrogen, moving away from more toxic propellants like hydrazine and nitrogen tetroxide. This makes the new rocket not only less expensive to launch but more environmental friendly.
Today’s launch is the second from the new Wenchang launch complex. This past summer, on June 25, China’s new medium-sized Long March-7 made its initial launch from the site.
NASA WALLOPS FLIGHT FACILITY, VA – The ‘Return to Flight’ blastoff of Orbital ATK’s upgraded Antares rocket will have to wait one more day to come to fruition with a magnificent Monday night launch – after a technical scrub was called this afternoon, Oct. 16, at NASA’s Virginia launch base due to a faulty cable.
The launch potentially offers a thrilling skyshow to millions of US East Coast spectators if all goes well.
Despite picture perfect Fall weather, technical gremlins intervened to halt Sunday nights planned commercial cargo mission for NASA carrying 2.5 tons of science and supplies bound for the International Space Station (ISS).
The launch of the Orbital ATK CRS-5 mission is now scheduled for October 17 at 7:40 p.m. EDT, from the Mid-Atlantic Regional Spaceport pad 0A at NASA’s Wallops Flight Facility on Virginia’s picturesque Eastern shore.
You can watch the launch live on NASA TV as well as the agency’s website beginning at 6:30 p.m. EDT Oct 17.
Mondays liftoff is slated to take place approximately 23 minutes earlier then Sunday’s hoped for time of 8:03 p.m. EDT in order to match the moment when the orbital plane of the station passes on NASA Wallops.
The weather outlook on Monday remains extremely favorable with a 95 percent chance of acceptable conditions at launch time.
A nearly full moon has risen over Antares the past few days at the launch pad.
Announcement of the launch scrub of the mission – also known as OA-5 – came just as the six hour countdown was set to begin after engineers discovered the bad cable.
“Today’s launch of Orbital ATK’s Antares rocket is postponed 24 hours due to a ground support equipment (GSE) cable that did not perform as expected during the pre-launch check out,” officials at NASA Wallops said.
The faulty cable was a component of the rocket’s hold down system at the pad, Orbital ATK officials told Universe Today after the scrub was announced.
Technicians have spares on hand and are working now to replace the cable in time to permit a Monday evening launch.
“We have spares on hand and rework procedures are in process. The Antares and Cygnus teams are not currently working any technical issues with the rocket or the spacecraft.”
Besides the cable the rocket is apparently in perfect shape.
“The Antares and Cygnus teams are not currently working any technical issues with the rocket or the spacecraft.”
Antares launches have been on hold for two years after it was grounded following its catastrophic failure just moments after liftoff on Oct. 28, 2014 that doomed the Orb-3 resupply mission to the space station – as witnessed by this author.
Orbital ATK’s Antares commercial rocket had to be overhauled with the completely new RD-181 first stage engines- fueled by LOX/kerosene – following the destruction of the Antares rocket and Cygnus supply ship two years ago.
The 14 story tall commercial Antares rocket also will launch for the first time in the upgraded 230 configuration – powered by new Russian-built first stage engines designed and manufactured by Energomesh.
The 133-foot-tall (40-meter) Antares was rolled out to pad 0A on Thursday, Oct. 13 – three days prior to Sunday’s intended launch date. It was raised to the vertical launch position on Friday.
The two stage Antares will carry the Orbital OA-5 Cygnus cargo freighter to orbit on a flight bound for the ISS and its multinational crew of astronauts and cosmonauts.
The launch marks the first nighttime liftoff of the Antares – and it could be visible up and down the eastern seaboard if weather and atmospheric conditions cooperate to provide a spectacular viewing opportunity to the most populated region in North America.
The Cygnus spacecraft for the OA-5 mission is named the S.S. Alan G. Poindexter in honor of former astronaut and Naval Aviator Captain Alan Poindexter.
Under the Commercial Resupply Services (CRS) contract with NASA, Orbital ATK will deliver approximately 28,700 kilograms of cargo to the space station. OA-5 is the sixth of these missions.
Watch for Ken’s continuing Antares/Cygnus mission and launch reporting. He will be reporting from on site at NASA’s Wallops Flight Facility, VA during the launch campaign.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
NASA WALLOPS FLIGHT FACILITY, VA – After a two year stand down, an upgraded commercial Antares rocket was rolled out to the NASA Wallops launch pad on Virginia’s eastern shore and raised to its launch position today in anticipation of a spectacular Sunday night liftoff, Oct. 16, to the International Space Station (ISS) on a critical resupply mission for NASA.
Blastoff of the re-engined Orbital ATK Antares rocket is slated for 8:03 p.m. EDT on Oct. 16 from the Mid-Atlantic Regional Spaceport pad 0A at NASA’s Wallops Flight Facility on Virginia’s picturesque Eastern shore.
Officials had to postpone this commercial resupply mission – dubbed OA-5 – from mid-week due to Cat 3 Hurricane Nicole which slammed into Bermuda yesterday, Oct. 13, packing winds of about 125 mph, and is home to a critical NASA launch tracking station.
After the storm passed, engineers found the tracking station only suffered minor damage – so the GO was given to proceed with preparation for Sunday’s nighttime launch.
“Repairs to the station have been made and the team is currently readying to support the launch,” according to NASA officials.
Engineers are still testing the station to ensure its readiness.
“The Bermuda site provides tracking, telemetry and flight terminations support for Antares launches from NASA’s Wallops Flight Facility on Virginia’s Eastern Shore. Final testing is scheduled to be conducted the morning of Oct. 15 prior to the launch readiness review later that day.”
If all goes well Antares is sure to provide a dazzling nighttime skyshow from NASA’s Virginia launch base Sunday night – and potentially offering a thrilling spectacle to millions of US East Coast spectators.
The launch window last five minutes and the weather outlook is currently favorable.
The launch will air live on NASA TV and the agency’s website beginning at 7 p.m. EDT Oct 16.
The 133-foot-tall (40-meter) Antares was rolled out to pad 0A on Thursday, Oct. 13 – three days prior to the anticipated launch date – and raised to the vertical launch position this afternoon.
The two stage Antares will carry the Orbital OA-5 Cygnus cargo freighter to orbit on a flight bound for the ISS and its multinational crew of astronauts and cosmonauts.
The launch marks the first nighttime liftoff of the Antares – and it could be visible up and down the eastern seaboard if weather and atmospheric conditions cooperate to provide a spectacular viewing opportunity to the most populated region in North America.
The 14 story tall commercial Antares rocket also will launch for the first time in the upgraded 230 configuration – powered by new Russian-built first stage engines.
Orbital ATK’s Antares commercial rocket had to be overhauled with the completely new RD-181 first stage engines – fueled by LOX/kerosene – following the destruction of the Antares rocket and Cygnus supply ship two years ago.
The RD-181 replaces the previously used AJ26 engines which failed moments after liftoff during the last launch on Oct. 28, 2014 resulting in a catastrophic loss of the rocket and Cygnus cargo freighter.
The launch mishap was traced to a failure in the AJ26 first stage engine turbopump and caused Antares launches to immediately grind to a halt.
For the OA-5 mission, the Cygnus advanced maneuvering spacecraft will be loaded with approximately 2,400 kg (5,290 lbs.) of supplies and science experiments for the International Space Station (ISS).
“Cygnus is loaded with the Saffire II payload and a nanoracks cubesat deployer,” Frank DeMauro, Orbital ATK Cygnus program manager, told Universe Today in a interview.
Among the science payloads aboard the Cygnus OA-5 mission is the Saffire II payload experiment to study combustion behavior in microgravity. Data from this experiment will be downloaded via telemetry. In addition, a NanoRack deployer will release Spire Cubesats used for weather forecasting. These secondary payload operations will be conducted after Cygnus departs the space station.
Other experiments include a study on the effect of lighting on sleep and daily rhythms, collection of health-related data, and a new way to measure neutrons.
Watch for Ken’s continuing Antares/Cygnus mission and launch reporting. He will be reporting from on site at NASA’s Wallops Flight Facility, VA during the launch campaign.
The Cygnus spacecraft for the OA-5 mission is named the S.S. Alan G. Poindexter in honor of former astronaut and Naval Aviator Captain Alan Poindexter.
Under the Commercial Resupply Services (CRS) contract with NASA, Orbital ATK will deliver approximately 28,700 kilograms of cargo to the space station. OA-5 is the sixth of these missions.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
Next month’s launch of GOES-R – a new and advanced transformational weather satellite that will vastly enhance the quality, speed and accuracy of weather forecasting – will likely be delayed a few days due to lingering storm related effects of deadly Hurricane Matthew on launch preparations at Cape Canaveral Air Force Station and the Kennedy Space Center (KSC), Universe Today confirmed with launch provider United Launch Alliance (ULA).
Liftoff of the NASA/NOAA GOES-R (Geostationary Operational Environmental Satellite – R Series) weather satellite atop a United Launch Alliance (ULA) Atlas V rocket had been scheduled for Nov. 4 at 5:40 p.m. from Space Launch Complex 41 (SLC-41) on Cape Canaveral Air Force Station.
GOES-R is the first in a new series of American’s most powerful and most advanced next generation weather observation satellites.
It’s ironic that awful weather is impacting the launch of this critical weather satellite.
It’s not known how long any postponement would be – perhaps only a few days since preliminary indications are that the base suffered only minor damage and there are no reports of major damage.
“Our teams are still doing a damage assessment. So we don’t have a status about all of our infrastructure yet,” Chassagne told me.
“A preliminary assessment shows that we have some minor damage to a few of our facilities. We had no rockets on the pads. So there is no damage to hardware.”
Damage assessment teams are evaluating the launch pad and launch facilities in detail right now.
“Since we still have emergency response teams in assessing, we don’t know how long the delay will be until we get those assessments.”
The looming threat of a direct hit on Cape Canaveral and KSC from the Category 4 storm Hurricane Matthew on Friday, Oct. 7, forced the closure of both facilities before the storm hit. They remained closed this weekend except to emergency personal.
“Got in today to assess. Light to moderate damage to our facilities. No damage to any flight assets,” tweeted ULA CEO Tory Bruno.
The base closures therefore also forced a halt to launch preparations at the Cape and pad 41.
The storm grazed by the Kennedy Space Center (KSC), Cape Canaveral Air Force Station (CCAFS) and the major population centers along the Florida Space Coast with wind gusts up to 107 mph – rather than making a direct impact as feared.
“Hurricane Matthew passed Cape Canaveral and Kennedy Space Center …. with sustained winds of 90 mph with gusts to 107 mph,” on Friday, NASA officials reported.
The storm passed “the space center about 26 miles off the tip of Cape Canaveral.”
The launch ULA facilities are now being thoroughly inspected before any launch preparation can proceed.
The satellite is in the final stages of preparation at the Astrotech Space Operations Facility in Titusville, FL as I recently observed during an up close visit in the High Bay cleanroom.
Check out this amazing rooftop video showing the high winds pummeling Titusville during Hurricane Matthew just a few miles away from Astrotech and the GOES-R satellite – from my space colleague Jeff Seibert.
Video caption: Before we bailed out on Thursday afternoon, I clamped one of my launch pad remote cameras to the power service post on our roof. Wind is blocked a lot by trees but none fell on the house. The highest recorded wind speed was 51mph at 7:30AM on Oct. 7, 2016. The minimum barometric pressure was 28.79″ from 8:20 – 9 AM. We got 5.9″ of rain. The ridge line faces due east. We never lost power. Credit: Jeff Seibert
Lockheed Martin is the prime contractor for GOES-R.
Whenever it does launch, GOES-R will blast off on a ULA Atlas V in the very powerful 541 configuration, augmented by four solid rocket booster on the first stage.
It will be launched to a Geostationary orbit some 22,300 miles above Earth.
But ULA has not yet begun assembling the Atlas V booster inside the Vertical Integration Facility (VIF) at SLC-41 due to the storm.
Because of Hurricane Matthew, the first stage arrival had to be postponed. The second stage is already in port at the Delta operations center and being integrated.
“The first stage booster is not yet at the Cape,” Chassagne confirmed.
However, conditions at the Cape have improved sufficiently for the US Air Force to clear its shipment into port, as of this evening.
“We just cleared CCAFS to be able to accept a booster for the GOES-R launch–how appropriate that GOES is a weather satellite!” wrote Brig. Gen. Wayne Monteith, commander of the Air Force’s 45th Space Wing at Patrick Air Force Base, in a Facebook update late today, Oct. 9.
“We are returning to full mission capability and our status as the World’s Premier Gateway to Space.”
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.